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Abstract 
 

Background: Emerging infectious diseases (EIDs) pose significant challenges to public health 

systems globally. They are diseases that are caused by an infectious pathogen that has evolved in the 

population in the past two decades, changed pathogenesis, or increased in incidence, geographic, 

impact, host, or vector range. Most EIDs are of animal origin. Climate change and increased 

international travel and trade facilitate the rapid spread of infectious agents across borders causing 

epidemics. Control and prevention strategies of EIDs are complicated and stressful as they require a 

One Health approach which involves collaboration between human, animal, environmental, and other 

disciplines.   Modelling and prediction of EIDs outbreaks had gained attention due to the advance in 

big data and machine learning. Modelling is classified into broad categories; compartmental models 

which divide the population into compartments based on the disease status, agent-based models that 

simulate the behavior of individual agents, network models which represent interactions between 

individuals as a network (nodes and edges), and spatial models which incorporate geographic 

information to study how diseases spread across physical space.  

Conclusion: Each modelling technique has strengths and limitations, and the choice of model 

depends on the specific policymaker questions, available data, and computational resources. 

Integrated approaches combining multiple techniques provide more comprehensive insights into 

infectious disease dynamics. 
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Emerging infectious diseases (EIDs) 

Emerging infectious diseases (EIDs) are those diseases 

caused by an infectious pathogen that has newly 

evolved in the population in the past two decades or 

has existed but changed pathogenesis or increased in 

incidence, geographic, impact, host or vector range. (1) 
A minor group of EIDs was considered major 

public and global concerns as they caused epidemics 

or pandemics. For a novel pathogen to become a 

threat, a contact between animal reservoir and human 

should occur (zoonotic spillover), then pathogen 

should be able to transmit from human-to-human.   
The World Health Organization (WHO) reports 

that about 70-80% of EIDs are zoonoses.  Vector-

borne diseases account f0r 22.8% of EIDs, causing 

more than 700 000 deaths annually.  For every decade 

since 1940, there has been a consistent increase in the 

number of EIDs from wildlife-related zoonosis. The 
main land hotspots of EIDs were between 30 and 60 

degrees north and between 30 and 40 degrees south, 

mainly in northeastern United States, western Europe, 

Japan and southeastern Australia. (2) 
 

Classification of emerging infectious diseases 

Emerging infections are classified by time and how  

 

humans were involved in the emergence:  

Newly emerging infectious diseases – diseases that 

were not previously described in humans, Re-

emerging infectious diseases –those that come back 

after a major decline due to problems in public health 
control measures. Deliberately emerging infectious 

diseases – diseases created by humans for 

bioterrorism. Accidentally emerging infectious 

diseases – diseases created or spread unintentionally 

by humans, such as vaccine-derived poliovirus. (3) 

In 2024, Centres for Disease Prevention and 
Control (CDC) reported the first human infection in 

the United States with an influenza (flu) virus that 

normally spreads in pigs. The infection with an 

influenza A (H1N2) variant occurred in a child living 

near a pig farm in Pennsylvania who had direct contact 

with pigs prior to illness onset. (4) 
On 11 June 2024, WHO reported the second 

detection of Avian influenza (H9N2) in India. Most 

reported cases of H9N2 have been in China (122 

cases). A human case of West Nile virus infection 

from countries of the European Economic Area was 

recorded, measles was reported in 22 countries, and 

166  cholera  cases  and two deaths have been reported  
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in France. (4) 

Monkeypox is a viral disease, It is categorized 
into two main genetic clades, Clade I and Clade II. 

Monkeypox is primarily found in Central and West 

Africa. On 14 August 2024, countries with 

documented increased number of cases included the 

Democratic Republic of Congo (DRC), Nigeria, 

Cameroon, and Central African Republic. Notable 
outbreaks occurred in the United States, the United 

Kingdom, and Denmark. (5) 

Drivers of emerging infectious diseases events 

➢ Climate change There is increased susceptibility 

to respiratory viral infections due to air pollution. 

Climatic changes may affect the pathogen’s 
reservoir as the region with the optimal 

conditions expands. In vector-transmitted 

diseases: change in temperature and water 

availability affect transmission-related life cycle 

traits of the mosquito (biting rate, adult lifespan, 

population size and distribution) and the 
pathogen (extrinsic incubation rate). 

