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On Zero-Truncated Poisson- Muth Distribution
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Abstract

This paper presents a novel distribution, referred to as the Zero-
Truncated Poisson Muth (ZTPM) Distribution. an important
statistical model for analyzing data that excludes zero values. This
study examines the statistical properties of the Zero-Truncated
Poisson Muth (ZTPM) distribution, covering its probability density
function (PDF), cumulative distribution function (CDF), survival
function, and hazard rate. Parameter estimation is performed using
the Maximum Likelihood Estimation (MLE) method, applied across
different parameter values and sample sizes. The study also derives
moments, order statistics, and examines skewness and kurtosis of the
distribution. Through practical examples, the ZTPM distribution
demonstrates its flexibility in handling non-zero data, proving highly
effective for parameter estimation and data analysis in fields such as

reliability and survival analysis.

Keywords:

Zero-Truncated Poisson Muth- Maximum Likelihood Method-
Skewness-Kurtosis- Mean Residual Life- Order Statistics.
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1. Introduction:

Muth presented a probability distribution characterized by
continuity, specifically applied in the realm of reliability
theory by Jodra Esteban, Jiménez Gamero, & Alba
Fernandez, [1]. If a random variable x possesses a Muth

Distribution with parameter a.

1 at
Fi(t, ) =1— e &1 0 <x< 1 1)
The associated probability density function (pdf) is as
follows
1 o
Fi(t, %) = (e®—c)e® =D ¢ > 0 2)

Abouelmagd, Hamed, Handique, et al.,[2], A new family of
distributions is studied, defined by the minimum of a Poisson-
distributed number of independent and identically
distributed random variables following the Topp Leone-G
distribution. Several mathematical properties of this new
family are derived, and the estimation of model parameters

using Maximum Likelihood Estimation (MLE) is explored.

Additionally, two special cases within this family of distributions
are discussed. a new class of lifetime distributions will be
constructed using the ascendant order statistics. Orabi,
Ahmed, & Ziedan,[3]. A new probability distribution, the
Weibull-Generalized Truncated Poisson (WGTP)
distribution, is introduced. The properties of the WGTP
distribution are examined, and parameter estimation is

carried out using both the Maximum Likelihood (ML)
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method and the Expectation-Maximization (EM) algorithm.
A comparison of this new distribution with other lifetime
distributions is conducted using a real dataset provided by

Abouelmagd, Hamed, Hamedani, et al., [4].

The aim of this study is to introduce a new family of continuous
distributions with significant physical applications. Several
statistical properties are derived, along with useful
characterizations of the proposed distribution family. Five
practical applications are provided to demonstrate its
relevance. A modified goodness-of-fit test for the new family,
in the case of complete data, is explored through two
examples. As an initial step, the construction of the Nikulin-
Rao-Robson statistic, based on chi-squared goodness-of-fit
tests, is proposed for this family in complete data scenarios.
The new test is based on the Nikulin-RaoRobson statistic
separately proposed by NIKULIN & VOINOV; [5] As a
second step, an application to real data has been proposed to

show the applicability of the proposed test.

Badr, Hassan, El Din, & Ali, [6] introduces and discusses a new
three-parameter lifespan distribution called Zero Truncated
Poisson Pareto distribution ZTPP , building on compounding
Pareto distribution as a continuous distribution and Zero-

Truncated Poisson distribution as a discrete distribution.
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2. The Zero Truncated Poisson Muth distribution:

A new distribution, known as the Zero-Truncated Poisson Muth

(ZTPM) Distribution, is introduced. This distribution is
formed by combining the continuous Muth Distribution,
which has two parameters, with the discrete Zero-Truncated
Poisson Distribution. The integration of these two

distributions results in the Zero-Truncated Poisson Muth

(ZTPM) Distribution.
The probability mass function for (ZTPM) is:

1 _ e_AFl (t,00)

F(u 1) = T (3)
And, probability density function for (ZTPM) is:
Fln 1) = e AFll(t,_M)e_ {;(t, x) @)
The probability mass function (cdf) for (ZTPM) is:
1 — e~Al1-€%1]
Flx,od) = ——— (5)
And, probability density function (pdf) for (ZTPM) is:
A[e™ — a. el-2[1-€%1]+54}
flxo ) = 7 (6)
: Slzax—i[e“"—l] (7)
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Graph (1): the ZTPM probability density function (PDF) for

various parameter values.
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Graph (2): the ZTPM cumulative distribution function (CDF)

for various parameter values.
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3. Some statistical properties:

