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ABSTRACT
Acute kidney injury (AKI) necessitating renal-replacement therapy has been associated with 
high mortality rates in critically ill patients. Usual methods to study AKI encompass the 
assessment of serum and urine biomarkers. Hypoxia is a major pathophysiological feature of 
AKI, which necessitates continuous bedside monitoring of renal tissue oxygenation in intensive 
care unit (ICU) patients. Research has made continuous bladder urine oxygen pressure (PuO2) 
monitoring possible in humans. Although the value of bladder PuO2 does not represent an 
absolute value of medullary tissue oxygen pressure (Po2), bladder PuO2 can be considered 
a window into the renal medullary oxygenation. Bladder PuO2 can be monitored by using 
probes with oxygen sensors inserted into the urinary bladder. Additionally, PuO2 can be 
measured manually by using a blood gas analyzer machine. PuO2 monitoring can be poten-
tially helpful in early diagnosis and/or prevention of AKI and guide therapeutic interventions 
aimed at improving renal oxygen delivery in those patients.
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1. Introduction

AKI is a common finding in hospitalized patients, par-
ticularly in septic cohorts. Angus et al. reviewed the 
diagnostic codes of 192,980 patients with serious sep-
sis from seven US states; AKI was found in 22% of the 
patients and had a mortality rate of 38.2%[1]. In the 
acutely ill patients (SOAP) study, patients recruited 
from Europe and admitted to 198 ICUs, sepsis was 
reported among 37% of 3147 patients. In 51% of the 
cases, AKI occurred and was associated with 41% ICU 
mortality [2]. In the FINNAKI study, 2901 seriously ill 
patients have been studied across 17 Finnish ICUs. 
Among the most critical 918 serious sepsis patients, 
53% of them met the KDIGO guidelines for AKI [3].

In septic AKI experimental research, endotoxin admin-
istration had decreased global renal blood flow (RBF), 
which was connected to a hypodynamic systemic circula-
tion. A conclusion was made that septic human AKI is 
attributed to renal vasoconstriction and ischemia [4]. On 
the other hand, in a study conducted on 160 original 
animal models, RBF was found either preserved or increa 
sed if the animal model had high cardiac output (CO). 
However, oliguria and AKI progressed within hours and 
were marked despite such global renal hyperemia. 
A phenomenon in which RBF is distinguished from glo-
merular filtration rate (GFR) was revealed [5]. Ischemia 

can still occur in spite of increased RBF. This was explai 
ned by experimental research which proved a blood flow 
redistribution towards the renal cortex at the expense of 
renal medullary blood flow [6–8]. Additionally, changes in 
regional distribution of blood flow imply the activation of 
intrarenal shunting pathways and, consequently, renal 
medullary hypoxia ensues [9].

In postmortem human and experimental septic AKI, 
acute tubular necrosis (ATN) was found to be rare 
[10,11]. However, in septic kidneys, mild tubular 
damage, leucocyte infiltration, and apoptosis were 
reported in postmortem autopsy [12].

The diagnosis of AKI has been based primarily on 
serum creatinine over the last 50 years [13]. It is well 
known that a significant decrease in GFR leads to an 
increased serum creatinine level. In the last 10 years, 
a lot has been done to find specific biomarkers to 
identify acute damage in the renal tubular epithelium 
[14,15]. The majority of studies seek to discover and 
confirm biomarkers in large cohorts of patients using 
highly efficient techniques. Very few studies have 
reviewed the AKI biomarker clinical application to 
improve AKI treatment and patients’ outcome. In both 
blood and urine, biomarkers can be detected. Urine 
biomarkers have nevertheless been examined most 
thoroughly as the urine is closest to the injury site.
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Neutrophil gelatinase-associated lipocalin (NGAL) was 
investigated most extensively. Diverse patient popula-
tions were analyzed by various investigators, and NGAL 
measurements for different indications were determined. 
It is obvious that NGAL is expressed in AKI in a severity- 
related way, such as after contrast, after cardiac surgery, 
and after renal transplantation. Dehydration alone does 
not cause the expression of NGAL. Notably, the cut-off 
values for NGAL in AKI are uncertain due to the variety of 
test kits on the market [16–23].

AKI biomarkers discovery is concerned with the desire 
for early diagnosis to provide early prevention and treat-
ment. Biomarkers can supply AKI pathophysiology 
insights and provide additional functional testing [24]. 
The ideal biomarkers should detect renal stress before 
functional damage is apparent or also in the absence of 
preclinical AKI. The levels of biomarkers should also help 
in diagnosing the cause of oliguria. The scope of research 
should include a transition from monitoring physiological 
biomarkers of adequate renal perfusion to pathophysio-
logic biomarkers of renal hypoperfusion and finally bio-
markers of kidney cell structural injury or damage [25].

