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A B S T R A C T

Background: Myocardial ischaemia/reperfusion (MI/R) may induce renal damage. Our aim was to investigate
the effects of dexmedetomidine (DEX) administration at two different timings either before or after ischaemia on
renal damage induced by MI/R.
Methods: MI/R injury was induced in a rat model. we ligated the left anterior descending coronary artery for
30min (ischaemic period), then reperfusion occurred for 2 h (reperfusion period). A single dose of DEX (100 µg/
kg) was given intraperitoneally, either 30min before myocardial ischaemia or 5min after reperfusion. With the
end of reperfusion period, rats were sacrificed, then we collected the blood and removed both kidneys quickly for
biochemical and histopathological analysis.
Results: MI/R caused an elevation in serum urea and creatinine, significant elevation in malondialdehyde (MDA)
release and decrease in superoxide dismutase (SOD) activity in the rat kidney. There were also higher levels of
serum tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). Treatment with dexmedetomidine,
30min before induction of myocardial ischaemia, succeeded to improve all the tested parameters. The valuable
changes in these biochemical parameters were linked with similar enhancement in the histopathological ap-
pearance of the kidney. Meanwhile, DEX given 5min after reperfusion improved serum urea and creatinine only.
Conclusion: These findings imply that MI/R plays a fundamental role in kidney damage through increased
production of oxygen radicals or deficiency in antioxidants, and DEX given before ischaemia exerts reno-pro-
tective effects probably by its radical scavenging antioxidant activity and anti-inflammatory mechanism.

1. Introduction

Among the common causes of death occurring perioperatively are
the renal or cardiac injuries following cardiac surgery [1]. Lipid per-
oxidation, inflammatory reaction or oxidative stress following myo-
cardial ischaemia/reperfusion (MI/R) may be leading causes of distant
organs’ damage after myocardial ischaemia [2]. An organ as the heart if
exposed to severe ischaemia and then reperfused can affect a distant
organ that was not exposed to the initial ischaemic event or cause
multiple organ damage [3]. Because of its anatomical and unique
structure, the kidney is considered a very sensitive organ affected easily
by ischemia–reperfusion (I/R) [4]. Though, benefits of coronary re-
vascularization or related techniques as thrombolysis or angioplasty
may be life-saving from irreversible renal necrosis, still it is a double-
edged sword because reperfusion may even augment renal damage [5].

The mechanisms behind the decline in renal function following

coronary ischaemia then revascularization is most probably multi-
factorial and can be explained by decrease in renal blood flow, absence
of perfusion in pulsatile manner, rupture of traumatized red blood cells
(RBCs) or inflammatory reaction [6]. Also, apoptosis share in the pa-
thophysiology of I/R insult. There is meaningful increase in the oxygen
free radicals (FR) and reactive oxygen species (ROS) in the kidney. FR
in turn initiate an inflammatory response. The most affected structures
by the ROS are proteins, membrane lipids, and deoxyribonucleic acids.
The endogenous antioxidant system includes enzymes as superoxide
dismutase (SOD) and catalase which act to minimize the I/R insult [7].
Ongoing researches and studies are being developed to introduce new
agents to alleviate organs’ reperfusion-mediated insult. The anesthetic
agents have impact on endogenous antioxidant systems and formation
of free oxygen radical formation [8].

Dexmedetomidine (DEX) is a strong alpha 2 agonist. It is an an-
xiolytic which can be used pre-operatively as a preanaesthetic agent to
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help reduction of the dose of anaesthetics [9]. It has anti-inflammatory
potentials and cardioprotective effects [10]. Previous studies have de-
monstrated that dexmedetomidine could alleviate direct organ damage
secondery to exposure to I/R in different animal groups and can de-
crease the deleterious effects of I/R insult [11,12]. But, no studies have
investigated the effects of dexmedetomidine on indirect renal damage
developping after myocardial I/R. The objective of our study was to
evaluate if DEX can improve the remote kidney damage following
myocardial ischaemia reperfusion and clarify its potential protective
effects on MI/R-induced renal damage, and investigate whether the
timing of its administration, 30 minutes before and 5 minutes after
ischaemia play a role or not. Several parameters were assessed in-
cluding biochemical measurements of kidney function (serum urea and
creatinine) and assessment of its anti-oxidant effect using biochemical
markers as tissue malondialdehyde (MDA) and SOD and investigated its
anti-inflammatory effect by measuring serum TNF-α and IL-1β.
Changes in the heart rate were recorded during different periods and
histopathological examination of the renal tissue was also done.

