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Abstract: On the basis of the physical concept for a linear velocity operator (v̂ . ∇), the unstable and nonlinear Navier-Stokes 

equations in cartesian coordinates are transformed into the linear diffusion equations.  In this paper, the non-dimensional continuity 

and the linear Navier-Stokes' equations are used to explain the Newtonian viscous fluid flow in a two-dimensional peristaltic 

inclined tube with respect to the y-axis. The linear differential equations of the problem are solved analytically by using Picard 

method. The velocity and the stream function of the fluid are obtained as functions of the physical parameters like time, 

wavelengths, and Reynolds numbers for the first time. Several graphs for these results of physical interest are displayed and 

discussed in detail. The obtained analytical solutions satisfy the linear and nonlinear Navier-stokes and continuity equations for all 

values of physical parameters for a first time in the periodical journals up to date. The author considered this work as a millennium 

problem; which proposed by clay institute.  
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1. Introduction 

The motion of peristaltic fluid flow in tubes is applied in 

different branches of engineering and medicine. Most of 

nondimensional nonlinear Navier-Stokes, Burger and 

Korteweg-deVries (KDV) Equations; which are roughly solved 

for large wavelength 𝛿 = 0 and small Reynolds number 

describe the prior issues [1-4]. Additionally, the large values of 

wave lengths and small Reynolds numbers are used to 

determine the stream function and fluid velocity components in 

a special case. The numerical and approximate solutions of 

Navier-Stokes equations are obtained for a special case of fluid 

and flow [5-8]. The viscous non-nano and nanofluid flow in a 

vertical and horizontal peristaltic cylinderiical Tubes is studied 

between two-phase bubbly flow by many authors [9-14]. 

Christianto and Vladimir interpret the Schroedinger wave 

function to derive the precise solution to the nonlinear Naiver-

Stokes equation for a viscous fluid flow [6,15]. The obstacles 

of analytical solutions are appeared in the nonlinear terms of 

partial differential equations (PDE) [16-19]. Recently, 

Mohammadein examines a novel treatment of fluid mechanics 

with heat mass transfer [20]. The nonlinear Navier-Stokes, 

Burger and Korteweg-deVries (KDV) equations are converted 

to the linear equatiions; which are valid for all values of 

wavelength 𝛿 and Reynolds number with simple solutions 

[3,4,16,19]. 

On the basis of the Bernoulli and Mohammadein theory, 

the pressure gradient notion is developed [17]. For the first 

time, the linear Navier-Stokes equations are used to describe 

the unsteady, incompressible, and viscous Newtonian fluid 

flow in a horizontal tube for various wave lengths and 

Reynolds numbers [16-17]. Additionally, the resulting 

analytical solutions satisfy both linear and nonlinear Navier-

Stokes equations [11,20]. Moreover, the continuity and linear 

Navier-Stokes equations are used to describe the 

incompressible and viscous Newtonian fluid in a peristaltic 

flow horizontal tube at various Reynolds numbers, wave 

lengths, and flow patterns (laminar, transit, and turbulent flow). 

Pressure gradient concept  

A surface force, a key factor in fluid flow, is represented by 

the pressure gradient. Based on the Bernoulli equation, the 

fluid pressure gradient takes the following form. 

∇𝑃 = −𝜌(v. ∇)v − 𝜌𝑔 𝑛̂.                                                        (1) 

Based on the Mohammadein hypothesis [17], the pressure 

gradient formula above becomes 

∇𝑃 = 𝜂∇2𝑉 − 𝜌 𝑔 𝑛̂.                                                               (2) 

NonLinear Navier-Stokes Equations 

Think about a flow of an incompressible viscous fluid 

influenced by body and surface forces, which are represented 

by continuous and vector nonlinear Navier-Stokes equations as 

follows: 

 ∇. v = 0,                                                                                 (3) 

𝜌( 
𝜕𝑉

𝜕𝑡
+ (v. ∇)v) = −∇𝑃 + ∇. 𝜏𝑖𝑗 ,                                           (4) 

where ∇𝑃 is the fluid pressure gradient, and  ∇. 𝜏𝑖𝑗 = 𝜂 ∇2v  is 

the shearing stress for a viscous Newtonian fluid. 

