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Abstract Unsteady hydromagnetic free convection flow of a viscous, incompressible, electrically 
conducting, optically thick radiating and heat absorbing fluid past an accelerated moving vertical 
plate with variable ramped temperature is investigated. Exact solution of the governing equations for 
the fluid velocity and fluid temperature are obtained by Laplace transform technique. The numeri- 
cal values of primary and secondary fluid velocities and fluid temperature are displayed graphically 
whereas those of shear stress and rate of heat transfer at the plate are presented in tabular form for 
various values of pertinent flow parameters. 
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1. Introduction 

Effect of thermal radiation on hydromagnetic free convection
flow plays an important role in several scientific and indus-
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trial processes such as high temperature casting and levitation,
thermo-nuclear fusion, furnace design, glass production, so-
lar power technology etc. It may be mentioned here that, un-
like convection/conduction problems, the governing equations
for fluid flow problems considering the effect of thermal ra-
diation become quite complicated and hence many difficulties
arise while solving such equations. So, a reasonable approxima-
tion (Rosseland approximation) to the radiative term is used to
solve those equations for optically thick fluid. Detailed expla-
nation about radiative heat transfer and its applications may
be found in well documented text book by Howell et al. [1] .
Moreover, combined effects of thermal radiation and heat gen-
eration/absorption on hydromagnetic free convection flow is
of considerable importance for many scientific and engineering
 hosting by Elsevier B.V. This is an open access article under the CC 
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pplications viz. heating and cooling of chambers, fossil fuel 
ombustion energy processes, evaporation from large open wa- 
er reservoirs, propulsion devices for aircraft, missiles, satellites 
nd space vehicles etc. Keeping in mind the importance of such 

pplications, combined effects of thermal radiation and heat 
eneration/absorption in hydromagnetic boundary layer flow 

f an optically thick fluid past a vertical plate/stretching sur- 
ace is investigated by several researchers considering different 
spects of the problem. Mentioned may be made of research 

tudies of Chamkha [2] , Elbashbeshy and Emam [3] , Pal [4] and
akinde [5] . 
In fact, free convection flows are generally modeled by the 

esearchers under the assumptions of constant surface temper- 
ture or constant surface heat flux. But, in many physical situ- 
tions, the temperature of bounding surface may require non- 
niform or arbitrary surface temperature. Moreover, there may 
e step discontinuities in the surface temperature or ramped 

urface temperature (Chandran et al. [6] ). Keeping in view this 
act, several researchers investigated free convection from a ver- 
ical plate with ramped temperature considering various as- 
ects of the problem. Some of relevant research studies are due 
o Rajesh [7] , Samiulhaq et al. [8] , Das [9] , Nandkeolyar and
as [10] , Nandkeolyar et al. [11] , Kundu et al. [12] and Seth

t al. [13] . 
Further, it is well known that in an ionized fluid, where den-

ity is low and/or magnetic field is strong, the effect of Hall cur-
ent become significant. Moreover, it has a tendency to induce 
econdary flow in the flow-field. Therefore, it seems to be signif- 
cant to study its effect on the flow-field. Hall effect on fluid flow
nd applications in MHD power generators, Hall current accel- 
rators, nuclear power reactors, magnetometers, underground 

nergy storage system, Hall effect sensors, spacecraft propulsion 

tc. Keeping in mind this fact, Pop and Watanabe [14] , Aboel- 
ahab and Elbarbary [15] , Seth et al. [16] and Das et al. [17]
tudied the effect of Hall current on hydromagnetic flow past a 
ertical plate considering different aspects of the problem. 

However, in all the investigations carried out by researchers 
onsidering ramped temperature profiles, the interval for 
ampedness with respect to time in the plate temperature is as- 
umed fixed i.e. 0 < t ′ ≤ t 0 ( t ′ and t 0 are time and characteristic
ime respectively) which reduces to 0 < t ≤ 1 ( t being the di-
ensionless time) in non-dimensional form. It is to be noted 

hat interval for ramped profile varies from material to mate- 
ial depending upon the specific heat capacity of the material. 
o the authors’ knowledge no researcher has yet investigated 

he problem considering variable ramped temperature within 

he plate. Variable ramped temperature profiles appear in real 
orld situation in building air-conditioning systems, fabrication 

f thin-film photovoltaic devices, phase transition in process- 
ng of materials, turbine blade heat transfer, heat exchangers 
tc. 

