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x n +1 = 

A − Bx n −2 
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, n = 0 , 1 , . . . , 

where A , B are nonnegative real numbers, C , D are positive real numbers and C + Dx n −1 � = 0 for all 
n ≥ 0. 
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. Introduction 

ifference equations appear naturally as discrete analogues and 

umerical solutions of differential equations and delay differen- 
ial equations having applications in biology, ecology, physics, 
tc. The qualitative study of difference equations is a fertile 
esearch area and increasingly attracts many mathematicians. 
his topic draws its importance from the fact that many real life
henomena are modeled using difference equations. The study 
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f nonlinear rational difference equations of higher order is of 
aramount importance, since we still know so little about such 

quations. 
R. Abo-Zeid [1] investigated the attractivity of two nonlinear 

hird order difference equations 

 n +1 = 

A − Bx n −1 

±C + Dx n −2 
, n = 0 , 1 , . . . , 

here A , B are nonnegative real numbers, C , D are positive real
umbers and C + Dx n −2 � = 0 for all n ≥ 0. 

El-Owaidy et al. [2] investigated the global attractivity of the 
ifference equation 

 n +1 = 

α − βx n −1 

γ + x n 
, n = 0 , 1 , . . . , 

here α, β, γ are non-negative real numbers and γ + x n � = 0 for
ll n ≥ 0. 
duction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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M. A. El-Moneam [3] studied the global behavior of the
higher order nonlinear rational difference equation 

x n +1 = Ax n + Bx n −k + Cx n −l + Dx n −σ + 

bx n −k 

| dx n −k − ex n −l | , 
n = 0 , 1 , . . . , 

where the coefficients A , B , C , D , b , d , e ∈ (0, ∞ ),
while k , l and σ are positive integers. The initial conditions
x −σ , . . . , x −l , . . . , x −k , . . . , x −1 , x 0 are arbitrary positive real
numbers such that k < l < σ . 

A. E. Hamza et al. [4] investigated the global asymptotic sta-
bility of the recursive sequence 

x n +1 = 

α − βx n 

γ + x n −1 
, n = 0 , 1 , . . . , 

where α, β, γ ≥ 0. For other related results, see [5,6] . In this
paper we study the global attractivity of the difference equations

x n +1 = 

A − Bx n −2 

C + Dx n −1 
, n = 0 , 1 , . . . , (1.1)

where A , B are non negative real numbers, C , D are positive real
numbers and C + Dx n −1 � = 0 for all n ≥ 0. 

Theorem 1.1 ( [6] ) . Consider the third-degree polynomial equation

λ3 + a 2 λ2 + a 1 λ + a 0 = 0 , (1.2)

where a 1 , a 0 and a 2 are real numbers. Then a necessary and suffi-
cient condition for all roots of Eq. (1.2) to lie inside the open disk
| λ| < 1 is 

| a 2 + a 0 | < 1 + a 1 , | a 2 − 3 a 0 | < 3 − a 1 and a 2 0 + a 1 − a 0 a 2 < 1

The change of variables x n = 

C 
D 

y n reduces Eq. (1.1) to the
difference equation 

y n +1 = 

p − qy n −2 

1 + y n −1 
, n = 0 , 1 , . . . . (1.3)

where p = 

AD 

C 2 and q = 

B 
C . 

2. The recursive sequence y n +1 = (p − qy n −2 ) / (1 + y n −1 ) 

In this section we study the global attractivity of the difference
equation 

y n +1 = 

p − qy n −2 

1 + y n −1 
, n = 0 , 1 , . . . , (2.1)

where p and q are positive real numbers. 
The equilibrium points of Eq. (2.1) are the zeros of the func-

tion 

f ( y ) = y 2 + (1 + q ) y − p. 

That is 

y 1 = 

1 
(−(1 + q ) + 

√ 

(1 + q ) 2 + 4 p ) 

2 
and 

y 2 = 

1 
2 
(−(1 + q ) −

√ 

(1 + q ) 2 + 4 p ) . 

The linearized equation associated with Eq. (2.1) about y i is 

z n +1 + 

y i 
1 + y i 

z n −1 + 

q 
1 + y i 

z n −2 = 0 , n = 0 , 1 , 2 , . . . . 

Its associated characteristic equation is 

λ3 + 

y i 
1 + y i 

λ + 

q 
1 + y i 

= 0 . 

Suppose that 

g i (λ) = λ3 + 

y i 
1 + y i 

λ + 

q 
1 + y i 

, i = 1 , 2 . (2.2)

Theorem 2.1. 