The survival function and hazard rate function for the ZTPM
distribution are defined for a random variable x, with the
probability density function f(x), cumulative distribution

function F(x), and survival function S(x), respectively, given

by:

e [3[1—e51] _ 1]

S(x) = (8)

1—e 4

Hazard Rate Functions:

Al — a]. el-A1-¢11+s1)

h(x) = “A[[1-e51] 9)
e |e —1]
hazard of Poi-Muth
i —_— o 1.5 A 1.8
a=12 L=1.5
=12 L=05
=09 AL=023
a
s
L=
.-v*"ff R
o e I
L=
T T T T
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Graph(3): the ZTPM hazard function (HF) for various parameter
values.

3.1. Quantile function:
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The quantile function of the KMD distribution can be derived

by inverting equation (5) as follows:

1 — e~A1-€%1]
1-e4

a1 -] = [t - e

e 1= = 1 — g[1 - 4]

q:

—A[1—e51] =In[1 - q(1—e™*)]

_ —In[1—-q(1—e™*)]

[1— e51] 7
5114 In|1- qgl —e)]
1 =In {1 L ‘121 - e_l)]}
(1 — o2
a’x — (%) [e** —1] = In {1 + n[1 qgl © )]} (10)
a1 — -2
a’x — [e®™* —1] = aln {1 + n[1 qgl ¢ )]} (11)

a’x—[e*™*—-1]=C

By using the LEMMA;[7].

-t an

(13)
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Foranya €[0,1],q € [0,1] and x> 0
which the Lambert function W~1 in equation (13) is given by

[8].[9].

The quantile function Q(u; 4, a)is:

Qw4 a)
) /aln{l N In[1- qgl - e—A)]} B 1\

=_EW|\ - ) (11)

The median M(u) of the KM distribution can be determined

by setting g = 0.5 , as shown below:
M(u)

A

(44

in {1 N In[1-0.5(1- e"l)]} 4

= —aW (12)

Using Wolfram Alpha (https://www.wolframalpha.com/), we
can calculate the median. Similarly, by setting q = 0.25 and

q = 0.75 we can obtain the quartiles.

3.2. Skewness and kurtosis:
The quantile function is essential in estimation and simulation,
particularly for heavy-tailed distributions. In such cases,
skewness and kurtosis measures based on quantiles are more

reliable than those based on moments, as higher moments
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may not exist; Kenney & Keeping, [10]and [11] are defined

as follows:
-2 +
Bsk = 9o.75 qos T qo2s
9o.75 — qo.25
— — +
Mkur = qo875 — 90625 — 90375 T qo0.125

9o0.75 — qo.25

The above measures are less sensitive to outliers.

Table:(1) below presents the values of Bowley skewness and Moor

kurtosis for different values of A and a.

table: (1)
Q.00 parm parm parm parm parm parm parm
1 2 3 4 5 6 7

Q.25 1.765 1.882 1945 1987 2015 2.034 2.046
Q.5 2030 2145 2231 2267 2304 2328 2340

Q.75 2.289 2391 2454 2499 2528 2545 2.554
Q.12 1.921 2.011 2.064 2105 2131 2.149 2.160
Q.375 2.105 2201 2.263 2311 2342 2361 2.372
Q.625 2.209 2304 2366 2.413 2444 2463 2474
Q.875 2459 2549 2606 2.649 2675 2.692 2.702
Bskewness -0.490 -0.622 -0.710 -0.744 -0.812 -0.839 -0.856
1980 3.224 4785 7.125 10.438 15.294 22.637

MKkurtosis

parm (i) = (Aand a),i = 1,2,...,7for A=1.5anda =2 .
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3.3. Ordinary Moments:

The r th ordinary moments It was formulated by Mariano,[12] ,The
r th ordinary moments of the Zero-Truncated Poisson- Muth

Distribution is given by:

u,.=EX") = fooxr f(x, <, A)dx

Table: (2) below presents the values of the first four moments: mean

(w), m2, m3, m4, the variance (u,), the coefficient of variation (CV),

the skewness (sk), and the kurtosis (kur) of distribution
for Aand a .
table:(2)
Moments o=0.5, a=051=07a=091=0.2 a=07,1=
A=1.5 0.4

U 0.523934 0.426718 0.480866 0.392354
1Ly 0.708002 0.529801 0.429769 0.364174
L 1.108628 0.745829 0.440081 0.382698
1y 1.92596 1.148053 0.494527 0.437419
Sk 1.256652 1.381879 0.926608 1.168615
Kur 0.993067 1.087622 0.480208 0.77642
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3.4. Order Statistics:

Let x4, x5, ..., X, be random sample having order statistics The pdf of
x,0f order statistics is given by:

n!