Aim of the present investigation is to study unsteady hydro- 
agnetic free convection flow with Hall effects of a viscous, in- 

ompressible, electrically conducting, optically thick radiating 
nd heat absorbing fluid past an accelerated moving vertical 
late with variable ramped temperature. In this study we have 
onsidered t 0 as critical time for rampedness in place of char- 
cteristic time. Due to this reason, in our study, the interval 
or rampedness becomes 0 < t ≤ t 1 ( t 1 being the dimensionless 
ritical time for rampedness) whereas in the above mentioned 

esearch studies the interval for rampedness is 0 < t ≤ 1 in non-
imensional form. It may be noted that the physical meaning of 
Nomenclature 

B 0 uniform magnetic field 

c p specific heat at constant pressure 
g acceleration due to gravity 
G r thermal Grashof number 
k thermal conductivity of the fluid 

k 

∗ mean absorption coefficient 
m Hall current parameter 
M 

2 magnetic parameter 
N r radiation parameter 
P r Prandtl number 
Q 0 heat absorption coefficient 
q r radiative heat flux 
t ′ time 
t 0 critical time for rampedness 
t 1 dimensionless critical time for rampedness 
T 

′ fluid temperature 
U 0 characteristic velocity 
u ′ fluid velocity in x 

′ -direction 

w 

′ fluid velocity in z ′ -direction 

Greek Symbols 

β coefficient of thermal expansion 

η non-dimensional space variable 
σ ∗ Stefan Boltzmann constant 
σ electrical conductivity 
ρ fluid density 
ν kinematic coefficient of viscosity 
ω e cyclotron frequency 
τe electron collision time 
ϕ heat absorption parameter 

Subscripts 

w condition at the wall 
∞ free-stream condition/ Initial condition at the 

wall 

ritical time for rampedness is the time when plate temperature 
hanges form ramped temperature to uniform temperature. 

. Formulation of the problem and its solution 

onsider unsteady hydromagnetic free convection flow of a vis- 
ous, incompressible, electrically conducting, optically thick ra- 
iating and heat absorbing fluid past a moving infinite verti- 
al flat plate with variable ramped temperature. We choose the 
artesian coordinate system ( x 

′ , y ′ , z ′ ) in such a way that x 

′ -axis
s along the vertical plate in upward direction, y ′ -axis is nor-

al to the plane of the plate directed into the fluid region and
 

′ -axis is normal to x 

′ y ′ -plane. A uniform transverse magnetic
eld of strength B 0 is applied in a direction parallel to y ′ -axis.
nitially, i.e. at time t ′ ≤ 0 , both the plate and surrounding fluid
re at rest and maintained at uniform temperature T 

′ 
∞ 

. At time
 

′ > 0 , the plate starts moving along x 

′ direction with a velocity
 (t ′ ) = a ′ t ′ ( a ′ being arbitrary constant) and at the same time

emperature of the plate is raised to T 

′ 
∞ 

+ ( T 

′ 
w − T 

′ ∞ 

)( t ′ / t 0 )
hen 0 < t ′ ≤ t 0 and it is maintained at uniform temperature
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Fig. 1. Physical model of the problem. 
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′ 
w when t ′ > t 0 ( t 0 being critical time for rampedness). Physical

model of the problem is shown in Fig. 1. 
Since plate is of infinite extent along x 

′ and z ′ directions, all
the physical quantities except pressure depend on y ′ and t ′ only.
Induced magnetic field produced by fluid motion is neglected in
comparison to applied one. This is justified because magnetic
Reynolds number is very small for liquid metals and partially
ionized fluids which are commonly used in various industrial
processes (Cramer and Pai [18] ). Since no external electric field
is applied into the flow-field so the effect of polarization of fluid
is negligible which corresponds to the case where no energy is
added or extracted from the fluid by electrical means (Cramer
and Pai [18] ). 

