
Journal of the Egyptian Mathematical Society (2016) 24 , 449–457 

Egyptian Mathematical Society 

Journal of the Egyptian Mathematical Society 

www.etms-eg.org 
www.elsevier.com/locate/joems 

Original Article 

Deformation of a long thermoelastic rod of 

rectangular normal cross-section under mixed 

boundary conditions by boundary integrals 

A.Y. Al-Ali , K.H. Almutairi , E.K. Rawy , A.F. Ghaleb 

∗, M.S. Abou-Dina 

Department of Mathematics, Faculty of Science, Cairo University, 12613 Giza, Egypt 

Received 21 May 2015; revised 17 July 2015; accepted 20 September 2015 
Available online 2 November 2015 

Keywords 

Plane uncoupled 
thermoelasticity; 
Mixed boundary 
conditions; 
Boundary integral 
method; 
Cartesian harmonics; 
Singular behavior 

Abstract Using a well-known solution for steady temperature distribution in a rectangle, a bound- 
ary integral method is used to obtain an approximate solution for a plane problem of uncoupled 
thermoelasticity with mixed mechanical boundary conditions. The unknown functions in the cross- 
section are obtained in the form of series in Cartesian harmonics, enriched with harmonic functions 
that have a singular behavior at the transition points. The results are discussed and the functions of 
practical interest are represented on the boundary and also inside the domain. The locations where 
possible debonding may take place are noted. 

2010 Mathematics Subject Classifications: 74B05; 74G70; 65L60 

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

 

 

 

 

 

 

1. Introduction 

Thermoelasticity has many applications in Technology and else-
where. The subject has been covered in many monographs
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nalysis may be found in [7] , where the general solutions of
wo-dimensional problems under uniform heat flux and under 
oint source are considered. Ş eremet, and Ş eremet and Bonnet 

n a series of papers [8–15] present integral representations for 
hermoelastic Green’s functions for Poisson’s equation with nu- 
erous examples. Meleshko [16–18] addresses the problem of 

eter mining ther mal stresses in a rectangle. 
Thermoelastostatics relies on results from harmonic func- 

ions. Different aspects of this theory, as well as applications, 
ay be found in [19,20] . A huge number of problems of thermo-

tatics and elastostatics have been investigated. The method of 
undamental solutions was used in numerous publications [21] . 
bou-Dina and Ghaleb [22] investigate the approximate solu- 

ions to some regular and singular boundary-value problems 
or Laplace’s operator in rectangular regions by a boundary 
ourier expansion. Read [23] uses analytic series to find solu- 

ions to Laplacian problems with mixed boundary conditions. 
roblems with mixed boundary conditions are also treated in 

24,25] . El-Dhaba et al. [26] investigate the deformation of a 
ectangle by finite Fourier transform. 

Boundary integral formulations are popular because they 
ely on the well-developed theory of Fredholm integral equa- 
ions, and also for less computational effort. The use of inte- 
ral equation methods in potential theory and in elastostatics 
s presented in [19] . Altiero and Gavazza [27] propose a unified 

oundary integral method for linear elastostatics. Heise [28,29] 
pplies boundary integral equations to treat problems of elasto- 
tatics with discontinuous boundary conditions. Koizumia et al. 
30] present a boundary integral equation analysis for thermoe- 
astostatics using thermoelastic potential. 

Mixed boundary conditions are treated in [3] . Helsing [31] 
roposes an integral equation method to solve Laplace’s equa- 
ion under mixed Dirichlet and Neumann conditions on con- 
iguous parts of the boundary, and the problem of elasto- 
tatics under mixed conditions. Boundary-value problems of 
ixed type with applications are considered by Khuri [32] . 
jam et al. [33] consider the ellipse with mixed conditions 

nd use a harmonic function with logarithmic behavior at the 
oundary. 