➢ Increasing density of the human population and 

expanding into new geographic areas. As a 

result, more people live in close contact with 

wild and domestic animals, both livestock and 

pets.  
➢ Changes in human demographics and behavior 

(sexual, cultural, and war). Demographic 

changes via urbanization may also affect 

dynamics. Influenza, for example, tends to 

exhibit more persistent outbreaks in more 

populous, denser urban regions. A similar pattern 
was reported in the early COVID-19 pandemic.(2) 

 

Notable global outbreaks  

COVID-19 pandemic 

For over 3 years, the SARS-CoV-2 SARS-CoV-2 had 

7,053,524 confirmed COVID-19 induced deaths 
worldwide.. A total of 144 waves of SARS-CoV-2 

infections were identified in 30 countries. (3)  

Zika outbreak (2015-2016):  Zika virus is a 

mosquito-borne virus first identified in Uganda in 

monkey. It was the first time in more than 50 years 

that an infectious pathogen has been identified as the 
cause of birth defects. Zika was also linked to other 

problems, such as miscarriage, stillbirth, and Guillain-

Barré syndrome. (6) 

Yellow fever: Epidemic prone zoonotic disease 

caused by an arbovirus. Domestic, jungle, and semi-

domestic transmission occurs by bite of aedes aegypti 
mosquitoes. (7) 

Ebola outbreak (2013-2016): Ebola is introduced 

into human populations through close contact with the 

blood and other bodily fluids of infected animals as 

bats, chimpanzees, gorillas, monkeys. (8) 

 

Regional situation of emerging infectious diseases 

Increased conflict and political instability in WHO 
Eastern Mediterranean Region (EMR) led to an 

unusually high number of refugees living in 

overcrowded.  Egypt is one of the most populated 

countries in EMR region. (9) 

In last two decades, EIDs have been reported 

from 18 out of 22 countries in the region. Outbreaks of 
EIDs in the EMR include CCHF in Afghanistan, 

chikungunya in Pakistan and Sudan, cholera in 

Somalia, and Yemen, diphtheria in Pakistan and 

Yemen, influenza H5N1, and dengue fever in Egypt, 

leishmaniasis in Pakistan, Syria and Afghanistan, 

measles in Pakistan and Afghanistan, MERS in 
Arabian Peninsula, plague in Afghanistan, polio in 

Afghanistan and Pakistan, and Q fever in Afghanistan 

and Iraq. (9)  

One Health Approach to Control EIDs 

A One Health approach is the appropriate control and 

prevention strategy of EIDs which mobilizes human, 
animal, environmental sectors, disciplines and 

communities and other relevant disciplines to control 

public health threats and to monitor how diseases 

spread among human, animals, plants, and the 

environment. (10)  

EIDs tend to be widespread and difficult to 
control, making them uniquely uncertain and 

unpredictable. Predicting which zoonotic diseases may 

arise in the future from which geographical areas or 

animal reservoirs is extremely difficult due to the 

multifactorial and constantly evolving nature of the 

risk factors involved. On the contrary, vector-
transmitted infections and their associated risk factors 

can often be monitored as they are strongly influenced 

by environmental factors. (10) 

Modelling of emerging infectious diseases 

History of Modelling: 

Since 1760, the first disease model of smallpox was 
developed, numerous mathematical models have been 

utilized to study disease transmission dynamics, and to 

predict, assess, and control infectious diseases.  

Modern epidemiological analysis and modelling 

theory began in the late nineteenth and early twentieth 

centuries. By plotting cholera epidemic cases on a 
map. It was hypothesized that contaminated water was 

the predominant contributor to the cholera 

transmission in London in 1849. Then a discrete-time 

epidemic model for cholera transmission in 1906 was 

developed. These early spatial and temporal epidemic 

research, combined with the progress of biological 
studies, led to some important discoveries regarding 

disease transmission. (11) 

Objective of modelling: 

For human pathogens, the objective may be simply to 

minimise  the  number  of  individuals  getting  sick  or  
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dying from infection, whilst for livestock or plant crop 

diseases, it may be important to minimise the direct 
cost of an outbreak to the agricultural industry. (11) 