2. Material and methods

2.1. Animal grouping

A total of 40 healthy male wistar rats weighing between
200–250 gm were housed in separate cages in temperature- adjusted
room with 12 h. light/dark cycle. They were adapted to the new at-
mosphere for one week before experiment and all animals had free
access to water. The study protocol was permitted by the Institutional
Reviewer Board of Faculty of Medicine, Cairo University and the animal
experiments were done in agreement with the ethical guidelines of
animal welfare. We randomly divided them into five groups, 8 rats in
each group. Group I: control group, received normal saline. Group II:
sham-operated, where isolation of left anterior descending (LAD) was
performed but with no ligation and the rats received only normal saline.
Group III: (I/R, untreated) in which myocardial I/R was induced after
thoracotomy, by ligating LAD for 30min, then followed by deligation
and reperfusion for 2 h. Group IV (DEX before): in which
Dexmedetomidine (Precedex 200 μg/2ml, Hospira®, Illinois, USA) was
injected at a dose of 100 µg/Kg by intraperitoneal (I.P.) route 30 min-
utes earlier than induction of ischaemia [13,14]. Group V (DEX after):
in which rats received DEX at a dose of 100 µg/Kg I.P after ischaemia (5
minutes from the beginning of reperfusion). The timing of giving DEX
5min after reperfusion was taken from a previous study investigating
its effect on renal ischaemia by Gonullu et al. [14].

2.2. Experimental design

2.2.1. Myocardial ischaemia reperfusion
Rats were anesthetized with 100mg/kg of ketamine hydrochloride

(sigma-Aldrich, Inc, Canada) I.P. A cannula was introduced in the tra-
chea for positive-pressure ventilation using room air. All animals were
artificially ventilated with a standard tidal volume ventilation protocol.
After shaving the chest, it was opened through a midline incision, the
pericardium was incised and a loose 6/0 braided prolene suture was
placed around the left anterior descending coronary artery (LAD) for
30min in groups III, IV and V to induce ischaemia. The ends of the
suture were threaded through a propylene tube to form a snare, to fa-
cilitate the successive removal of the suture to start reperfusion for
120min. The body temperature was maintained throughout the ex-
periment by using a heating pad and heat lamps. Subcutaneous elec-
trocardiogram (ECG) leads (Suzuken, Kenz - ECG-102) placed in the
rat’s limbs to allow measurement of heart rates [15].

2.2.2. Biochemical studies
Following 2 hours of reperfusion, blood was withdrawn. The whole

blood was centrifuged at 3500 rpm for 15min, then we separated the

serum and stored it at -20 °C for further biochemical studies to measure
urea, creatinine, TNF α and IL-1β. Rats were then sacrificed. The left
kidney was instantly fixed with 10% neutral buffered-formalin solution
for 2 h at 20–25 °C, dehydrated, then embedded in paraffin for further
histopathological analysis. The right kidney was snap frozen at -80 °C
and used for determination of tissue MDA and SOD.

2.2.2.1. Measurement of serum urea and creatinine. Serum urea and
creatinine levels were estimated using a commercial kit in an
autoanalyzer. The results were expressed as mg/dl.

2.2.2.2. Measurement of serum TNF-α and IL-1β. Serum levels of IL-1β
and TNF-α were evaluated using enzyme-linked immunosorbent assay
[ELISA] Kit (Biomed, Diepenbeek, Belgium), based on the
manufacturer’s instructions and the values were presented as pg/ml.

2.2.2.3. Measurement of tissue MDA. MDA levels in the renal tissue
homogenate were determined spectrophotometrically according to the
protocol of Van Ye et al. [16] using thiobarbituric acid reactive
substances (TBARS) assay kit from Zepto Metrix Inc. (USA). Values
were expressed as nmol/mg protein.

2.2.2.4. Measurement of tissue SOD. The activities of SOD in the renal
tissue homogenate were determined spectrophotometrically as
previously described by Xie et al. [17], with the use of commercial
SOD assay kits (Nanjing jiancheng Bioengineering, China). The results
were expressed as U/mg protein.