Corner boundary points introduce singular behavior of the 
olution. An extensive treatment of singularities exists in the lit- 
rature for the Laplacian and for the elastic problems. Williams 
34] discusses stress singularities in plates. An algorithm for 
lane potential solving problems with mixed boundary con- 
itions involving extraction of singularities is treated in [35] . 
usenkova and Pleshchinskii [36] construct complex poten- 

ials with logarithmic singularities for elastic bodies with defect 
long a smooth arc. Abou-Dina and Ghaleb [22] introduce log- 
rithmic singularities on the boundary of rectangular domains 
or approximate solutions to Laplacian boundary-value prob- 
ems with mixed boundary conditions. Kotousov and Lew [37] 
tudy stress singularities under various boundary conditions 
t corners of plates. El-Seadawy et al. [38] solve 2D problems 
ith mixed geometry including parts of ellipse and circle. The 

orners are smoothed locally by polynomial functions. Helsing 
nd Ojala [39] treat corner singularities for elliptic problems by 
oundary integral equation methods on domains having a large 
umber of corners and branching points. Helsing [40] presents a 
ast and stable algorithm for treating singular integral equations 
n piecewise smooth curves. Mixed-type boundary conditions 
t corners are treated in [22,41,42] . Gillman et al. [43] present
echniques for discretizing the boundary integral equations in 

D domains with corners. 
In the present paper, a problem of uncoupled thermoelastic- 

ty is solved in a rectangular domain. The heat problem has a
nown solution in closed form. The mechanical boundary con- 
itions are of mixed type: a variable pressure on half of the
oundary, the other half is fixed. A semi-analytical scheme pre- 
ented in [33] for the purely elastic problem is applied here:
he problem is replaced with two subproblems of uncoupled 

hermoelasticity having common solution. One subproblem has 
iven stresses on the boundary, while the other subproblem has 
iven displacements on the boundary. Each of these two sub- 
roblems has the prescribed entries on part of the boundary, 
hile the other part carries unknown values, to be determined 

s part of the solution. These two subproblems yield a system
f boundary integral equations following the framework pro- 
osed in [5] . A simple discretization procedure finally reduces 
he system of integral equations to a rectangular system of lin-
ar algebraic equations which is solved by Least Squares. The 
btained results clearly show a singular behavior of the stress
omponents at the two separation boundary points. For the so- 
ution inside the domain, proper expansions of the two basic 
armonic functions are proposed in terms of Cartesian har- 
onics. To take account of the singularities, the stress func- 

ion is enriched with a harmonic function having second order 
ingularities at the two separation points. After truncation of 
he expansions, the coefficients are determined by the Bound- 
ry Collocation Method using the previously obtained values. 
oundary plots and 3D plots in the domain of the normal cross-

ection are provided for the functions of practical interest. The 
esults and the efficiency of the used scheme are discussed. All
gures were produced using Mathematica 9.0 Software. 

The problem under consideration models a long elastic pad 

upport and thereby is of practical importance. The presence 
f corner points and mixed boundary conditions is challenging 
rom the computational point of view and clearly indicates the 
fficiency of the proposed method. 

. Problem description 

he uncoupled, plane theory of thermoelasticity for cylin- 
ers made from an isotropic, homogeneous, elastic material 

s treated by a boundary integral method. The normal cross- 
ection D of the cylinder is simply connected and bounded 

y a sufficiently smooth contour C . The governing equations, 
oundary conditions and other closure relations are formulated 

n an orthogonal system of Cartesian coordinates ( x , y ) with
rigin O inside the domain. The lateral surface of the cylinder is
cted upon by forces in the plane of the cross-section. No body
orces or heat sources are considered. The parametric equations 
f contour C in terms of the usual polar angle θ is: 

 = x (θ ) , y = y (θ ) . (1)

he vectors τ and n denote the unit vector tangent to C at any
rbitrary point on the contour, and the unit outwards normal 
t this point respectively. These two vectors form a basis that is
imilar to the basis of the orthogonal Cartesian system of coor-
inates, and may be easily calculated from the derivatives ˙ x and 

˙  with respect to angle θ . 
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3. Basic equations 

The governing equations are listed below without proof, in ac-
cordance with [4,5] . The exact solution for temperature is given
in closed form elsewhere (cf. [44] ). 