A model that works in one country is not 

necessarily successful elsewhere, so policy makers 

should consider the specific circumstances that are 

important in their countries but may not be included in 

models. Modelers and policy makers need to 
determine in interaction which questions can and 

should be answered by modelling and what the 

limitations of models are. (11) 

Steps of infectious diseases modelling 

The Centers for Disease Control and Prevention 

(CDC) modelers generally initiate modelling in 
response to questions from decision makers. The 

modelers then work closely with the epidemiologists 

and other experts to answer the questions.  The United 

States Government Accountability Office (GAO) 

identified four steps of modelling practices(12) : 

Communication between modeler and decision maker, 
Model description, Verification, and Validation. 

What is a model? 

A model is a physical, mathematical, or logical 

representation of a system, phenomenon, or process 

that allows a researcher to investigate them in a 

controlled way. It is a simplified representation of 
reality expressed through mathematical or logical 

relationships. (13) 

The use of mathematics and computer methods to 

understand the population dynamics of the 

transmission of infectious agents and the potential 

impact of infectious disease control program. 
Exploring health outcomes, and the effectiveness of 

pharmaceutical and nonpharmaceutical interventions 

are the core components of a model. By its synthetic 

nature, modelling for public health allows the 

integration of and socioeconomic factors to obtain a 

broad societal viewpoint. (13)  
Models integrate diverse data like transmission 

rates, incubation periods, and public health 

intervention into an interpretable framework, to 

compare possible scenarios over time, to evaluate 

interventions, and to estimate the likelihood of 

different outcomes and their associated costs and 
benefits. (13) 

When modelling is considered not useful: 

Modelling may be undesirable when it would take too 

long to engage the necessary external subject matter 

experts or when modelling would detract from 

responding to a disease. (12) 
CDC did not use modelling when issuing a travel 

notice for an Ebola outbreak in specific provinces in 

the Democratic Republic of Congo. Instead, CDC 

based the travel order on an analysis that considered 

disease incidence and prevalence, public health 

infrastructure, and the availability of therapeutics. (12) 

Infectious disease modelling categories: ·  

• Statistical models. This type of model identifies 

relationships or patterns that can be used to 

describe what is occurring or predicts what may 
occur in the future based on what has occurred in 

the past. (46) 

Statistical models tend to use a large amount of data, 

such as past observed events, to forecast future events, 

such as disease occurrence, but do not require a 

fundamental understanding of biological processes or 
human behavior. They can predict outcomes when 

causes are not known or understood and when 

scientific understanding of a disease is limited. They 

tend to use large amounts of data on past events to 

forecast future events. (14) 

Statistical models (e.g., models based on 
regression or Bayesian analysis, or machine learning 

of data sets) These models test three broad classes: of 

hypotheses: Disease mapping, disease clustering, and 

ecological analysis. 
• Mechanistic models: They rely heavily on 

scientific evidence and theory related to infectious 

diseases, and the understanding of disease 

dynamics or human behavior from prior 

knowledge, such as biological processes or 

interactions between people, to represent known 
processes. (11) 

Mechanistic models (e.g compartmental (cohort), 

agent-based (individual) or combination models 

(combining elements from both types). 
• Gravity models interactions based on Newton’s 

Law of Gravity, which states that attraction 

between two objects is directly proportional to the 

product of their masses and inversely proportional 

to the square of the distance between them. The 

major criticism of the gravity model and its 
calibration are its lack of theoretical foundations 

related to human behavior and neglection of large, 

random contagious events, such as a super disease 

carrier traveling to the community. (11) 

• Network-based models: use graph or networks to 

represent connections between individuals or 

groups. These models analyse how the structure 

of network affects the transmission of disease. (11) 

 

Compartmental Epidemiological models:  

Compartmental models (deterministic or stochastic). It 

is commonly seen in their deterministic versions in 

which the population is subdivided into a number of 

mutually exclusive groups and contacts are assumed to 
be instantaneous and random. Humans flowing from 

one compartment to another as their exposures, 

diseases, or other conditions change. (15) 
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The three main elements of compartment models are 

compartments, transmissions (between compartments), 
and parameters. Compartmental models are more 

readily parameterised, but may lack the level of detail 

needed to answer policy related questions. (15) 

These categorize individuals into groups based on 

their infection status:  