1) The sufficient condition for the equilibrium point y 1 to be lo-
cally asymptotically stable is q ≤ 1. 

2) If q > 

1 
3 + 

√ 

4 
3 p + 

4 
9 , then y 1 is unstable. 

3) y 2 is saddle equilibrium point. 

Proof. 

1) If q ≤ 1, then by using Theorem 1.1 with a 0 = 

q 
1+ y i , a 1 =

y i 
1+ y i , a 2 = 0 . We can easily show that y 1 is locally asymptot-
ically stable. 

2) If q > 

1 
3 + 

√ 

4 
3 p + 

4 
9 , then g 1 ( λ) has a zero λ1 in (−∞ , −1) ,

which implies that the equilibrium point y 1 is unstable. 
3) It is clear that g 2 ( λ) has a zero λ1 ∈ (0, 1), and g 2 (− q 

1+ y 2 ) =
q 

(1+ y 2 ) 3 
[ y 2 + 1 − q 2 ] . 

It is clear that g 2 ( λ) is an increasing function. Since
g 2 (− q 

1+ y 2 ) > 0 , then λ1 < − q 
1+ y 2 �⇒ | λ2 λ3 | > 1 �⇒ | λ2 | =

| λ3 | > 1 , which implies that y 2 is unstable equilibrium point
(saddle). �

Lemma 1. Assume that q ≤ 1. Then the interval [0 , p 
q ] is an in-

variant interval for Eq. (2.1) . 

Proof. Let { y n } ∞ 

n = −2 be a solution of Eq. (2.1) with y −2 , y −1 , y 0 ∈
[0 , p 

q ] . 

Consider the function U 1 (x, y ) = 

p−qy 
1+ x , U 1 is decreasing in x

and y on (−1 , ∞ ) × (−∞ , 
p 
q ) . 

Hence 
0 = U 1 ( 

p 
q , 

p 
q ) ≤ y 1 = U 1 (y −1 , y −2 ) < U 1 (0 , 0) = p < 

p 
q , 

by induction we obtain 0 ≤ y n ≤ p 
q ∀ n ≥ 1. 

Assume that there exists k ≥ 2 such that the following con-
ditions hold 

p ≥ kq 2 and 1 ≥ kp 
q . �

Lemma 2. Assume that condition (2.3) hold for some k ≥ 2. Let
{ y n } be a solution of Eq. (2.1) 

If y n , y n +1 , y n +2 ∈ [ −(k − 1) 
p 
q , 

p 
q ] for some n ≥ −2 , then

y n + i ∈ [0 , p 
q ] ∀ i ≥ 3. 
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i) If y n , y n +1 , y n +2 ∈ [ −(k − 1) 
p 
q , 

p 
q ] for some n ≥ −2 , then 

0 = U 1 

(
p 
q 
, 

p 
q 

)
≤ y n +3 = U 1 (y n +1 , y n ) 

≤ U 1 

(
−(k − 1) 

p 
q 
, −(k − 1) 

p 
q 

)
≤ p 

q 
. 

0 = U 1 

(
p 
q 
, 

p 
q 

)
≤ y n +4 = U 1 (y n +2 , y n +1 ) 

≤ U 1 

(
−(k − 1) 

p 
q 
, −(k − 1) 

p 
q 

)
≤ p 

q 
. 

As we know −(k − 1) 
p 
q ≤ 0 ≤ y n +3 ≤ p 

q , then we can write 

0 = U 1 

(
p 
q 
, 

p 
q 

)
≤ y n +5 = U 1 (y n +3 , y n +2 ) 

≤ U 1 

(
−(k − 1) 

p 
q 
, −(k − 1) 

p 
q 

)
≤ p 

q 
. 

Therefore by Lemma 1 , we have 0 ≤ y n + i ≤ p 
q , ∀ i ≥ 3. �

emma 3. Assume that condition (2.3) hold for some k ≥ 2 and
 ≤ 1. Let { y n } be a solution of Eq (2.1) . If 

y n , y n +1 , y n +2 ∈ 

[
−(k − 1) 

p 
q 
, 

mkp 
q 

]
for some n ≥ −2 , 

m ∈ Z 

+ then y n + i ∈ 

[
0 , 

p 
q 

]
∀ i ≥ 6 . 

roof. We prove the theorem by induction. For m = 1 , let
 n , y n +1 , y n +2 ∈ [ −(k − 1) 

p 
q , 

kp 
q ] for some n ≥ −2 , then 

−(k − 1) p 
q 

≤ −(k − 1) pq 
q + kp 

≤ p − kp 

1 + 

kp 
q 

≤ y n +3 

= 

p − qy n 
1 + y n +1 

≤ p − kp + p 
p 
q 

≤ kq ≤ p 
q 
. 