3.1. Equations of equilibrium 

In the approach by stresses, the identically non-vanishing com-
ponents of stress in the cross-section plane are derived from a
stress function U by: 

σxx = 

∂ 2 U 

∂ y 2 
, σxy = − ∂ 2 U 

∂ x ∂ y 
, σyy = 

∂ 2 U 

∂ x 

2 
. (2)

and this function satisfies the biharmonic equation in virtue of
the compatibility condition: 

∇ 

4 U = 0 . (3)

The generalized Hooke’s law reads: 

σxx = 

νE 

(1 + ν) (1 − 2 ν) 

(
∂u 
∂x 

+ 

∂v 
∂y 

)
+ 

E 

(1 + ν) 

∂u 
∂x 

− αE 

(1 − 2 ν) 
T 

σxy = 

E 

2(1 + ν) 

(
∂u 
∂y 

+ 

∂v 
∂x 

)
(4)

σyy = 

νE 

(1 + ν)(1 − 2 ν) 

(
∂u 
∂x 

+ 

∂v 
∂y 

)
+ 

E 

(1 + ν) 

∂v 
∂y 

− αE 

(1 − 2 ν) 
T 

where E , ν and α denote Young’s modulus, Poisson’s ratio and
the coefficient of linear thermal expansion, respectively, and u, v
denote the displacement components. 

The stress function U solving Eq. (3) is represented through
two harmonic functions as: 

 = x φ + y φc + ψ (5)

where the superscript ‘ c ’ denotes the harmonic conjugate. 
The stress components are expressed in terms of φ and ψ 

as: 

σxx = x 

∂ 2 φ

∂y 2 
+ 2 

∂φc 

∂y 
+ y 

∂ 2 φc 

∂y 2 
+ 

∂ 2 ψ 

∂y 2 

σxy = −x 

∂ 2 φ

∂x ∂y 
− y 

∂ 2 φc 

∂x ∂y 
− ∂ 2 ψ 

∂x ∂y 
(6)

σyy = x 

∂ 2 φ

∂x 

2 
+ 2 

∂φ

∂x 

+ y 
∂ 2 φc 

∂x 

2 
+ 

∂ 2 ψ 

∂x 

2 

The Cartesian displacement components u and v are given as: 

E 

(1 + ν) 
u = −∂U 

∂x 

+ 4(1 − ν) φ + 

E 

1 + ν
u T , 

E 

(1 + ν) 
v = −∂U 

∂y 
+ 4(1 − ν) φc + 

E 

1 + ν
v T 
where 
u T = α (1 + ν) 

∫ M 

M 0 

(T dx − T 

c dy ) , 

v T = α (1 + ν) 

∫ M 

M 0 

(T 

c dx + T dy ) (7)

are the temperature displacements. The integrals in (7) are
noted in ( [1, p. 323] ). Point M ∈ D is the general point where
the displacements are calculated, while the initial point M 0

is adequately chosen in the cross-sectional domain or on the
boundary C . Relations (7) yield: 

2 μ u = (3 − 4 ν) φ − x 

∂φ

∂x 

− y 
∂ φc 

∂x 

− ∂ψ 

∂x 

+ 2 μ u T , 

2 μ v = (3 − 4 ν) φc − x 

∂φ

∂y 
− y 

∂ φc 

∂y 
− ∂ψ 

∂y 
+ 2 μ v T (8)

where μ = 

E 
2(1+ ν) 

is the modulus of rigidity of the elastic
material. 

Thus, in the absence of heat sources, the only contribution of
temperature to the elastic solution is confined to the additional
displacements u T and v T in the expressions for the displacement.

4. Accompanying conditions 

For a unique solution to the considered problem, the basic field
equations and boundary conditions are complemented by con-
ditions for removal of rigid body motion, and by other con-
ditions which have no physical insight. Details may be found
in [45] . 

4.1. Boundary conditions 

The considered problem involves mixed mechanical boundary
conditions. 