The classic Susceptible-Infected-Recovered or 

“SIR” model divides a population into three 

categories: Susceptible to the disease (S), Infected and 

infectious (I), Recovered or removed from the infected 

or susceptible population (R). This model uses 

exploding numbers of equations to determine how 

many people move between these three categories. 
However, it largely ignores the effects of global 

dynamics of infection on local communities as they 

are well-connected and the assumption that the disease 

exists only within the community is invalid. (15) 

 

Weakness of the classical compartmental model:  

• Individuals in the same compartment are 

identical. For example, infected individuals 

transmit the disease to susceptible individuals at 

an average rate, and each individual has the same 
importance in the transmission chain.  

• Each individual is indifferent without subjective 

initiative. Individuals will not change their action 

strategies or formulate nonpharmacological 
interventions (NPIs, similarly hereinafter) 

according to the development of the epidemic. 
• The compartment is set according to the 

principle of the epidemic, not the actual 
observation data. For example, the infected 

person’s compartment is set, but only the 

confirmed data can be obtained in reality, and 

the error of approximate substitution is 

unignorable. (16) 

 
SEIR Model (Susceptible, Exposed, Infected, 

Recovered): Adds an "exposed" state for diseases 

with an incubation period. 

In compartmental mathematical models, disease 

transmission occurs by the stochastic infection of a 

susceptible by a neighbouring infective, and spread 
takes place when infected individuals mix among 

susceptible. Thus, at any given time, some individuals 

from the susceptible segment become infected, while 

some of those who are infected join the recovered 

segment. It is assumed that these changes are 

continuous and can be described by differential 
equations. 

A “SIR” model is a base compartmental model. 

Extended of SIR models are SIR with diffusion, 

contaminated environment, several strains of infection, 

and multiple routes of infection. (16) 

When SIR is incorporated with an exposed (or latent) 
compartment model is a SEIR model; and in the cases 

in which susceptibility returns after recovery, the 

model is called an SIS model. More complex 
mathematical models have been developed from these 

initial models by taking additional variables into 

account, such as births, deaths, and migration into and 

out of the population, or by monitoring the spread of 

multiple epidemics simultaneously. (16) 

Compartments as “immune” to the disease may be 
added in measles models for those babies with 

maternally derived immunity.  
 

Agent-Based Models (ABMs):  

These simulate individual behaviors and interactions 

within a population, providing a more detailed picture 

of disease transmission. Individual (or agent) based 

micro-simulation models, in which individual agents 

and their interactions are simulated as a stochastic 

process with probability distributions describing 
population heterogeneity and transitions. 
 

Spatial models: These consider geographic factors 

like population density and travel patterns to predict 

how EIDs might spread geographically. (11) 
 

Model parameters and data 

• Basic Reproduction Number (R₀): Represents the 

average number of secondary infections produced 
by one infected individual in a fully susceptible 

population 

If an infected individual averagely produces less than 

one new infected individual over the course of his/her 

infectious period, then R0< 1 and the infection cannot 

expand or grow. If each infected individual produces 
averagely more than one new infection, then R0> 1 

and the disease can spread in the population. If R0 is 

equal to one (R0=1), the disease remains stable or 

endemic in the community, but will not cause an 

epidemic. (17) Value of R0 is affected by transmission 

probability, contact rate and duration of 
infectiousness.  

Effective reproductive number (R) can 

characterize the progression of an epidemic in a 

realistic scenario. It does not depend on the 

assumption that the population is completely 

susceptible. (17) 

Model types according to the parameters used: 

Deterministic Models: Use fixed parameters to 

predict disease dynamics. Chance does not play a role 

in these models. They define an exact outcome, and 

provide a clear, consistent prediction of disease spread 

but may not capture individual variability. 
Stochastic Models: Incorporate randomness to 

account for variability in disease spread, particularly 

useful for small populations or early in an outbreak. 

Hybrid Models: Combine elements of deterministic 

and stochastic models to leverage the strengths of both 

approaches. 
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Current programs for infectious diseases modelling 

Ebola modelling 

CDC used models to predict the number of Ebola 

cases  that  could  be  expected   over   time   with  and  

without disease interventions such as Ebola treatment 

units, community care centres, and safe burials. On the 

basis of this information and other factors, including a 

United Nations document on Ebola needs, CDC 
leadership and other U.S. government officials 

recommended a rapid increase in Ebola response aid. 