With the assumptions made above, the governing equations
for the fluid flow problem taking Hall current into account, un-
der Boussinesq approximation, are given by 

∂u ′ 

∂t ′ 
= ν

∂ 2 u ′ 

∂ y ′ 2 
− σB 

2 
0 

ρ( 1 + m 

2 ) 
( u ′ + mw 

′ ) + gβ( T 

′ − T 

′ ∞ 

) , (2.1)

∂w 

′ 

∂t ′ 
= ν

∂ 2 w 

′ 

∂ y ′ 2 
+ 

σB 

2 
0 

ρ( 1 + m 

2 ) 
( mu ′ − w 

′ ) , (2.2)

∂T 

′ 

∂t ′ 
= 

k 

ρc p 

∂ 2 T 

′ 

∂ y ′ 2 
− Q 0 

ρc p 
( T 

′ − T 

′ ∞ 

) − 1 
ρc p 

∂ q r 
∂y ′ 

. (2.3)

Initial and boundary conditions to be satisfied are 

 

′ ≤ 0 : u ′ = 0 , w 

′ = 0 , T 

′ = T 

′ 
∞ 

for all y ′ ≥ 0 , (2.4a)

 

′ > 0 : u ′ = a ′ t ′ , w 

′ = 0 , 

T 

′ = 

{ 

T 

′ ∞ 

+ ( T 

′ 
w − T 

′ ∞ 

) t ′ / t 0 at y ′ = 0 when 0 < t ′ ≤ t 0
T 

′ 
w at y ′ = 0 when t ′ > t 0 

(2.4b)

 

′ > 0 : u ′ → 0 , w 

′ → 0 , T 

′ → T 

′ 
∞ 

as y ′ → ∞ . (2.4c)

For an optically thick gray fluid, the radiative heat flux q r is
approximated by Rosseland approximation (Howell et al. [ 1 ])
which is given by 

q r = −4 σ ∗

3 k 

∗
∂ T 

′ 4 

∂y ′ 
. (2.5)

It is assumed that the temperature difference between fluid in
the boundary layer region and free-stream is very small so that
T 

′ 4 may be expressed as a linear function of temperature T 

′ .
Expanding T 

′ 4 in Taylor series about T 

′ 
∞ 

and neglecting second
and higher order terms, we obtain 

T 

′ 4 ∼= 

4 T 

′ 3 
∞ 

T 

′ − 3 T 

′ 4 
∞ 

. (2.6)

Using Eqs. (2.5) and ( 2.6 ) in Eq. (2.3) , we obtain 

∂T 

′ 

∂t ′ 
= 

k 

ρc p 

(
1 + 

16 σ ∗T 

′ 3 
∞ 

3 k k 

∗

)
∂ 2 T 

′ 

∂ y ′ 2 
− Q 0 

ρc p 

(
T 

′ − T 

′ ∞ 

)
. (2.7)

We introduce following non-dimensional quantities and flow
parameters to present Eqs. (2.1) , ( 2.2 ) and ( 2.7 ) along with ini-
tial and boundary conditions ( 2.4a )–( 2.4c ) in non-dimensional
form 

η = U 0 y ′ /ν, t = U 

2 
0 t 

′ /ν, u = u ′ / U 0 , w = w 

′ / U 0 , 

T = 

(
T 

′ − T 

′ 
∞ 

)
/ ( T 

′ 
w − T 

′ ∞ 

) , 

G r = νgβ( T 

′ 
w − T 

′ ∞ 

) / U 

3 
0 , M 

2 = σB 

2 
0 ν/ ρU 

2 
0 , 

N r = 16 σ ∗T 

′ 3 
∞ 

/ 3 k k 

∗, 

P r = ρνc p /k , t 1 = U 

2 
0 t 0 /ν, ϕ = Q 0 ν/ ρc p U 

2 
0 . 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(2.8)

Making use of ( 2.8 ), Eqs. (2.1) , ( 2.2 ) and ( 2.7 ), in non-
dimensional form, reduce to 

∂F 
∂t 

+ 

M 

2 (1 − im ) 

1 + m 

2 
F = 

∂ 2 F 
∂ η2 

+ G r T, (2.9)

