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A B S T R A C T

Background: To study the efficacy of systemic lidocaine in suppressing toll-like receptor 4 (TLR4) protein level in
BALB/c mouse with sterile injury.
Material and methods: Twenty healthy adult male BALB/c mice were divided into lidocaine and control groups.
The sterile injury was performed by breaking the left thigh bone of the mouse without laceration. Four hours
after sterile injury the lidocaine group was treated with 2mg/kg of lidocaine through tail vein injection. The
same volume of distilled water was injected into control group instead of lidocaine. Blood was drawn from tail
vein before injury, 4 h after sterile injury and 2 h after systemic lidocaine and distilled water administration.
TLR4 protein level was examined by enzyme-linked immunosorbent assay (ELISA).
Results: The TLR4 protein level in mice that sustained hyper inflammation due to sterile injury was significantly
decreased in the lidocaine group. (p < 0.00).
Conclusion: Systemic therapy of lidocaine effectively inhibits TLR4 protein in BALB/c mice that sustained hy-
perinflammation due to sterile injury.

1. Introduction

Toll-like receptors (TLRs) are identifying receptor initiating innate
immune response against substances produced by pathogenic microbes,
pathogen-associated molecular patterns (PAMPs) and endogenous mo-
lecules released by damaged cells, damage-associate molecular patterns
(DAMPs) [1–6]. TLR4 is important to regulate immune system against
inflammation caused by infection and trauma [7–11]. Previous studies
have shown that when suppressed, TLR4 signaling pathway will pro-
vide global protection against sepsis-induced organ dysfunction
[12–15]. In addition analgesic and anti-arrhythmia properties, lido-
caine also is known to have anti-inflammatory properties and able to
modulate inflammatory cascade while possessing protective effect
against ischemic injuries on liver, lungs and heart on septic mouse
model [16–18]. The anti-inflammatory effect of local anesthesia acts on
various cells including monocytes, macrophages and neutrophils.

Although lidocaine is important for immune system and inflammation,
the mechanisms involved in its action are less understood [19–21]. The
aim of this study is to determine whether the injection lidocaine can
suppress hyperinflammation response in BALB/c mouse with sterile
injury via downregulation of the TLR4 signaling pathway (see Fig. 1).

2. Material and methods

This was a prospective laboratory experimental animal study using
20 healthy adult male BALB/c mice, age 10–12weeks. Healthy BALB/c
mice have glowing eyes no fainted fur, active and have a good appetite.
Mice who died during the study were excluded. Mice were obtained
from the maintenance and development unit of the experimental an-
imal laboratory of Molecular Microbiology and Immunology Faculty of
Medicine, Hasanuddin University, Makassar, Indonesia. The experi-
ments were carried out according to procedures and principles of the
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Purpose of Control and Supervision of Experiments on Animal
(CPCSEA). The number of research samples was determined by the
ethical utilization of experimental animals in the healthcare sector
using the principle of replacement, reduction and refinement. The re-
search was conducted after obtaining the recommendation of ethical
clearance from Medical Research Ethics Committee Faculty of
Medicine, Hasanuddin University (Makassar, Indonesia) with registra-
tion number UH16050436 dated 28 October 2016. The study was
conducted at the Laboratory of Molecular Microbiology and
Immunology Faculty of Medicine, Hasanuddin University at the end of
November 2016 until early December 2016.

Twenty healthy adult male BALB/c mice were divided into the
following two groups: lidocaine and control group. Each group con-
sisted of ten BALB/c mice. A blood sample (0.3 ml) was taken from the
tail vein of each mouse for examination of initial TLR4 protein level.
The mice were then anesthetized with 50mg/kg of ketamine, in-
traperitoneally. A model of sterile injury was established by breaking
the left thigh bone using two needle holders without laceration. Four
hours after the mice underwent sterile injury, 0.3 ml of blood was taken
from the tail vein (second blood test). The lidocaine group was then
treated with 2mg/kg of lidocaine (2% lidocaine, PT Kimia Farma,
Jakarta, Indonesia) through tail vein injection once every 2 h con-
tinuously for 24 h. The control group was treated with the same volume
of distilled water instead of lidocaine. Two hours after completion of
the lidocaine and distilled water administrations, 0.3ml of blood was
drawn from the tail vein of both the lidocaine and control groups (third
blood test). All blood samples were collect using centrifugation at
5000 rpm for 5min and were kept in −80 °C before used.

The level of TLR4 in the serum was determined with ELISA kits (Life
Span Bioscience, Inc. Seattle, North America) according to the manuals
from the manufacturer.