(n—L)!'(r—L)!
we get the pdf for Zero-Truncated Poisson- Muth Distribution of the

fin(x) = [FGO1F )] [1 — F(x)]»

L, order Statistics as follow:-

frn(x)
_ n! A[e™ — a. e{—l[l—esl]+51}] [1 — 8—1[1_651]]L—1 [1
(n—L)! (r—L)! 1-e? 1-—e*
1 — e—Al1-¢€%1] n-L
11— ]
when L=1 and when L=n the pdf of order statistic
A[e™ — a]. el-21-eS+s)][ 1 e-H1-es1]1" 7!
fin(x) =n 1o 1- {— o1
A[e™ — . el-A1-e1+s)][ 1 e-M1-es1]]" !
fan(®) = 1 — 1-———

3.5. Mean Residual life (MRL):
The mean residual life (MRL), also known as life expectancy at age t
represents the expected additional lifespan for an individual who
has already reached age t The concept of mean residual life has
been explored by Siddiqui & Caglar, [13] .
The MRL has many important applications in fuzzy set engineering ,

modeling ,insurance assessment of human life expectancy,
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demography, and economic etc .The MRL is the conditional
expectation E(x — t|x > t) where t > 0. The MRL function cab
be simply represented with the survival function S(x). For a

random lifetime X, the MRL is:

= 1 ooS d S 0
MRL_@L (x)dx (x) >

when $(0) = 1 and = 0 , the MRL equal the average lifetime. when
the MRL is represented with S(x). We refer to the theoretical
mean residual life (TMRL) as the MRL derived from a ZTPM
distribution. when we calculate the MRL from a random sample
X1,X3,...,X, Ofsize n. the resultis known as the empirical mean
residual life (EMRL). This can be computed using the following

expression:

1 n-1
EMRL = Z X —X
(n _ k) k=1( k+1 k)

where x, is the k" orders statistic of the sample . Table(3) given

below present the MRL of ZTPM.

table:(3)
time MRL
5 1.301069
10 1.152569
0=0.2, A=1.5 15 1.103045
20 1
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4. The Renyi Entropy:

Entropy is a thermodynamic quantity used as a measure of

uncertainty variation of systems studied by Rényi,[14] .

If x is a random variable has the Zero-Truncated Poisson Muth

Distribution then the Renyi entropy of x is defined as:

R(p) = ! In Oofp(x)dx
1-p 0

Where f(x) is given by (6).The value of R(p)can be evaluated using

the integrate function of the R software.

The values of R(p) for different values of the parameters 4 and « are

presented in Table (4) given below:
Table (4)

Theoretical MRL

o, A v =0.5 v=0.7
1.5,1.2 0.952809 1.528623
1.2,15 1.036202 1.232592
09,12 1.227322 1.397229
1.7,0.7 1.356533 4.044979
0.5,0.7 1.53646 1.73585
1.5,05 1.635067 5.544234
0.9,0.2 2.545582 10.05108
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5. The Maximum Likelihood Estimation:

The maximum likelihood function is a commonly used method for
estimating the parameters of various distributions. It was
formulated by Mood,[15] .

We will use it in this study and study its results. The Maximum
Likelihood method is a traditional and widely used approach
for estimating the parameters of the ZTPM model. It
simplifies the estimation process by taking the logarithm of
the likelihood function, making it easier to apply both
analytically and numerically, especially for large sample

sizes. The likelihood function is expressed as follows:

e@) = [ |_o@io)

Inl(0) = g + z In {)l[e“x - al. el-2[1-€%1]+s4} [1 _ e—/l]‘l}

i=1

—Ra+1) z": ln{(l — e‘l[l‘esl])(l — e"l)_l}
i-1

+ z In {1 —a [(1 — e M1-¢"1]) (1 — e"l)_l]a}

i=1

e oo

i=1
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The elements of the score function: -

dlnl(0)
Ja

-2 Z In [(1 — e—l[l—e51])(1 _ e_’l)_l]
i [(1- eAl1- esl])(l —,1)“] [1+In(1- e_l[l_esl])(l e )]

i—1 1- a[(l — 8—1[1—e51])(1 _ e—l)—l]“

1
a?