∂T 

∂t 
= ( 1 + N r ) 

1 
P r 

∂ 2 T 

∂ η2 
− ϕT, (2.10)

where F (η, t) = u (η, t) + iw (η, t) . 
Initial and boundary conditions ( 2.4a )–( 2.4c ), in non-

dimensional form, are given by 

 ≤ 0 : F = 0 , T = 0 for all η ≥ 0 , (2.11a)

 > 0 : F = a t, T = 

{ 

t/ t 1 at η = 0 for 0 < t ≤ t 1 , 

1 at η = 0 for t > t 1 , 

(2.11b)

 > 0 : F → 0 , T → 0 as η → ∞ , (2.11c)

where a = a ′ ν/ U 

3 
0 is a non-dimensional constant. 

It is evident from Eqs. (2.9) and ( 2.10 ) that energy Eq. (2.10)
is uncoupled from momentum Eq. (2.9) . Using Laplace trans-
form technique, first the solution for fluid temperature T (η, t) is
obtained by solving Eq. (2.10) subject to the initial and bound-
ary conditions ( 2.11a )–( 2.11c ) and then using this solution in
Eq. (2.9) , solution for fluid velocity F (η, t) is obtained. The
exact solutions for fluid temperature T (η, t) and fluid velocity
F (η, t) are obtained and expressed in the following simplified
form: 

T ( η, t ) = ( 1 / 2 t 1 ) [ T 1 ( η, t ) − H ( t − t 1 ) T 1 ( η, t − t 1 ) ] , (2.12)

F ( η, t ) = ( 1 / 2 ) 
[
a F 1 ( η, t ) + ( G 

∗
r / λ

2 
3 t 1 ) { F 2 ( η, t ) 

−H ( t − t 1 ) F 2 ( η, t − t 1 ) } ] , (2.13)

where T 1 ( η, t ) = ( t + α1 ) exp ( β1 η) er f c ( γ1 + δ1 ) + ( t − α1 )

exp (−β1 η) er f c ( γ1 − δ1 ) , 

F 1 ( η, t ) = ( t + α2 ) exp ( β2 η) er f c ( γ2 + δ2 ) 

+ ( t − α2 ) exp (−β2 η) er f c ( γ2 − δ2 ) , 
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Fig. 2. Temperature profiles when N r = 0, t = 0.5 and P r = 0.71. 

Fig. 3. Velocity profiles when m = 0, M 

2 = 4, G r = 6, N r = 0, t = 

0.7, a = 1 and P r = 0.71. 
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 2 ( η, t ) 

= exp ( λ3 t) { exp ( β3 η) er f c ( γ1 + δ3 ) 

+ exp (−β3 η) er f c ( γ1 − δ3 ) − exp ( β4 η) er f c ( γ2 + δ4 ) 

− exp (−β4 η) er f c ( γ2 − δ4 ) } − λ3 { ( t + 1 / λ3 + α1 ) exp ( β1 η) 

×er f c ( γ1 + δ1 ) + ( t + 1 / λ3 −α1 ) exp (−β1 η) er f c ( γ1 − δ1 ) 

−( t + 1 / λ3 + α2 ) exp ( β2 η) er f c ( γ2 + δ2 ) − ( t + 1 / λ3 −α2 ) 

× exp ( β2 η) er f c ( γ2 − δ2 ) } , 

1 = ( η/ 2 ) ( λ2 /φ) 1 / 2 , α2 = η/ 2 λ1 / 2 
1 , β1 = ( λ2 φ) 1 / 2 , β2 = λ

1 / 2 
1 , 

3 = { λ2 ( φ+ λ3 ) } 1 / 2 , β4 = ( λ1 + λ3 ) 
1 / 2 , 

γ1 = ( η/ 2 ) ( λ2 /t ) 1 / 2 , γ2 = η/ 2 t 1 / 2 , δ1 = ( φ t ) 1 / 2 , δ2 = ( λ1 t ) 1 / 2 , 

δ3 = { ( φ+ λ3 ) t } 1 / 2 , δ4 = { ( λ1 + λ3 ) t } 1 / 2 , 
1 = M 

2 / ( 1 + m 

2 ) − i m M 

2 / ( 1 + m 

2 ) , λ2 = P r / ( 1 + N r ) , 

3 = ( λ2 ϕ − λ1 ) / ( 1 − λ2 ) , G 

∗
r = G r / ( 1 − λ2 ) . 