• The first fundamental problem of elasticity 
Assuming that the density of the given distribution of the
total external surface forces is: 

f = f x i + f y j = σnx i + σny j , 

the boundary conditions take the form: 

f x = (xφyy + 2 φc 
y + yφc 

yy + ψ yy ) 
˙ y 
ω 

+ (xφxy + yφc 
xy + ψ xy ) 

˙ x 

ω 

, 

f y = −(xφxy +yφc 
xy +ψ xy ) 

˙ y 
ω 

−(xφxx +2 φc 
x + yφc 

xx + ψ xx ) 
˙ x 

ω 

. 

(9)

• The second fundamental problem of elasticity 
Assuming that the displacement vector is 

d = d x i + d y j = d n n + d ττ, 

the boundary conditions take the form: 

2 μ d x = (3 − 4 ν) φ − x φx − y φc 
x − ψ x + 2 μ u T , 

2 μ d y = (3 − 4 ν) φc − x φy − y φc 
y − ψ y + 2 μ v T . 

4.2. Elimination of rigid body motion 

The present boundary conditions prohibit any rigid body mo-
tion in the elastic solution. In setting any of the above accom-
panying conditions, one needs the first two derivatives of any
harmonic function f with respect to x and y on the boundary.
These may be calculated as explained in [45] . 
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.3. Additional simplifying conditions 

he following supplementary purely mathematical conditions 
re adopted for simplicity at the point of the boundary where 
= 0 : 

x (0) φ(0) + y (0) φc (0) + ψ(0) = 0 

x (0) φc (0) − y (0) φ(0) + ψ 

c (0) = 0 

x (0) φx (0) + φ(0) + y (0) φc 
x (0) + ψ x (0) = 0 

 (0) φy (0) + φc (0) + y (0) φc 
y (0) + ψ y (0) = 0 

T 

c (0 , 0) = 0 (10) 

he above mentioned equations and conditions can be trans- 
ormed into boundary integral equations using the boundary 
ntegral representation of the harmonic functions φ and ψ (and 

heir conjugates) and the Cauchy–Riemann relations. Details 
ay be found in [4,5] . 

. Calculation of the harmonic functions inside the domain 

or the case under consideration, the analytical formulae al- 
owing to calculate the unknown functions inside the cross- 
ectional domain are taken as expansions in terms of Cartesian 

armonics, with coefficients to be determined by Boundary Col- 
ocation Method after truncation: 

(x, y ) = A + a 0 x + b 0 y + c 0 xy + d 0 (x 

2 − y 2 ) 

+ 

∞ ∑ 

n =1 

a n cos nx cosh ny + 

∞ ∑ 

n =1 

b n cos nx sinh ny 

+ 

∞ ∑ 

n =1 

c n sin nx cosh ny + 

∞ ∑ 

n =1 

d n sin nx sinh ny, (11) 

c (x, y ) = B − b 0 x + a 0 y + 2 d 0 xy − 1 
2 

c 0 (x 

2 − y 2 ) 

+ 

∞ ∑ 

n =1 

d n cos nx cosh ny + 

∞ ∑ 

n =1 

c n cos nx sinh ny 

−
∞ ∑ 

n =1 

b n sin nx cosh ny −
∞ ∑ 

n =1 

a n sin nx sinh ny, 

(x, y ) = C + f 0 x + g 0 y + h 0 xy + k 0 (x 

2 − y 2 ) 

+ 

∞ ∑ 

n =1 

f n cos nx cosh ny + 

∞ ∑ 

n =1 

g n cos nx sinh ny 

+ 

∞ ∑ 

n =1 

h n sin nx cosh ny 

+ 

∞ ∑ 

n =1 

k n sin nx sinh ny + Qψ 

S (x, y ) , (12) 

 

c (x, y ) = G − g 0 x + f 0 y + 2 k 0 xy − 1 
2 

h 0 (x 

2 − y 2 ) 

+ 

∞ ∑ 

n =1 

k n cos nx cosh ny + 

∞ ∑ 

n =1 

h n cos nx sinh ny 

−
∞ ∑ 

n =1 

g n sin nx cosh ny −
∞ ∑ 

n =1 

f n sin nx sinh ny, 

here ψ 

S is an adequately chosen harmonic function with 

ingular behavior at the transition points of the mechanical 
oundary conditions. All the coefficients appearing in the above 
quations, as well as the form of the singular function ψ 

S , will
e determined in the process of the solution. 