This increase helped to greatly reduce the actual 

number of cases, compared to the likely number if 

prompt action had not been taken. (12) 

Zika modelling 

In 2020, a model was designed using parameters of 

mosquito biting rate, recruitment rate of mosquito, 

transmission probability per biting of susceptible 

humans with infected mosquito, rate of awareness in 

host population, recovery rates of infected human 

which were the most sensitive parameters of the 
considered Zika model. The model was validated by 

fitting with the reported Zika infected human data 

from 1 to 36-week of 2016 Zika outbreak in 

Colombia.  A compartmental model described the 

vertical transmission of Zika to the foetus in the early 

stages of pregnancy in order to estimate the risk of 
microcephaly due to Zika. Other described the spread 

dynamics of Zika as both a vector-borne and sexually 

transmitted disease. (18) 

Pandemic Influenza modelling 

The tool, Google Flu Trends, is a sophisticated Web-

based tool for detection of regional outbreaks of 
influenza in the United States. It is so promising that 

the CDC is testing it in the United States. Preliminary 

testing suggests that Google Flu Trends can detect 

regional outbreaks of influenza 7–10 days before 

conventional CDC surveillance. The CDC uses 

laboratory and clinical data to publish national and 
regional weekly statistics, typically with 1–2 weeks 

lag in reporting. (19) 

In response to the H7N9 influenza outbreak in 

2017, models were used to determine when doses of 

influenza vaccine should be delivered and how many 

doses should be administered in order to mitigate a 
domestic outbreak. This model found that having a 

vaccine stockpile could be helpful in preventing 

disease. (12) 

In Egypt, highly pathogenic avian influenza 

subtype H5N1 virus was first reported in poultry in 

2006 and was declared to be enzootic in 2008, then 
during 2014–2015 winter season.  Using ecological 

niche modelling, environmental, behavioral, and 

population characteristics of H5N1 and H9N2 within 

Egypt. The distance to live bird markets was a strong 

predictor of co-infection. (20) Another model predicted 

that targeting day-old chick avian influenza 
vaccination in industrial and large size hatcheries 

would increase immunity levels in the overall poultry 

population in Egypt and especially in small 
commercial poultry farms (from < 30 % to > 60 %). 
(21) 

Yellow Fever modelling 

Model used origin–destination flight data from 2016 

and incidence estimates to predict the number of 

viraemic travellers capable of seeding local 
transmission in Asia. In  high risk locations,  a 

temperature-dependent reproduction number (R0) 

estimates were used and a branching process model to 

predict the probability of transmission. The model 

used the population size of each endemic country in 

2016, and the average length of stay of international 
tourists to each endemic country. (22) 

Rift Valley Fever modelling 

Models of transmission dynamics had variable 

assumptions, assumption was that vector bites hosts at 

a rate proportional to the number of hosts, and that a 

host is bitten at a rate proportional to the number of 
vectors. Other models assume that the rate at which a 

vector bites hosts is constant across host (reservoir) 

densities, while the number of bites received by a host 

is constant across vector densities. (23) 

COVID-19 pandemic modelling 

COVID-19 pandemic has led to intensive and evolving 
use of alternative infectious disease prediction models. 

In the early 2020s, the first models used to emphasize 

the capacity for anticipation to inform policy 

decisions, in what is usually called “Predictive 

understanding” based on the theories that scientists 

place to infer conclusions and to formulate patterns 
(developing models) to decide the needs to control the 

outbreak. However, this proved to be scientifically 

insufficient, as there was a need to an explanatory 

knowledge to change the model by adapting it to 

emerging evidence. (24) 

Develop a pandemic simulator that accounts for 
two essential aspects of the global spread of EIDs: (i) 

age-structured disease transmissions and (ii) the 

pandemic spread across global regions. Based on the 

simulator, global pandemic evolutions of EIDs and the 

effect of control measures under a wide range of 

scenarios was explored. (24) 
After the outbreak of COVID-19, the three 

elements of the compartment model faced limitations. 