2.2.3. Histopathological examination
Kidney tissue samples were kept in 10% neutral buffered formalin,

embedded in paraffin, sectioned and lastly stained by hematoxylin and
eosin (H & E), according to Bancroft et al. [18]. The EGTI (Endothelial,
Glomerular, Tubular, and Interstitial) scoring system is created exactly
for animal research on renal tissue in the setting of injury (Table 1). The
scoring system entails histological damage in four discrete components:
Endothelial, Glomerular, Tubular, and Interstitial. EGTI scoring was
applied in both the intact and injured parts of the renal cortex [19].

Table 1
The EGTI histology scoring system.

Tissue type Damage Score

Tubular • No damage 0

• Loss of Brush Border (BB) in less than 25% of
tubular cells

• Integrity of basal membrane

1

• Loss of BB in more than 25% of tubular cells,
Thickened basal membrane

2

• (Plus) Inflammation, Cast formation, Necrosis
up to 60% of tubular cells

3

• (Plus) Necrosis in more than 60% of tubular cells 4
Endothelial • No damage 0

• Endothelial swelling 1

• Endothelial disruption 2

• Endothelial loss 3
Glomerular • No damage 0

• Thickening of Bowman capsule 1

• Retraction of glomerular tuft 2

• Glomerular fibrosis 3
Tissue type Damage Score
Tubulo/Interstitial • No damage 0

• Inflammation, Hemorrhage in less than 25% of
tissue

1

• (Plus) necrosis in less than 25% of tissue 2

• Necrosis up to 60% 3

• Necrosis more than 60% 4

EGTI: Endothelial, Glomerular, Tubular, and Interstitial.
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2.2.4. Measurement of heart rate
The rats' heart rate (HR) values were recorded from the ECG mon-

itoring and compared among groups at the following time points; HR1.
base line; HR2. start of ischemia; HR3. End of ischemia and start of
reperfusion; HR4. 30min after reperfusion; HR5. 60min after reperfu-
sion.

2.3. Statistical analysis

Data were coded and analyzed using the program SPSS (Statistical
Package for the Social Science; SPSS Inc., Chicago, IL, USA, version 24).
We presented the data as mean and standard deviation for quantitative
variables. When we compared between groups, we used analysis of
variance (ANOVA) with multiple comparisons post hoc test. P-values
were considered as statistically significant if less than 0.05.

3. Results

In all the results, rats of sham-operated group (group II) did not
show any significant change in all the tested parameters compared with
control group (group I).

3.1. Biochemical results (Table 2)

3.1.1. Serum urea and creatinine
In comparison to control and sham-operated groups, I/R group was

associated with significantly higher levels of serum urea and creatinine
(P < 0.05). On the other hand, there was no significant difference in
urea and creatinine between group IV (DEX before) and group V (DEX
after) (P > 0.05). Meanwhile, both groups were significantly lower
than group I/R (P < 0.05).

3.1.2. Serum TNF-α and IL-1β
The I/R group showed a significant rise in serum TNF-α and IL-1β

levels compared to both control and sham operated groups (P < 0.05).
DEX given before ischaemia significantly reduced both the serum TNF-
α and IL-1β levels compared to the I/R group (P < 0.05). Meanwhile,
when DEX was received after ischaemia, it did not demonstrate any
significant changes from I/R group (P > 0.05). In both TNF-α and IL-
1β, results of the DEX after group showed significant change from the
(DEX before) group.

3.1.3. Tissue SOD
In the I/R group, there was significant decrease in tissue SOD ac-

tivity compared to both control and sham-operated groups (P < 0.05).
DEX administration before ischaemia significantly improved the SOD
activity in the kidney compared to the I/R group (P < 0.05).
Meanwhile, DEX given after ischaemia had no significant changes from
I/R group (P > 0.05).

3.1.4. Tissue MDA
MI/R caused a significant increase in tissue MDA levels compared

with both control and the sham-operated groups (P < 0.05). DEX
given before ischaemia statistically decreased the MDA levels compared
to the I/R group (P < 0.05). Unfortunately, administration of DEX
after ischaemia failed to cause any significant changes compared to I/R
group. There was significant difference between the results of the (DEX
before) and the (DEX after) groups.