The data were analyzed using SPSS software version 20. The nor-
mally distributed data were tested with Kolmogorov-Smirnov test. The
data was then presented as mean ± SD and tested with t-test. A value
of p < 0.05 was considered significant.

3. Results

The mean weights of BALB/c mice in the lidocaine and control
groups were 39.30 g and 39.34 g, respectively. There was no significant
difference between the two experimental groups (p > 0.05).

The initial level of TLR4 protein in the lidocaine group was

0.30 ± 0.13 (ng/ml). Four hours after sterile injury, the protein level
increased to 1.83 ± 0.24 (ng/ml), and 2 h after systemic lidocaine
treatment, the level decreased to 0.56 ± 0.17 (ng/ml), p < 0.05. The
initial level of TLR4 protein in the control group 0.31 ± 0.18 (ng/ml).
Four hours after the sterile injury, the level increased to 1.67 ± 0.26
(ng/ml), and 2 h after systemic distilled water administration, the level
increased to 2.65 ± 0.26 (ng/ml), p < 0.05.

4. Discussion

Toll-like receptors are a large family of type I transmembrane pro-
tein, function as pattern recognition receptors of the innate immune
system [2–4]. TLRs are able to recognize microbes product or pathogen
associated molecular patterns (PAMPs) and endogenous ligand related
to inflammation or damage associated molecular patterns (DAMPs)
[3–5]. TLR4 are extracellular TLRS that first found on mammals, pre-
sented mainly by polymorphonuclear leucocytes, monocytes, macro-
phages, dendritic cells, and any other cells including epithelial and
endothelial cells [3,6,7]. TLR4 is important for regulation of im-
munologic and inflammatory response as it utilized Toll/IL-1 receptor
(TIR) domain-containing adapter protein (TIRAP) and MyD88 adapter-
like (Mal) to “bridge” myeloid differentiation primary response gene 88
(MyD88) to the receptors and thus activate nuclear factor kappa B (NF-
κB). TLR4 transduction signaling used mainly MyD88-dependent
pathway, utilizing TIRAP to bridge TLR4 and MyD88 [1,3].

Our research showed that TLR4 protein level were present in normal
BALB/c mouse blood. Four hours after sterile injury, the TLR4 protein
level increased 6.1 fold in lidocaine group and 5.39 fold in control
group. The increased TLR4 protein level showed that sterile injury in-
flicted substantial sterile hyperinflammation in BALB/c mice. After
treatment with 2mg/kg of lidocaine through the tail vein, once every
2 h continuously for 24 h the level of TLR4 protein decreased from
1.83 ± 0.24 to 0.56 ± 0.15 (p < 0.00). Our results showed that in-
travenous administration of 2mg/kg of lidocaine, effectively sup-
pressed of TLR4 protein level in BALB/c mouse with a sterile injury
[19,20]. In contrast, the level of TLR4 protein in control group con-
tinued to rise from before the injury to after distilled water adminis-
tration. The increased levels of TLR4 protein in control group were
statistically significant (p < 0.05), revealing that systemic distilled
water treatment does not effectively suppress sterile inflammation
[20–22].

Previous study showed that systemic lidocaine therapy possessed

Fig. 1. TLR4 protein level of the lidocaine and control groups (n= 10 per group). Data was presented in form of mean and standard deviation. The p-value was tested
with t-test and p < 0.05 was considered as significant.
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anti-inflammatory effect on various diseases or septic model and organ
failure on experimental animals via downregulation of TLR4 [3,22,25].
Research conducted by Liu et al. [3], showed that systemic lidocaine
therapy can inhibit production of inflammatory mediators including
interleukin-6 (IL-6), interleukin-1β (IL-1β), γ interferon, tumor necrosis
factor α (TNF α) induced by LPS and down regulation of TLR4 dan NF-
κβ [3,25–27]. Activation of NF- κβ is inhibited by systemic lidocaine
administration and possess protective effect during sepsis [3].

The finding of this study showed that injection of 2mg/kg lidocaine,
once every 2 h continuously for 24 h effectively suppressed TLR4 pro-
tein in sterile hyperinflammation model when compared with the
control group. The results of this study were consistent with the results
of previous research that systemic lidocaine therapy has anti-in-
flammatory properties by suppressing hyperinflammation caused by
pathogenic infection and sterile injury [20,27].

5. Conclusion

Systemic therapy of 2mg/kg of lidocaine, once every 2 h con-
tinuously for 24 h, effectively suppressed hyperinflammation on BALB/
c mouse that underwent sterile injury via downregulation of TLR4
protein level.
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