. Numerical treatment 

he numerical treatment proceeds in two stages: 

• Having transformed all the basic equations and conditions 
into boundary integral equations by means of the boundary 
integral representation of harmonic functions, these equa- 
tions are then discretized by dividing the complete angle 2 π
uniformly into a sufficiently large number of sections and 

placing the corresponding number of nodes on the bound- 
ary. As a consequence, the contour C is approximated to a
broken closed contour with unequal side lengths. The transi- 
tion points are excluded from the set of nodes. Any contour
integration on D is approximated by a finite sum. Deriva- 
tives of functions along C are approximated in a proper way.
This is crucial for an efficient application of the method. For
any node, the first and the second derivatives of functions 
along the boundary are evaluated by taking into account 
the values of the function at an equal number of nodes to
the left, and to the right of the considered node. Numerical
experiments have shown that this method of calculation of 
the tangential derivatives smoothens any existing disconti- 
nuities of the derivatives, similarly to the behavior of Fourier 
series at jumps. The removable singularities in the boundary 
integrals are also taken care of. Details of the calculations 
may be found elsewhere (cf. [5,33,46] ). After discretization 

of all the basic equations and conditions, a linear rectangu- 
lar algebraic system of equations is obtained for the bound- 
ary values of the unknown functions. This is resolved by 
Least Squares. The resulting maximal error in the solution 

is noted. 
• A boundary analysis is carried out in order to evaluate the

type of behavior of the different functions at the transition
points. On the basis of this, the type of singular function
ψ 

S to be added to the expression for ψ will be determined.
Boundary collocation is then used to find the coefficients 
of the above expansions of the basic functions in the cross-
sectional domain. 

. Numerical results 

 system of orthogonal Cartesian coordinates is used, with ori- 
in O at the center of the rectangle, x -axis along the major
xis of the rectangle. Let 2 a and 2 b be respectively the length
nd width of the rectangle, while θ denotes the polar angle of
 general point on the rectangle. For dimension analysis pur- 
oses, the half-length is taken to be the characteristic length, i.e.
 = 

1 
2 . Also, b = 

0 . 7 
2 for concreteness. It is clear that the rectan-

ular boundary belongs to the class C 

0 and consequently does 
ot satisfy the smoothness condition necessary for the valid- 

ty of the present approach. The smoothness process aims to 

chieve a new boundary close to the original one and belonging
o the class C 

2 at least . Fig. 1 shows the original contour and the
moothed one for comparison. Smoothing was done on parts at 
he corners subtending an angle of 2 � > 0. 

The boundary of the domain is subjected to the following 
oundary conditions: 
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Fig. 1 Rectangle. Original and smoothed boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermal conditions 

• Neumann type 

∂T 

∂n 
= 0 for x = −a, −b ≤ y ≤ b and 

y = −b, −a ≤ x ≤ a, 

• Dirichlet type 

T = 0 for x = a, −b ≤ y ≤ b, 

• Robin type 

∂T 

∂y 
+ Bi(T − 1) = 0 for y = b, −a ≤ x ≤ a 

with Bi = 0 . 1 . 

A steady temperature field establishes in the rectangle, due
to heat inflow through the upper boundary, and heat outflow
through the right boundary. 

Mechanical conditions 

• The right half of the boundary is subjected to a tension of
intensity p given by: 

p(θ ) = h 2 cos 8 θ, 0 ≤ θ < θ1 and θ2 < θ ≤ 2 π, (13)

and h 2 = 0 . 1 . This choice makes the tension distribution
tend to zero smoothly enough at both ends of its interval
of definition. Stiffer choices for the applied tension is bound
to increase the computational errors. 