3.2. Histopathological findings

3.2.1. Control and sham groups
The renal cortex of the control and sham groups looked normal,

showing complete brush border of the tubular cells with no thickening
of the basal membrane. No evidence of inflammation or necrosis could
be detected (Tubular score 0) fig.1A. There was no abnormality within
the interstitial compartment (Interstitial score 0) fig.2A. The blood
vessels showed an even endothelium with no bulge or disruption of the
endothelial cells (Endothelial score 0) fig. 3A. The glomerulus looked
complete with thin walled Bowman’s capsule and no tuft retraction
(Glomerular score 0) fig. 4A.

3.2.2. I/R group
Renal cortex of the I/R group showed varying degrees of damage

after ischaemia/reperfusion in rats. Renal tubules showed coagulative
necrosis, epithelial lining and interstitial cellular compartments.
Intratubular albuminus casts were seen (Tubular score 4) fig 1B. The
renal blood vessel showed loss of endothelial lining and perivascular
edema (Endothelial score 3) fig 2B. Glomeruli showed retraction of
capillary tufts and widening of Bowman's space (Glomerular score 2) fig
3B. Inflammatory reaction presented as congestion of blood capillaries
and mononuclear cell infiltration of the interstitial compartment asso-
ciated with necrosis up to 60% of the cells (Interstitial score 3) fig 4B.

3.2.3. DEX before group
In the DEX before group, renal cortex exhibited different degrees of

damage after 30 minutes ischaemia then reperfusion in rats. Renal tu-
bules showed loss of Brush Border (BB) in less than 25% of tubular cells
with integrity of basal membrane (Tubular score 1) fig 1C. The renal
blood vessel showed endothelial disruption (Endothelial score 2) fig 2C.
Glomeruli showed thickening of Bowman capsule with mild hy-
percellularity of glomerular tufts (Glomerular score 1) fig 3C.
Inflammation and haemorrhage were seen in less than 25% of tissue
(Interstitial score 1) fig 4C (see Fig. 1).

3.2.4. DEX after group
In the DEX after group, renal cortex presented variable degrees of

injury due to ischaemia reperfusion injury (IRI) rats. Renal tubules
showed Loss of Brush Border (BB), cast formation, necrosis up to 60% of

Table 2
Serum urea, creatinine, TNF-α, IL-1β and tissue SOD, MDA in the different studied groups.

Group Control Sham I/R DEX before DEX after

Tissue SOD (u/mg protein) 3.09 ± 0.90 3.10 ± 0.92 0.56 ± 0.07 *,# 1.71 ± 0.36 $ 0.6 ± 0.0 9
Tissue MDA (nmol/mg protein) 1.03 ± 0.02 1.02 ± 0.01 13.72 ± 0.59 *,# 3.45 ± 0.93 $ 12.78 ± 3.31 @

Serum TNF-α (pg/ml) 31.53 ± 1.05 30.91 ± 0.98 140.92 ± 7.9 *,# 61.51 ± 5.78 $ 130.74 ± 4.1 @

Serum IL-1β (pg/ml) 29.32 ± 1.75 28.79 ± 1.49 114.19 ± 7.8 *,# 71.82 ± 6.67 $ 106.59 ± 5.5 @

Serum creatinine (mg/dl) 0.19 ± 0.04 0.17 ± 0.05 1.15 ± 0.26 *,# 0.27 ± 0.07 $ 0.43 ± 0.12 $

Serum urea (mg/dl) 42.22 ± 1.73 42.59 ± 2.86 78.09 ± 2.91 *,# 51.91 ± 5.14 $ 52.41 ± 7.3 $

Values are presented as mean ± SD.
I/R, ischemia reperfusion; DEX, dexmedetomidine; SOD, superoxide dismutase; MDA, Malondialdehyde; TNF-α, tumor necrosis factor-alpha; IL-1β, interleukin-1 beta.

* Statistically significant compared to corresponding value in control group (P < 0.05).
# Statistically significant compared to corresponding value in sham group (P < 0.05).
$ Statistically significant compared to corresponding value in I/R group (P < 0.05).
@ Statistically significant compared to corresponding value in DEX before group (P < 0.05).
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tubular cells (Tubular score 3) fig 1D. The renal blood vessel showed
loss of endothelial lining and perivascular edema (Endothelial score 3)
fig 2D. Glomeruli showed thickening of Bowman capsule retraction of
capillary tufts (Glomerular score 2) fig 3D. Inflammation, congestion of
blood capillaries, hemorrhage and tubular necrosis were seen in less
than 25% of tissue (Interstitial score 2) fig 4D.