Here H ( t − t 1 ) and er f c (x ) are, respectively, Heaviside unit
tep function and complementary error function. 

. Rate of heat transfer at the plate 

xpression for rate of heat transfer at the plate i.e. ( ∂T / ∂η) η=0 

s presented in the following simplified form for both ramped 

emperature and isothermal plates. 

 ∂T / ∂η) η=0 = ( 1 / t 1 ) [ T 2 ( 0 , t ) − H ( t − t 1 ) T 2 ( 0 , t − t 1 ) ] , (3.1) 

here T 2 ( 0 , t ) = −( λ2 t /π ) 1 / 2 exp( −δ2 
1 ) − ( t + 1 / 2 ϕ ) β1 er f ( δ1 ) . 

. Shear stress at the plate 

xpressions for shear stress at the plate due to primary and sec-
ndary flows respectively i.e. τx and τz are presented in the fol- 

owing simplified form 

x + i τz = a F 3 ( 0 , t ) + ( G 

∗
r / λ

2 
3 t 1 ) { F 4 ( 0 , t ) −H ( t −t 1 ) F 4 ( 0 , t −t 1 ) } , 

(4.1) 

here F 3 ( 0 , t ) = −√ 

t/π exp ( −δ2 
2 ) − ( t + 1 / 2 β2 

2 ) β2 er f ( δ2 ) , 

 4 ( 0 , t ) = λ3 
[√ 

t/π { 
√ 

λ2 exp 

(−δ2 
1 

) − exp 

(−δ2 
2 

)} + (t + 1 /λ3 

+ 1 / 2 ϕ ) β1 er f ( δ1 ) 

−( t + 1 / λ3 + 1 / 2 λ1 ) β2 er f ( δ2 ) 
]−exp ( λ3 t ) { β3 er f ( δ3 )

−β4 er f ( δ4 ) } . 

. Validation of the solution 

hen the critical time for rampedness t 1 = 1 or length of the
nterval for rampedness is 0 < t ≤ 1 , we have compared the
resent numerical results for fluid temperature and fluid veloc- 

ty in the absence of Hall current ( m = 0 ) and thermal radiation
 N r = 0 ) with those of Seth et al. [13] for non-porous medium
nd without solutal buoyancy force. Our results are in excellent 
greement with the results obtained by Seth et al. [13] which is
learly evident from Figs. 2 and 3. 
. Results and discussion 

n order to analyze the effect of critical time for rampedness,
hermal radiation and time on the temperature field, numer- 
cal values of fluid temperature T, computed from the ana- 
ytical solution ( 2.12 ), are shown graphically versus boundary 
ayer coordinate η in Figs. 4–6 for various values of critical time
or rampedness t 1 , radiation parameter N r and time t taking 
eat absorption parameter ϕ = 3 and Prandtl number P r = 0 . 71
ionized air). Fig. 4 illustrates the effect of critical time for
ampedness on fluid temperature. It is evident from Fig. 4 that
 decreases on increasing t 1 . This implies that, fluid tempera- 

ure is getting reduced on increasing critical time for ramped- 
ess. Figs. 5 and 6 depict the influence of thermal radiation and
ime on fluid temperature. It is evident from Figs. 5 and 6 that T 

ncreases on increasing N r and t . This implies that thermal ra-
iation tends to enhance fluid temperature. Fluid temperature 

s getting enhanced with the progress of time. It is evident form
ig. 6 that plate temperature increases on increasing time up to
 ≤ t 1 . When t > t 1 plate temperature becomes uniform and is
qual to 1 which is in agreement with the condition ( 2.11b ). As
e know that for isothermal plate, temperature of the plate is
niform, i.e. in non-dimensional form fluid temperature T = 1 
t the plate for every values of time t . This means that nature



Unsteady MHD free convection flow with Hall effect 475 

Fig. 4. Temperature profiles when N r = 2 and t = 0.9. 