One may show that y n +4 and y n +5 ∈ [ −(k − 1) 
p 
q , 

p 
q ] . Then by

emma 2 we have 0 ≤ y n + i ≤ p 
q , ∀ i ≥ 6 . 

Assume that if y n , y n +1 , y n +2 ∈ [ −(k − 1) 
p 
q , 

Skp 
q ] , for some

 ≥ −2 , S ∈ Z 

+ , then 0 ≤ y n + i ≤ p 
q , ∀ i ≥ 6. 

Now, assume that y n , y n +1 , y n +2 ∈ [ −(k − 1) 
p 
q , 

(S+1) kp 
q ] , then 

−(k − 1) p 
q 

≤ −((S + 1) k − 1) pq 
q + (S + 1) kp 

≤ p − (S + 1) kp 

1 + 

(S+1) kp 
q 

≤ y n +3 

= 

p − qy n 
1 + y n +1 

≤ p − kp + p 
p 
q 

≤ p 
q 
. 

y using the same steps we obtain y n +4 , y n +5 ∈ [ −(k − 1) 
p 
q , 

p 
q ] ,

hen by Lemma 2 we have 0 ≤ y n + i ≤ p 
q , ∀ i ≥ 6. This complete

he proof. �

heorem 2.2. Suppose that q ≤ 1 and there exists k ≥ 2, m ≥
 such that conditions (2.3) hold. Then the positive equilibrium 

oint y 1 of Eq (2.1) is a global attractor with a basin 

 = 

[
−(k − 1) 

p 
q 
, 

mkp 
q 

]3 
roof. Suppose that q < 1 and let { y n } ∞ 

n = −2 be a solution of Eq.
2.1) with y −2 , y −1 , y 0 ∈ S. Then by Lemma 2 and Lemma 3 we
ave y n ∈ [0 , p 

q ] , n ≥ 6. 
Set λ = lim inf y n and � = lim sup y n . 
Let ε > 0 such that ε < min { (p/q ) − �, λ} . There exists n 0 ∈

 such that λ − ε < y n < � + ε ∀ n ≥ n 0 . 
Hence 

p − q (� + ε) 

1 + � + ε
< y n +1 < 

p − q (λ − ε) 

1 + λ − ε
, ∀ n ≥ n 0 + 2 . 

We get the inequality 

p − q (� + ε) 

1 + � + ε
≤ λ ≤ � ≤ p − q (λ − ε) 

1 + λ − ε
. 

Hence we have 

p − q �
1 + �

≤ λ ≤ � ≤ p − qλ

1 + λ
. 

This implies 
p − q � ≤ λ + λ� and � + λ� ≤ p − qλ, then p − q � ≤

+ λ� ≤ λ + p − qλ − �. 

That is λ(q − 1) ≤ �(q − 1) . This is contradiction and
herefore, � = λ = y 1 . �

heorem 2.3. Assume the initial conditions y −2 , y −1 , y 0 ∈ [0 , p 
q ] .

f they are not both equal to y 1 , then the following statements are
rue 

1) { y n } cannot have three consecutive terms equal to y 1 . 
2) Every negative semicycle of { y n } has at most three terms. 
3) Every positive semicycle of { y n } has at most four terms. 
4) { y n } is strictly oscillatory. 

roof. 

1) If y l−1 = y l = y l+1 = y 1 for some l ∈ N , then y l−2 = y 1 ,
which implies that y l−1 = y l−2 = y l−3 = · · · = y 0 = y −1 =
y −2 = y 1 which is impossible. 

2) Assume a negative semicycle starts with three terms 
y l−2 , y l−1 , y l , then y l−2 , y l−1 , y l < y 1 , and y l+1 =
f (y l−1 , y l−2 ) > f ( y 1 , y 1 ) = y 1 . 

3) Assume a positive semicycle starts with three terms 
y l−2 , y l−1 , y l , then y l−2 , y l−1 , y l ≥ y 1 , provided that
y l−2 , y l−1 , y l � = y 1 at the same time. 
y l+1 = f (y l−1 , y l−2 ) ≤ f ( y 1 , y 1 ) = y 1 and y l+1 = y 1 iff
y l−1 = y l−2 = y 1 which implies that y l > y 1 . In all cases
y l+2 = f (y l , y l−1 ) < f ( y 1 , y 1 ) = y 1 . 