3.3. Effect of dexmedetomidine on heart rates

As shown in Fig. 2, in I/R group, there was an initial significant
increase in HR in comparison to sham and control groups at HR2
(326.1 ± 7.0) followed by highly significant decrease at the end of
ischemia (HR3) (202.5 ± 7.3) (P < 0.01), then showed a significant
increase again during reperfusion (HR4 and HR5) (P < 0.05). Dex-
medetomidine in DEX before group showed statistically significant re-
duction in HR at HR2 (214.6 ± 7.3) (P < 0.01) as a direct effect on

the heart then decreased the HR again at HR3 (176.3 ± 6.3) as a re-
flection to ischemia. Finally, Dexmedetomidine when given 5min after
reperfusion (HR4), showed statistically reduction in HR as expected
(184.0 ± 6.9) (P < 0.01), when compared to other groups.

4. Discussion

The ischaemia reperfusion process occurring in cardiac surgeries as
cardiopulmonary bypass most probably causes distant organ damage
[13]. Renal damage is considered serious complication of coronary
revascularization and may cause postoperative morbidity and mortality
and a prolonged hospital stay [20]. To our knowledge, this is the first
study to investigate the reno-protective effect of dexmedetomidine
against renal damage induced by myocardial I/R following ligation of
the left ascending coronary artery for 30 minutes then reperfusion for
two hours. We compared the effects of DEX in the same dose at two

A- Control and Sham 
groups

B- I/R group C-DEX before group D- DEX after group

Fig. A (1 -4) T=0-E=0 
G=0- I=0 (H&E X200)

Fig. B (1 -4) T=3-E=3 
G=2 I=2 (H&E X200)

Fig. C (1 -4) T=1-E=2 
G=1- I=1 (H&E X200)

Fig. D (1 -4) T=3-E=3 
G=2- I=2(H&E X200)

3C 3D

1B

2B

3B

1A

2A

3A

4A 4B

1C

2C

1D

2D

4D4C

Fig. 1. Histopathological findings in the different studied groups.
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different timings, either before or after ischaemia on several para-
meters.

In our experimental study, rats of sham-operated group (group II)
did not show any significant changes in all the tested parameters
compared with control group (group I). Myocardial I/R caused severe
renal dysfunction. This was reflected in our study by a significant in-
crease in the serum levels of urea and creatinine in the I/R group when
compared to the control and sham groups. Moreover, it caused sig-
nificant elevation in serum IL-1β and TNF-α compared to both sham-
operated and control groups. The MI/R group showed also significant
increase in renal tissue MDA levels compared to control and sham
groups. Similarly, Parlakpinar et al. [21] and Ozer et al. [22] found
elevated renal MDA levels after induction of myocardial ischaemia for
30 minutes and followed by 120 minutes of reperfusion and found also
severe renal damage during histological examination. Moreover, in the
I/R group, in our study, we found decrease in renal SOD activity.

The renal damage due to MI/R may be a direct cause of ischaemia
and hypoperfusion. This may be explained by the fact that renal
ischaemia initiates a series of events that can ultimately lead to cellular
dysfunction and necrosis as reduced renal blood flow, tubular en-
dothelial injury and renal tubular blockage [23]. Ischaemia can also
promote expression of proinflammatory genes and suppress protective
genes. Therefore, it induces a pro-inflammatory state. However, cor-
onary revascularization can paradoxically create more tissue damage
by its injurious effects on renal function including renal emboli; whe-
ther microembolus or macroembolus, release of hemoglobin from
ruptured RBCs, elevated levels of catecholamines, abnormal renal
function, inflammatory reactions and release of inflammatory media-
tors of the ischaemic tissue into the systemic circulation with disturbed
cell metabolism [24]. During the period of IR injury, cells produce in-
flammatory cytokines as IL-1β, IL-8, TNF-α and so on, with increased
expression of vascular adhesion molecules (VAM). These in turn med-
iate adhesion of leukocytes to the endothelium [25]. Experimental
studies whether human or animal have been conducted on this subject
[26,27]. Vasoactive mediators as eicosanoids and nitric oxide may also
be responsible for I/R damaging effects.