• The left half of the boundary is completely fixed, 

u = 0 , v = 0 , 
π

2 
≤ θ ≤ 3 π

2 
. (14)

The exact solution of the thermal problem in the orthogonal
Cartesian coordinates ( x , y ) is known (cf. [44] ): 

T (x, y ) = 2 Bi 
∞ ∑ 

k =0 

(−1) k 

μ2 
k 

(
Bi cosh ( 2 bμk ) 

μk 
+ sinh ( 2 bμk ) 

)
× cos [(a + x ) μk ] cosh [(b + y ) μk ] (15)

where 

μk = (2 k + 1) 
π

2 
An analysis of this formula is presented in [22] , where it is
shown that the first and the second derivatives of the temper-
ature function have different types of singularities at the upper
right corner of the rectangle. 

To calculate the temperature displacements u T and v T , the
point M 0 was taken at the center of the rectangle, i.e. at the ori-
gin of coordinates. The integrations in (7) are then performed
easily on paths formed by segments parallel to the coordinate
axes. The resulting expressions have no symmetry with respect
to the coordinate axes. The mechanical problem is replaced by
two subproblems, one with given stresses, and the other with
given (zero) displacements on the boundary, having a com-
mon solution (cf. [33] ). For each of these two subproblems, the
boundary conditions are given one part of the boundary and
complemented with unknown values on the other part, to be
determined as part of the solution. Following [45] , the equa-
tions for each of these two subproblems are reduced to a system
of boundary integral equations which are then discretized as ex-
plained above. The singular behavior of the stress components
at the two separation boundary points is put in evidence and a
singular solution is added to the basic harmonic function ψ to
find the solution inside the cross-sectional domain in the form
of expansions. The coefficients in these expansions are deter-
mined by the Boundary Collocation Method. Plots are given for
the unknown functions on the boundary and in the bulk. The
efficiency of the used numerical scheme is discussed. All figures
were produced using Mathematica 9.0 Software. 

Although there is symmetry with respect to the x -axis of the
transition points and the type of mechanical boundary con-
ditions, it is worth noting that the solutions of the basic un-
known functions have no specific symmetry with respect to the
axes of coordinates, due to the lack of symmetry of the tem-
perature displacements u T and v T entering in the boundary
conditions. 

No analytical solution is available for comparison. The fol-
lowing figures show the optimal results obtained with 217 nodal
points. Optimality in this context means less fluctuations and
more regular curves. Many experimental experiments were car-
ried out in order to find the best truncation of the expansions.
It was found that 185 terms in the expansions for the harmonic
functions φ, φc ψ and ψ 

c functions yield optimal results. All
systems of equations were solved by Least Squares. 

Fig. 2 gives the boundary displacement due to temperature
only. Such displacement is not bound to satisfy any boundary
conditions. 

The boundary analysis has clearly indicated some kind of
discontinuities occurring in the stress components at the bound-
ary separation points. Based on this observation, the expansion
of the basic harmonic function ψ has been enriched with an
additional term involving a harmonic function that has a sin-
gular boundary behavior at the separation points. The steps for
building such a function are presented in Appendix. The plots
in Figs. 3 –7 show the values of the basic unknown functions as
calculated from the boundary analysis (dotted curves), together
with the values of these functions as obtained from the expan-
sions (line curves). The maximum difference for the functions
φ, φc , ψ and U does not exceed 0.0084. Turning next to the
functions defining the boundary conditions, for the displace-
ment functions u and v on the fixed part of the boundary, the
maximum absolute values do not exceed 0.012 and 0 . 0079 , re-
spectively. For the normal stress σ nn and the tangential stress
σ n τ on that part of the boundary where the stress is given, the
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Fig. 2 Temperature displacements u T and v T on the boundary. 

Fig. 3 The harmonic functions on the boundary. 

Fig. 4 Stress function on the boundary. 
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aximum values do not exceed 0.0082 and 0 . 0083 , respectively. 
lobally, one can say that the presented series solution satis- 

es all the boundary conditions with absolute error less than 

.012. 
Fig. 5 Displacement 

Fig. 6 Components of the stre
The deformed contour showing the combined action of ex- 
ernal mechanical and thermal factors is represented on the left 
n Fig. 8 . One notices here the fulfillment of the partial fixing
f the boundary. The right part of this same figure shows the
oundary displacement due to temperature alone, i.e. the effect 
f the temperature displacements u T and v T . 