These limitations stem from a common cause: the 

influence of social systems on infectious disease 

systems. Whether it is nonpharmacological 

interventions, vaccination strategies, the intensity of 
population activity, or the age distribution of those 

infected, these varied effects can each be attributed to 

a single factor in the social system. (24) 

 

Creating the initial model for personal protective 

equipment (PPE) demand for COVID-19: 

The    initial    population    starts   in   the   susceptible  
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compartment and flows into the infectious 

compartment at an infection rate β, then moves into 
the recovered compartment at a recovery rate defined 

by λ or into the deceased compartment at a mortality 

rate defined by γ. (24) 

R(0) of SARS-CoV-2 cases was not traced 

accurately in the beginning of the pandemic, due to a 

limitation in resources such as insufficient availability 
of testing kits. 

Historical R(t): was backward computed by 

searching literature for infection fatality rate (IFR) for 

SARS-CoV-2   

To forecast the future R(t), different pandemic 

scenarios were generated, each with varying 
assumptions about public health intervention measures 

in effect: 

The SARS-CoV-2 containment scenario—attempts 

to model a situation where strict public health 

intervention measures are in place (i.e., lockdowns). 

Under this scenario, R(t) is always kept under 1. 
The Resurgence Best Estimate scenario—allows the 

epidemic to resurge in tandem with the reopening of 

the economy and allows the R(t) to stay high. 

The Peaks and Valleys Scenario—allows the 

epidemic to resurge in tandem with the reopening of 

the economy until hospital intensive care unit (ICU) 
occupancy reached 30% of the provincial maximum. 

Then an intervention plan is triggered to bring the R(t) 

back down to lockdown level. (24) 

Although The SIRD model was used until the 

beginning of 2021 for PPE, as the main 

epidemiological model for the PPE project until the 
beginning of 2021. Limitation of this model were the 

decrease in accuracy and neglection of age structure of 

the population. These limitations led to the creation of 

another version of the epidemiological model by using 

open-source software, for use in the main PPE demand 

and supply model, with additional compartments that 
can take more complex characteristics of the pandemic 

into consideration. (24) 

COVID-19 modelling in Egypt 

Several Egyptian studies discussed modelling of the 

COVID-19 epidemic. Researchers from The High 

Institute of Public Health used cases and deaths in the 
situation reports of WHO, and the Egyptian Ministry 

of Health & Population (MoHP) report issued on the 

2nd of April 2020.  Using IBM SPSS Statistics, 

survival analysis was carried out to determine the case 

fatality rate (CFR), where new cases were added, 

while deaths and recovered cases were subtracted. The 
death rate among COVID-19 cases with defined 

outcome was calculated as the number of deaths 

divided by the total number of cases with defined 

outcome (either died or cured). Wolfram Player 12 

software was used for the Susceptible Infected 

Recovered (SIR) epidemic dynamics of COVID-19.(25) 

Another model depending on deep learning was 

developed for predicting the spread of COVID-19 in 
Egypt using google population mobility reports, and 

the number of infected cases reported daily “world in 

data” website. The suggested model could predict new 

cases of COVID-19 infection within 3–7 days with the 

minimum prediction error. The proposed model 

achieved 96.69% accuracy for 3 days of prediction. (26) 

Challenges and considerations 

The overriding challenge as with all modelling is to 

find models that are complex enough to reflect 

sufficient details of the system, but simple enough not 

to get lost in the jungle of details.  

• Data limitations and uncertainty:  

• Behavioral Factors: Different results can be 

yielded with different spatial and temporal 
scales, which had proven during the SARS-CoV-

2 pandemic. 

• Globalization: The movement of people and 

goods can affect the spread of diseases, requiring 
models to account for global interactions. 

• Challenges around vaccination and emergence of 

pathogens. (27) 

Recommendations and future prospectives  

➢ Machine Learning and Artificial intelligence: 

Enhancing models with machine learning 

algorithms to improve predictions and analyze 

large datasets.  

➢ Real-Time Data Integration: Using real-time data 

for dynamic updates to models and improving the 
accuracy of forecasts. 

➢ Genomic Epidemiology: Incorporating genetic 

data of pathogens to understand mutations and 

evolutionary dynamics. 

➢ Multi-scale Modelling: Integrating models at 

different scales (e.g., local, national, global) to 
capture complex interactions and effects. (27) 
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