The main goal of this review is to address the ques-
tion as to whether minimally invasive, bedside contin-
uous bladder PuO2 monitoring would be worthwhile 
in patients at high risk of developing AKI.

2. The role of using continuous bladder PuO2 
measurements in early detection of AKI

Hypoxia in the renal medulla is a hallmark of AKI of diverse 
etiologies. The kidneys are vulnerable to hypoxia due to 

their role as an oxygen sensor designed to sense the 
decrease in renal tissue Po2 in case of hypoxemia, which 
stimulates erythropoietin production for increased ery-
thropoiesis. However, the absence of innate renal feed-
back mechanisms capable of increasing renal oxygen 
delivery or decreasing renal oxygen consumption makes 
the kidney highly susceptible to hypoxia [26]. The kidney 
is also susceptible to hypoxia due to a large metabolic 
demand imposed by active reabsorption of sodium, 
which ultimately increases oxygen consumption. Limitat 
ions on oxygen delivery to cortical tissue are imposed by 
the density of peritubular capillaries. Moreover, oxygen is 
shunted between arteries and nearby veins in the renal 
cortex as well as between the descending and ascending 
vasa recta in the renal medulla (Figure 1) [27,28].

Renal medullary mean Po2 reflects the balance 
between renal medullary oxygen delivery and oxygen 
consumption [29,30]. Medullary Po2 is equal to PuO2 
in the renal pelvis (Figure 1); however, measurement of 
pelvic PuO2 is technically difficult as it requires the 
insertion of a nephrostomy tube for collecting urine 
from the renal pelvis [31]. Pelvic PuO2 decreases 
depending on the distance from the pelvis to the 
bladder [32] (Figure 2). The difference between pelvic 
and bladder PuO2 may be significant during diuresis 
and in the presence of some pathological conditions, 
or with various oxygen concentrations of inspired gas 
[33] (Figure 2). Although the value of bladder PuO2 
does not represent an absolute value of medullary Po2, 
variation over time in bladder PuO2 measurements can 
unmask changes in medullary tissue Po2. A decrease in 
bladder PuO2 measurements over time may reflect 

Figure 1. Diffusion of oxygen inside the renal parenchyma (O2: oxygen, Po2: oxygen pressure, and PuO2: urinary oxygen pressure). A: 
oxygen diffusion through Bowman’s capsule, B: oxygen shunting between arteries and veins in the cortex, C: oxygen shunting 
between descending and ascending vasa recta in the medulla, and D: oxygen diffusion between the renal medulla and renal pelvis.
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decreased oxygen delivery to the renal medullary tis-
sue or increased oxygen consumption of the renal 
medullary tissue.

Continuous monitoring of the bladder PuO2 may 
potentially serve as a significant clinical tool for mon-
itoring the adequacy of renal tissue oxygenation in 
critically ill patients who are at risk of developing AKI. 
Moreover, continuous monitoring of bladder PuO2 is 
a relatively noninvasive technique, which could pro-
vide potentially important real-time data regarding 
renal medullary tissue oxygenation in ICU patients 
[32,34,35].

Our suggested method for continuous monitoring 
of bladder PuO2 encompasses the insertion of an oxy-
gen-sensing probe into the urinary bladder through 
a urinary catheter. The sensing probe should be kept in 
contact with urine while trying to avoid contact with 
the walls of the urinary bladder, so that it measures 
bladder PuO2 and not urinary bladder wall Po2 (Figure 
3). The measuring probe can then be interfaced with 
a monitor screen, which displays bladder PuO2 mea-
surements continuously, thus allowing clinicians to 
follow the trend and anticipate the changes in renal 
medullary oxygenation over time. The probe method 
has been used previously by Morelli et al., Osawa et al., 
and Zhu et al. (Table 1) [33,36,37]. The measuring 
probe should ideally be sensitive, easily calibrated, 
not affected by acidic urine, and not fragile as to be 
easily broken by kinking.

Bladder PuO2 monitoring can be confounded by 
multiple factors, including systemic oxygenation, per-
fusion, diuretics, urinary tract infections, chronic renal 
impairments, local diseases of the urinary tract, renal 

metabolic state, oxygenation within the ureteric wall, 
and urine flow. At low urine flow, the signal may be lost 
[38,39]; consequently, measurement of bladder PuO2 
will have little or no utility in patients who have already 
developed AKI (Figure 4).