4

)

+ [(1 — e #1-¢1])(1 - e‘l)_l]_a 1+ a)in[(1 - e 1) (1
=

aInl(6) _ oftx) PR /L) Lo oF(x)
a2 f( ) - (ax )Z Fx) ¢ 1—aF(x)e

: L OF(x)

+ 2 [F(x) 1—61

we use R software to obtain the optimal estimates for the parameters

A and a which maximize the likelihood function.

1. Parameters of simulation :
Number of replications = 5000
Sample sizes are: n = 10, 20.
Maximum Likelihood Method

Parameters of the Zero-Truncated Poisson Muth distribution are

I N N L

Computed measure: Average (Avg.) and root mean square error
(RMSE)
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Table (5): Average and RMSE for different estimation methods of
ZTPM distribution at different sample sizes.

sample size parameter
10 a=0.1
2=0.1
10 a=0.2
2=0.2
10 a=0.3
A=0.3
10 0=0.4
2=0.4
10 a=0.5
A=0.5
10 a=0.2
2=0.2
10 a=0.3
2=0.3
10 0=0.5
A=1.5
20 a=0.1
A=0.1
20 0=0.2
2=0.2
20 a=0.3

2=0.3

442

AVG
0.2751384
2
0.259705
2
0.2504074
2
0.2551199
1.99
0.2545282
1.98
0.2561508
2
0.257866
1.999
0.2585935
2
0.2558036
2
0.2546193
2
0.2528781
2

RMSE
0.2118674
1.9
0.1531813
1.8
0.1499231
1.7
0.2019407
1.599247
0.2831923
1.495168
0.2814336
1.8
0.1528999
1.699835
0.1483501
1.9
0.2111585
1.9
0.1534458
1.8
0.1494979
1.7
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5.2. Analysis of parameter estimates using the

maximum likelihood method:

e Different sample sizes:

The estimates were made at different sample sizes (10, 20), reflecting
how sample size affects parameter estimates. Larger sample sizes
typically increase the accuracy of the estimates, resulting in lower
RMSE values.

e Parameter estimates:

The parameter estimation results (means A and « show good
convergence to the true values used to generate the data.
This demonstrates the ability of the maximum likelihood

method to estimate the parameters accurately.

e RMSE value:
RMSE values reflect the level of accuracy of the estimates. The
lower the RMSE value, the higher the accuracy. The RMSE
is expected to decrease with increasing sample size, which

can be seen in the results.
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e Variation in estimates:

The table shows the variability in estimates across different

parameter values. This suggests that the distribution model

reacts differently to changes in the parameters, emphasizing

the importance of choosing different parameter values in

practical applications.

e Final results:

It can be concluded that the resulting estimates were consistent

with the true values, providing confidence in the use of the

Zero-Truncated Poisson Muth model in future research.

Further analysis of larger data sets or application of

different estimation methods may be useful to confirm these

results.

6. Conclusion:

In conclusion, this study introduced the Zero-Truncated
Poisson Muth (ZTPM) Distribution, a novel statistical

model tailored for data that exclude zero values.

The research thoroughly examined the key statistical properties

of this distribution, including its probability density

function, cumulative distribution function, survival

function, hazard rate, and moments.

The Maximum Likelihood Estimation (MLE) method was

successfully employed to estimate the parameters across
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various sample sizes, demonstrating its robustness and
reliability.

The ZTPM distribution has proven to be a flexible and efficient
model for analyzing non-zero data, especially in fields such
as reliability, survival analysis, and other applications
where zero values are not permitted. Additionally, the study
has highlighted the distribution’s ability to model skewness
and kurtosis, making it a versatile tool for statistical
analysis.

Future research could further expand on this work by applying
the ZTPM distribution to more complex real-world
datasets, investigating alternative parameter estimation
methods, and exploring its potential in broader
applications.

Overall, the ZTPM distribution is a valuable contribution to
statistical modeling, offering a powerful framework for

analyzing non-zero datasets.
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