Fig. 5. Temperature profiles when t 1 = 2 and t = 1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Temperature profiles when t 1 = 2 and N r = 2. 

Fig. 7. Velocity profiles when m = 0.5, G r = 6, t 1 = 2, N r = 2 and 
t = 1.4. 

Fig. 8. Velocity profiles when M 

2 = 10, G r = 6, t 1 = 2, N r = 2 and 
t = 1.4. 
of fluid temperature is same for both ramped temperature and
isothermal plate when t > t 1 . However, fluid temperature is get-
ting enhanced in the flow-field whether t ≤ t 1 or t > t 1 . But tem-
perature filed approaches to steady state when t ≥ 3 . 2 . It is also
observed from Figs. 4–6 that the thickness of thermal boundary
layer increases on increasing N r and t whereas it decreases on
increasing t 1 . 

To study the influence of magnetic field, Hall current, ther-
mal buoyancy force, critical time for rampedness, thermal ra-
diation and time on the flow-field, numerical values of primary
fluid velocity u and secondary fluid velocity w within the bound-
ary layer region, computed from the analytical solution ( 2.13 ),
are displayed graphically versus boundary layer coordinate η in
Figs. 7–12 for various values of M 

2 , m , G r , t 1 , N r and t taking
a = 1 , ϕ = 3 and P r = 0 . 71 . Fig. 7 depicts the influence of mag-
netic field on the primary and secondary fluid velocities. It is
revealed from Fig. 7 that u and w decrease on increasing M 

2 .
This implies that magnetic field tends to decelerate fluid flow
in both the primary and secondary flow directions throughout
the boundary layer region. This is due to the fact that applica-
tion of a magnetic field to an electrically conducting fluid gives
rise to a mechanical force, called Lorentz force, which has a ten-
dency to resist fluid motion in the flow-field. Fig. 8 illustrates
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Fig. 9. Velocity profiles when M 

2 = 10, m = 0.5, t 1 = 2, N r = 2 
and t = 1.4. 
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Fig. 11. Velocity profiles when M 

2 = 10, m = 0.5, G r = 6, t 1 = 2 
he effect of Hall current on the primary and secondary fluid 

elocities. It is evident form Fig. 8 that u and w increase on in-
reasing m . This implies that Hall current tends to accelerate 
uid flow in both the primary and secondary flow directions 
hroughout the boundary layer region. This is due to the rea- 
on that Hall current induces secondary flow in the flow-field. 
ig. 9 presents the influence of thermal buoyancy force on the 
rimary and secondary fluid velocities. It is noticed from Fig. 9 
hat u and w increase on increasing G r . G r measures the relative 
trength of thermal buoyancy force to viscous force, an increase 
n G r leads to an increase in thermal buoyancy force. Since, fluid 

ow in this problem is induced due to free convection arising as
 result of thermal buoyancy force, therefore, thermal buoyancy 
orce will obviously tend to accelerate fluid flow in both the pri-

ary and secondary flow directions throughout the boundary 
ayer region. Fig. 10 demonstrates the effect of critical time for 
ampedness on the primary and secondary fluid velocities. It is 
vident from Fig. 10 that u and w decrease on increasing t 1 . This
mplies that fluid flow in both the primary and secondary flow 

irections is getting decelerated with the increase in critical time 
ig. 10. Velocity profiles when M 

2 = 10, m = 0.5, G r = 6, N r = 2 
nd t = 0.9. 

a

F
a

or rampedness throughout the boundary layer region. This is 
ecause an increase in t 1 leads to decrease in fluid temperature 
see Fig. 4 ) and, therefore, effect of thermal buoyancy force is
educed. Consequently, fluid velocity decreases throughout the 
oundary layer region. Fig. 11 exhibits the effect of thermal ra-
iation on the primary and secondary fluid velocities. It is ob-
erved from Fig. 11 that u and w increase on increasing N r . This
mplies that thermal radiation tends to accelerate fluid flow in 

oth the primary and secondary flow directions throughout the 
oundary layer region. This happens because thermal radiation 

as a tendency to enhance fluid temperature (see Fig. 5 ) which
esults in the increase of thermal buoyancy force. Fig. 12 illus-
rates the influence of time on the primary and secondary fluid
elocities. It is perceived from Fig. 12 that u and w increase on
ncreasing t . This implies that fluid flow is getting accelerated
n both the primary and secondary flow directions throughout 
he boundary layer region with the progress of time. This may
e due to rise in fluid temperature with the progress of time (see
ig. 6 ) which results in enhancement of thermal buoyancy force.