However, in endogenous or exogenous renal injury such as MI/R,
apoptosis is considered an important factor in the pathophysiology of I/
R injury. These factors may increase reactive oxygen species (ROS), also

known as free radicals, prominently in the kidneys. ROS are considered
the main step in the reperfusion injury, which if excessively produced
may cause acute renal damage. Oxygen free radicals (FR) in a damaged
tissue are produced from various sources such as the xanthine oxidase
system, activated neutrophils, mitochondrial electron transport chain,
and arachidonic acid pathways [28]. The structures which are most
sensitive to FR in the cells are membrane lipids, proteins and deoxyr-
ibonucleic acids. ROS-induced lipid peroxidation is responsible for I/R
injury in all body organs. Cytotoxicity may be a contributing factor of
the reperfusion injury due to rapid restoration of the acidotic pH of
ischaemic phase to normal physiological pH of reperfusion [29].

In the current study, group IV (Dex before) and group V (Dex after)
showed significant decrease in serum urea and creatinine compared to
I/R group but without significant difference between both groups. Si
et al. [30] concluded that, DEX could save the kidneys from I/R injury.
Our results also went hand in hand with those of Liu et al. [31] who
found that DEX improved renal functional recovery and decreased
serum creatinine levels in rats.

Moreover, our results showed that only dexmedetomidine before
ischaemia, significantly lowered serum levels of pro-inflammatory cy-
tokines (TNF-α and IL-1β) compared to the I/R group. These findings
were previously supported by the studies of Ammar et al. [1] in patients
and Zhang et al. [32] in rats. Similarly, our results showed that only
dexmedetomidine given before ischaemia significantly reduced levels
of MDA, when compared to I/R group. MDA is an important end pro-
duct of lipid peroxidation. Plasma and tissue levels of MDA are con-
sidered golden markers of the oxidative stress and the systemic re-
sponse that follow I/R [33]. Cakir et al. [34], similarly noticed that DEX
before ischaemia succeeded to lower renal MDA levels. As for the tissue
SOD, Dex administration before ischaemia succeeded to increase the
activity of SOD compared to I/R group. Whereas, DEX after ischaemia
failed to attenuate the increases of TNF-α and IL-1β. Similarly, it did not
reduce renal MDA concentration or increase SOD activity, when com-
pared to myocardial I/R group.

These findings coincide with those of Zhang et al. [32] who found
that different timings of dexmedetomidine administration affected its
results. When given before ischaemia, it decreased the intestinal I/R
insult in a dose-dependent manner and is therefore critical for intestinal
protection. However, the initiation of dexmedetomidine after
ischaemia, operation or in the ICU, produced no beneficial effect. Our
results seem to be similar also to previous investigations studying the
effects of dexmedetomidine on myocardial I/R injury in which dex-
medetomidine given before induction of ischemia can help significantly
to reduce the size of myocardial infarct in rats [35]. On the contrary,
giving dexmedetomidine after ischaemia, at the beginning of reperfu-
sion in the same dose increased the myocardial infarct size and failed to
protect the cardiac muscle against I/R injury [36]. Similar studies done
previously on the intestine showed that early reperfusion, not more
3min is critical and can cause intestinal protection [37,38]. All these
findings suggested that, although the exact mechanisms are not clear,
the timing of treatment in relation to perfusion is critically important
for protection against I/R injury.

Regarding the histopathological findings, administration of DEX
before ischaemia, improved the renal damage as shown by the EGTI
scoring system. A histopathologic study was done by Kocoglu et al. [39]
to study the effects of dexmedetomidine on kidney I/R injury in rats.
Their results confirmed that treatment with dexmedetomidine could
improve the histopathologic findings that may associate renal I/R in-
jury, and the authors concluded that dexmedetomidine is useful in
improving the tolerance of the kidney against I/R injury. Also, Si et al.
[40] proved that dexmedetomidine ameliorated the histopathological
findings of the kidneys exposed to I/R and attenuated renal damage.