Alternatively, bladder PuO2 can also be measured 
by collecting urine samples manually from the urinary 
catheter, which can then be measured by a gas analy-
zer. This method was used by Kitashiro et al [30] . and 
Valente et al [40] . (Table 1). This manual method is 
easy and inexpensive, can be done in every ICU, and 
does not require special equipment. However, the 
possible air entrainment into the sampling syringe 
and calibration of the gas analyzer machine may influ-
ence the accuracy of PuO2 measurements.

3. A summary of previous studies employing 
PuO2

Studies in experimental hyperdynamic septic AKI have 
shown that, even in the presence of increased global 
RBF and oxygen supply, the renal medulla is especially 
vulnerable to hypoxia during early sepsis [41]. Progress 
ive renal medullary hypoxia leads to oxidative stress and 
inflammation, which can initiate renal cellular injury and 
finally AKI [8,41,42].

In an animal study of bovine sepsis with AKI [8], resus-
citation of septic shock with norepinephrine improved 
arterial blood pressure and resulted in transient improve-
ment in renal function. However, the use of norepinephr-
ine was associated with further worsening of kidney 
function due to a decrease in renal medullary tissue 
perfusion and medullary tissue Po2 independent of 

Figure 2. Oxygen flow through the urinary tract starting from renal medulla down to the urinary bladder; 1: renal medullary tissue 
Po2, 2: pelvic PuO2, 3: upper ureteric PuO2, 4: lower ureteric PuO2, and 5: bladder PuO2. (PuO2: urinary oxygen pressure.).
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changes in RBF and renal oxygen delivery, indicating that 
whole kidney measures of oxygenation cannot be used 
to predict the changes in medullary perfusion and oxy-
genation. Interestingly, measured PuO2 was closely 
related to medullary tissue Po28.

Moreover, in animal studies with septic AKI, distinct 
effects on renal medullary tissue Po2 were demonstrated 
by using the following therapies: fluids, norepinephrine, 
vasopressin, angiotensin II, and furosemide [41].

Similarly, PuO2 was found to increase after the 
administration of fenoldopam to stable critically ill 
patients, which was not related to increases in systemic 

perfusion and cardiac function [33] (Table1). Compara 
bly, furosemide administration to patients with septic 
shock was associated with greater diuresis and an 
increase in bladder PuO236 (Table1).

Surprisingly, in an experimental study on septic AKI 
in conscious sheep, the decrease in medullary tissue 
PO2 and PuO2 was detected several hours before the 
increase in urinary NGAL and serum creatinine. Additio 
nally, intravenous infusion of angiotensin II could 
restore arterial pressure and improve creatinine clear-
ance without exacerbating medullary or urinary 
hypoxia [43].

Figure 3. Oxygen flow from the ureters to the urinary bladder and oxygen-sensing probe passing through the urinary catheter 
with its tip located inside the urinary bladder to measure bladder PuO2.
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Figure 4. Confounding factors affecting bladder PuO2.
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In a recent experimental study [42] on conscious 
sheep model with septic AKI, fluid bolus therapy with 
500 mL of Hartmann’s solution over 15 min was asso-
ciated with increased blood pressure, central venous 
pressure, CO, medullary PO2, PuO2, and creatinine 
clearance at 30 minutes. Unanticipatedly, the improve-
ment in medullary oxygenation had disappeared 
thereafter, and the studied animals had sodium and 
volume retention after two boluses [42] (Table 1).

Consequently, the optimal choice of therapeutic 
intervention should aim to restore and maintain ade-
quate renal medullary microcirculation without wor-
sening medullary hypoxia [41].

Continuous monitoring of bladder PuO2 is found to 
be a useful tool for evaluating the balance between 
renal oxygen supply and demand in stable critically ill 
patients [33] (Table 1). Moreover, bladder PuO2 was 
found to be low when measured in ICU patients with 
septic shock [36] (Table 1). Thus, continuous PuO2 
monitoring could be a perfect monitoring tool during 
the treatment of septic AKI [41].

As initial serum creatinine lags behind the onset of 
renal tubular injury [44], bladder PuO2 may initially aid in 
the adjustment of fluid intake by ensuring appropriate 
volume resuscitation to the patients and avoiding 
volume overload, which may further compromise CO 
and worsen the acute lung injury. As such, bladder 
PuO2 should be incorporated in future randomized clin-
ical studies to investigate its value in AKI prediction and 
management.

4. Conclusion

Continuous bladder PuO2 monitoring is a minimally 
invasive and potentially useful tool for early detection, 
prevention, and management of AKI. Therefore, its use 
in patients with early stages of AKI could help in eluci-
dating the pathogenesis of AKI in at-risk patients, as 
well as aiding in the early diagnosis of acute renal 
failure and establishing the most appropriate thera-
peutic interventions.
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