The boundary distribution of the stress vector is represented 

n Fig. 9 in magnitude and direction. It is worth noting that
his vector is directed outwards everywhere on the right half of
he boundary as expected, while it is directed inwards on the
eft (fixed) half. There are two locations close to the separation
oints, and two other locations at the left corners, where the
tress vector attains relatively large values. It is at these locations
hat a detachment of the boundary can potentially take place. 
he corresponding emplacements can be noticed on the curves 
on the boundary. 

ss tensor on the boundary. 
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Fig. 7 Tangential and normal components of the stress tensor on C . 

Fig. 8 Total displacement (left) and temperature displacement (right). The original boundary is shown for comparison (dashed curve). 

Fig. 9 Stress vector distribution on the boundary. 

 

Fig. 11 U ( x , y ). 

 

 

 
for the normal and the tangential components of stress obtained
from boundary analysis (dotted curves) in Fig. 7 . 
Fig. 10 T ( x , y ), u T ( x
The distributions of functions of practical interest inside the
cross-sectional domain are shown in Figs. 10 –12 . The cross-
sectional domain over which these functions are plotted is also
shown in these figures for convenience. 
 , y ) and v T (x, y ) . 
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Fig. 12 u ( x , y ) and v (x, y ) . 
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. Conclusions 

 boundary integral method has been used to solve the plane 
roblem of linear, uncoupled thermoelasticity for the rectan- 
le under mixed mechanical conditions, with one part of the 
oundary fixed, the other subjected to a variable tension. A 

nown exact solution for temperature is used in the solution. 
he unknown functions are obtained on the boundary and in- 

ide the domain of the cross-section. The weak singularities of 
he stress function arising at the transition points have been 

reated by introducing a harmonic function with singular be- 
avior at these points. The boundary corner effects were re- 
oved by smoothing using polynomials (cf. [38] ). The deriva- 

ives along the boundary were evaluated using 30 neighboring 
oints, 15 from each side of the considered node. 

For the present choices, the errors occurring within the 
oundary analysis do not exceed 1 . 2 × 10 −2 . Inside the domain,
he unknown functions were expanded in terms of harmonic 
unctions. Boundary Collocation Method was used to find the 
oefficients. The deformations of the boundary due to heat ef- 
ect alone, and due to the combined thermo-mechanical action 

re displayed. The results indicate that potential debonding of 
he fixed part of the boundary may occur near the transition 

oints or at the fixed corners. The same method could be ap-
lied to other types of thermal or mechanical boundary con- 
itions. The form of the singular function must be found sepa- 
ately for each case. The present investigation may be of interest 
n evaluating the stresses in long pad supports under mechanical 
oads and thermal action, when both factors are important. 
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ppendix A. Treating the singularities 

o simulate the singular behavior of stresses at the transition 

oints, introduce a harmonic function in the upper half-plane 
( x , y ), y ≥ 0}, with weak singularity at the origin of coordinates
s: 

f (x, y ) = 

1 
2 π

∫ + ∞ 

0 

[
y − c 2 1 

2 i 
1 

ξ + c 1 
+ 

c 2 2 

2 i 
1 

ξ + c 2 

]
e −ξ dξ . (A.1) 
n terms of the integral exponential E 1 ( z ) of the complex argu-
ent z defined as ( [47, p. 62] ): 

 1 (z ) = 

∫ ∞ 

z 

e −t 

t 
d t = e −z 

∫ ∞ 

0 

e −t 

t + z 
d t 

= −γ − ln (z ) −
∞ ∑ 

n =1 

(−1) n z n 

n n ! 
, (A.2) 

here γ = 0 . 5772156649 is the well-known Euler constant, one
ets: 

f (x, y ) = 

1 
2 π

[
y + 2 Re 

(
i c 2 1 

2 
e c 1 E 1 (c 1 ) 

)]
. 

he obtained function is centered at each of the two boundary
eparation points. The sum of the resulting two functions is then
aken as ψS in the above expansions. 
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