4) From (1)–(3), we obtain { y n } is strictly oscillatory. 

�

. The recursive sequence y n +1 = (−qy n −2 ) / (1 + y n −1 ) 

n this section we study the global behavior of the difference
quation 

 n +1 = 

−qy n −2 

1 + y n −1 
, n = 0 , 1 , . . . . (3.1) 

q. (3.1) has two equilibrium points y = 0 and y = −1 − q. 
1 2 
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The linearized equation associated with Eq. (3.1) about y i ,
i = 1 , 2 is 

z n +1 − q y i 
(1 + y i ) 2 

z n −1 + 

q 
1 + y i 

z n −2 = 0 , i = 1 , 2 , 

n = 0 , 1 , . . . . (3.2)

The characteristic equation associated with Eq. (3.2) is 

λ3 − q y i 
(1 + y i ) 2 

λ + 

q 
1 + y i 

= 0 , i = 1 , 2 . 

Let 

g i (λ) = λ3 − q y i 
(1 + y i ) 2 

λ + 

q 
1 + y i 

, i = 1 , 2 . 

Theorem 3.1. 

(1) The equilibrium point y 1 = 0 is locally asymptotically sta-
ble iff q < 1, saddle point iff q > 1, and non hyperbolic if
q = 1 . 

(2) The equilibrium point y 2 is unstable . 

Proof. 

(1) The linearized equation associated with Eq. (3.2) about
y 1 = 0 is 

z n +1 + qz n −2 = 0 , n = 0 , 1 , . . . . 

Its associated characteristic equation is λ3 + q = 0 . Easily
one can show that y 1 = 0 is locally asymptotically stable
iff q < 1, saddle point iff q > 1, and non hyperbolic if
q = 1 . 

(2) The characteristic equation about y 2 = −1 − q is 

λ3 + 

1 
q 
(1 + q ) λ − 1 = 0 , 

g 2 ( λ) has a root λ1 ∈ (0, 1), then | λ2 λ3 | > 1, which implies
y 2 = −1 − q is unstable (saddle point). �

Theorem 3.2. Assume that q < 

1 
2 . Then the interval [ −q, q ] is an

invariant interval of Eq. (3.1) 

Proof. Suppose that q < 

1 
2 and let | y −i | < q, i = 0 , 1 , 2 . we

show that y n ∈ [ −q, q ] , n = 1 , 2 , . . . for Eq. (3.1) . 

0 < 1 − q < 1 + y −i < q + 1 . 

Hence 

| y 1 | = 

∣∣∣∣ −qy −2 

1 + y −1 

∣∣∣∣ = 

q | y −2 | 
| 1 + y −1 | < 

q | y −2 | 
1 − q 

< | y −2 | < q, 
by induction we obtain | y n +1 | < 

q | y n −2 | 
1 − q 

< | y n −2 | < q, n ≥
0. �

Theorem 3.3. Assume that q < 

1 
2 and let { y n } ∞ 

n = −2 be a solution of
Eq. (3.1) with y −2 , y −1 , y 0 ∈ [ −q, q ] . Then { y n } ∞ 

n = −2 oscillate with
semicycles of length at most three. 

Proof. Let { y n } ∞ 

n = −2 be a solution of Eq. (3.1) with y −2 , y −1 , y 0 ∈
[ −q, q ] . Then by Theorem 3.2 ., we get 1 + y n > 0 , n ≥ −2 , that
is sgn (y n +1 ) = −sgn (y n −2 ) , n ≥ 0. 

This implies that the subsequences { y 3 n −2 } ∞ 

n =0 , { y 3 n −1 } ∞ 

n =0 and
{ y 3 n } ∞ 

n =0 oscillate with semicycles of length one. Therefore, the
solution { y n } ∞ 

n = −2 oscillates with semicycles of length at most
three. �

Theorem 3.4. If q < 

1 
2 , then the equilibrium point y 1 = 0 is a

global attractor with basin [ −q, q ] 3 . 

Proof. According to Theorem 3.2 , we have 

| y 3 n +1 | < 

(
q 

1 − q 

)n +1 

| y −2 | , | y 3 n +2 | < 

(
q 

1 − q 

)n +1 

| y −1 | , and 

| y 3 n +3 | < 

(
q 

1 − q 

)n +1 

| y 0 | , 

since q < 

1 
2 , we have lim 

n −→∞ 

y n = 0 . �
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