t is also noticed form Fig. 12 that primary and secondary veloc-
ty profiles are becoming closer as time progresses when t > t 1 .
nd t = 1.4. 

ig. 12. Velocity profiles when M 

2 = 10, m = 0.5, G r = 6, t 1 = 2 
nd N r = 2. 
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Table 1 Rate of heat transfer at the plate when t 1 = 2 and t = 

1.4. 

−( ∂T / ∂η) η=0 

N r ↓ ϕ → 1 3 5 

2 0.4586 0.6600 0.8159 
4 0.3553 0.5112 0.6320 
6 0.3002 0.4321 0.5341 

Table 2 Rate of heat transfer at the plate when ϕ = 3 and t = 

0.9. 

−( ∂T / ∂η) η=0 

t 1 ↓ N r → 2 4 6 

1.0 0.8982 0.6957 0.5880 
1.5 0.5988 0.4638 0.3920 
2.0 0.4491 0.3479 0.2940 

Table 3 Rate of heat transfer at the plate when t 1 = 2 and N r = 

2. 

−( ∂T / ∂η) η=0 

t ↓ ϕ → 1 3 5 

1.0 0.3580 0.4913 0.5983 
1.4 0.4586 0.6600 0.8159 
1.8 0.5576 0.8286 1.0334 
3.0 0.4930 0.8428 1.0878 
3.2 0.4911 0.8427 1.0878 
3.4 0.4898 0.8427 1.0878 
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Table 4 Shear stress at the plate when G r = 6, t 1 = 2, N r = 2, 
ϕ = 3 and t = 1.4. 

M 

2 → 

m ↓ 

10 15 20 

−τx 0.5 3.2105 4.2404 5.0889 
1.0 2.5058 3.4027 4.1374 
1.5 1.8923 2.6804 3.3216 

τz 0.5 1.0923 1.3030 1.4789 
1.0 1.6518 1.9665 2.2270 
1.5 1.8443 2.1940 2.4799 

Table 5 Shear stress at the plate when m = 0.5, M 

2 = 10, t 1 = 

2, N r = 2, and ϕ = 3. 

t → 

G r ↓ 

1.0 1.4 1.8 3.0 3.2 3.4 

−τx 6 2.3555 3.2105 4.0655 7.3482 7.9302 8.5123 
8 2.1162 2.8681 3.6200 6.8326 7.4147 7.9968 

10 1.8769 2.5258 3.1745 6.3171 6.8991 7.4812 

τz 6 0.7609 1.0923 1.4237 2.3060 2.4435 2.5809 
8 0.7983 1.1485 1.4988 2.4003 2.5378 2.6753 

10 0.8357 1.2047 1.5739 2.4946 2.6322 2.7697 

Table 6 Shear stress at the plate when m = 0.5, M 

2 = 10, G r = 

6, t 1 = 2, and t = 1.4. 

ϕ → 

N r ↓ 

1 3 5 

−τx 2 3.1373 3.2105 3.2617 
4 3.0932 3.1554 3.1997 
6 3.0685 3.1237 3.1635 

τz 2 1.1170 1.0923 1.0758 
4 1.1338 1.1116 1.0963 
6 1.1436 1.1232 1.1090 

Table 7 Shear stress at the plate when m = 0.5, M 

2 = 10, G r = 

6, ϕ = 3 and t = 0.9. 