The protective mechanism of dexmedetomidine against ischaemia/
reperfusion is not clearly identified. However, dexmedetomidine might
cause renal protection by inhibiting inflammatory reaction [41]. Si-
milar studies have demonstrated that dexmedetomidine could minimize

Fig. 2. The effects of dexmedetomidine infusion on heart rate during the study period.
HR1, base line; HR2, start of ischemia; HR3, End of ischemia and start of reperfusion;
HR4, 30min after reperfusion; HR5, 60min after reperfusion. In I/R group, there was an
initial significant increase in HR in comparison to sham and control groups at HR2
(326.1 ± 7.0) followed by highly significant decrease at end of ischemia (HR3)
(202.5 ± 7.3) (P < 0.01), then showed a significant increase again during reperfusion
(HR4 and HR5) (P < 0.05). DEX before group showed significant reduction in HR at HR2
(214.6 ± 7.3) (P < 0.01) then decreased the HR again at HR3 (176.3 ± 6.3). Finally,
DEX when given 5 min after reperfusion (HR4), it showed significant reduction in HR
(184.0 ± 6.9) (P < 0.01), when compared to others.
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the effects of I/R injury in several organs, which was thought to be due
to its anti-oxidant and anti-inflammatory properties [42,11]. İnci et al.
[43] concluded that dexmedetomidine infusion can prevent the in-
crease in ROS during mesenteric I/R injury in rats.

DEX was proved to increase the expression of the tight junction
protein; zonula occludens-1(ZO-1) and occludin which confer renal
protection [31]. Tight junctions are considered the key structures for
good functioning of the epithelial cells, the process of renal develop-
ment and nephron formation [44]. Ischemia-reperfusion injury is the
main reason for acute kidney injury, altering the assembly of tight
junction, initiating apoptosis and disturbing renal tubular cell. Simi-
larly, Engelhard et al., [45] proved that DEX had anti apoptotic effect
after partial cerebral ischaemia reperfusion in rats.

Khajuria et al. [46] explained the reno-protection of dexmedeto-
midine through α 2 receptor with subsequent initiation of phosphoi-
nositide- 3 kinase (PI3K) that activated antiapoptotic proteins such as
B-cell lymphoma 2 (BCL-2) and BCL-xl and therefore decreased renal
cell death and high-mobility group protein B-1 (HMGB-1) release and
inhibition of toll-like receptor 4 (TLR4) signaling. Moreover, it sup-
pressed Janus kinase/signal transducer and activator of transcription
(JAK/STAT) signaling pathway which is involved in signal transduction
for a number of cytokines. A Similar experimental study on rats noticed
that dexmedetomidine reduced apoptosis through suppression of in-
jury-mediated activation of JAK/STAT signaling pathway [40].

Another postulated renoprotective mechanism is that dexmedeto-
midine as an α2 receptor agonist could sustain or preserve renal me-
dulla blood flow [47]. Also, it activates the adrenergic receptors on
presynaptic membrane of central and peripheral sympathetic nerve,
hence reducing the stress induced by surgery and plasma levels of ca-
techolamines and inhibit ischaemia-induced release of noradrenaline
[52]. Thus, it reduced release of presynaptic noradrenaline so mini-
mized the complications of norepinephrine-induced vasoconstriction
[48].

Regarding the effect of DEX on HR in our study, it was clear that
DEX showed statistically significant reduction in HR at HR2 in DEX
before group and again when given 5min after reperfusion (HR4) in
DEX after group. This is due to the fact that DEX inhibited sympathetic
activity, thus induced decrease in heart rate [32]. Halaszynski et al.
[49] found that DEX preserved hemodynamic and redistributed cardiac
output in the conditions of reduced blood volume, thus maintained the
perfusion to vital organs especially renal blood flow.

Taken together, our biochemical, histopathological and hemody-
namic results help to hypothesize an anti-oxidant and anti-in-
flammatory caring properties for dexmedetomidine against renal da-
mage during myocardial I/R injury in rats

5. Conclusion

Our study showed that perioperative use of dexmedetomidine re-
duced renal injury induced by myocardial ischemia reperfusion in rats.
Dexmedetomine improved kidney function, attenuated proin-
flammatory cytokines (TNF-α and IL-1β), exerted anti-oxidant effects
and prevented remarkable morphological alterations in kidney tissue.
Taken together, our data indicate that dexmedetomidine may be helpful
in reducing renal injury, as an example of a distant organ damage fol-
lowing myocardial I/R injury. This is most probably attributed to its
antioxidant and anti-inflammatory effects. However, A limitation of this
study is that we did not measure the blood pressure as another hae-
modynamic parameter in addition to the HR. Different doses of dex-
medetomine could be used to study the dose- effect relationship in the
future.
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