N r → 

t 1 ↓ 

2 4 6 

−τx 1.0 1.5010 1.4292 1.3878 
1.5 1.9281 1.8803 1.8526 
2.0 2.1417 2.1058 2.0851 

τz 1.0 0.7762 0.7998 0.8142 
1.5 0.7108 0.7266 0.7361 
2.0 0.6781 0.6899 0.6971 

 

 

 

 

 

 

 

 

 

 

on it. 
This means that both the primary and secondary velocities ap-
proach steady state with the progress of time when t > t 1 . It is
observed from Figs. 7–12 that secondary fluid velocity attains
its maximum value in the region near the plate and decreases
properly on increasing boundary layer coordinate η to attain
free-stream value. The thickness of the boundary layer decreases
on increasing t 1 and M 

2 whereas it increases on increasing m ,
G r , N r and t . It is worthy to note that, for ramped temperature
plate, time t is always less or equal to than t 1 i.e. t ≤ t 1 . Due to
this reason t = 0 . 9 is considered in Figs. 4 and 10 in place of
 = 1 . 4 which is considered in other figures. 

The numerical values of rate of heat transfer at plate i.e.
( ∂T / ∂η) η=0 , computed from the analytical expression ( 4.1 ), are
presented in tabular form in Tables 1–3 for various values of N r ,
ϕ, t and t 1 taking P r = 0 . 71 . It is evident from Tables 1 and 2
that ( ∂T / ∂η) η=0 decreases on increasing N r and t 1 whereas it in-
creases on increasing ϕ. This implies that thermal radiation and
critical time for rampedness tend to reduce rate of heat transfer
at the plate whereas heat absorption has a reverse effect on it. It
is noticed from Table 3 that ( ∂T / ∂η) η=0 increases on increasing
. This implies that rate of heat transfer at plate is getting en-

hanced with the progress of time. It is interesting to note form
Table 3 that rate of heat transfer approaches steady state with
the progress of time when t ≥ 3 . 2 (t > t 1 ) . 

The numerical values of primary shear stress τx and sec-
ondary shear stress τz at the plate, computed from the analyt-
ical expression (5.1), are displayed in tabular form in Tables 4–7
for various values of M 

2 , m , G r , N r , ϕ, t and t 1 taking a = 1
and P r = 0 . 71 . It is evident form Tables 4–7 that primary shear
stress τx increases on increasing M 

2 , ϕ, t and t 1 whereas it de-
creases on increasing m , G r , and N r . Secondary shear stress τz

increases on increasing M 

2 , m , G r , t and N r whereas it decreases
on increasing ϕ and t 1 . This implies that magnetic field, heat ab-
sorption, time and critical time for rampedness tend to enhance
primary shear stress at the plate whereas Hall current, thermal
buoyancy force and thermal radiation have reverse effect on it.
Magnetic field, Hall current, thermal buoyancy force and time
tend to enhance secondary shear stress at the plate whereas heat
absorption and critical time for rampedness have reverse effect
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. Conclusions 

n investigation of unsteady hydromagnetic free convection 

ow with Hall effects of a viscous, incompressible, electrically 
onducting, optically thick radiating and heat absorbing fluid 

ast a uniformly accelerated moving vertical plate with variable 
amped temperature is carried out. Significant findings of the 
roblem are mentioned below: 

• Fluid temperature is getting reduced on increasing crit- 
ical time for rampedness whereas thermal radiation and 

time have reverse effect on it. Fluid temperature approaches 
steady state when t ≥ 3 . 2 (t > t 1 ) . 

• Magnetic field tends to decelerate fluid flow in both the pri- 
mary and secondary flow directions whereas Hall current, 
thermal buoyancy force, thermal radiation and time have re- 
verse effect on it. Fluid flow in both the primary and sec-
ondary flow directions is getting decelerated on increasing 
critical time for rampedness. 

• Thermal radiation and critical time for rampedness tend to 

reduce rate of heat transfer at the plate whereas heat absorp- 
tion has a reverse effect on it. Rate of heat transfer at the
plate is getting enhanced with the progress of time and it ap-
proaches steady state when t ≥ 3 . 2 (t > t 1 ) . 

• Magnetic field, heat absorption, time and critical time for 
rampedness tend to enhance primary shear stress at the plate 
whereas Hall current, thermal buoyancy force and thermal 
radiation have reverse effect on it. Magnetic field, Hall cur- 
rent, thermal buoyancy force and time tend to enhance sec- 
ondary shear stress at the plate whereas heat absorption and 

critical time for rampedness have reverse effect on it. 
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