In this study, the effect of surface and body forces on the 

https://sjsci.journals.ekb.eg/
https://doi.org/10.21608/sjsci.2024.261769.1173
mailto:maha.mohamadain@science.tanta.edu.eg


 

©2024 Sohag University    sjsci.journals.ekb.eg  Sohag J. Sci. 2024, 9(4), 583-587 584 

flow of an incompressible and viscous Newtonian fluid in a 

peristaltic inclined tube ( 0 ≤ 𝜑 <
𝜋

2
) in a two dimensional 

Cartesian coordinates is investigated for a first time. The linear 

Navier-Stokes equations and continuity are used to create the 

linear mathematical model in a simplest form. For two 

different values of wave lengths ((𝜆 ≠ 0 𝑎𝑛𝑑 𝛿 ≠ 0).), the 

unsteady analytical solution is obtained in terms of two 

velocity components and the stream function in a two-

dimensional form. The results are plotted thoroughly explored. 

And the final comments are tallied. The concept of this work is 

based on novel treatment theory [16,17,20]. 
 

Nomenclatures 
 

𝒂                   is indicated to the tube half width 

𝝋                  angle measured from y-axis 

𝑨𝟏                constant                                 

𝜹                  ratio of vein dimeter and wave length 

𝒃                  wave amplitude                                 

𝝀                  wavelength of fluid  flow 

𝒄𝟏,𝒄𝟐             constants                                     

𝝆                  density of fluid  

 c                  sound wave in blood                 

𝒏̂                   normal unit vector                       

𝝂                   kinematic viscosity of fluid      

𝑮𝑪                 modified Grashof number                               

e                   amplitude ratio                            

g                   the gravitational acceleration      

𝜸                  constant                                    

H                  peristaltic curve around wall         

𝜼                  viscosity of fluid                      

𝒉𝟏, 𝒉𝟐           arbitrary constant values     

𝝉𝒊𝒋                shearing stress                        

𝑳𝟏, 𝑳𝟐           arbitrary constant values   

𝝍(𝒙, 𝒚, 𝒕)     stream function    

𝒒𝒃                volume flow rate     

u, v              fluid velocity components   

x, y              Cartesian coordinates 

𝑹𝒆                Reynolds number      

t                   time                           
 

 

2. Physical model 

Numerous publications [8,9,11,17,20] have discussed the 

peristaltic motion of fluid flow in tubes when there are lengthy 

wave durations. Here, we'll take into account the 

incompressible Newtonian viscous fluid flow in a peristaltic 

tube that is inclined to the y-axis at an angle similar to that in 

Figure 1. 

An endless sinusoidal wave train traveling along the tube walls 

at a constant speed of c is what generates the flow. In our 

scenario, the force of gravity is taken into account. The form of 

the peristaltic border condition is 

𝐻 = 𝑎 + 𝑏 sin (
2𝜋

𝜆
𝑦),                                                             (5) 

where  𝑎 is indicated to the tube half width, 𝑏 is indicated to 

the wave amplitude, 𝜆 is indicated to the wave length and t is 

the time. 

Mathematical model 

The following form can be used to represent the mathematical 

model for a viscous and incompressible Newtonian fluid flow 

in a peristaltic inclined tube in a two-dimensional cartesian 

coordinates under the influence of surface and body forces: 

Continuity equation   

𝜕𝑢

𝜕𝑥
+

𝜕v

𝜕𝑦
= 0,                                                                            (6)  

Navier-Stokes equations    

x: 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ v

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈(

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2),                         (7) 

y:  
𝜕v

𝜕𝑡
+ 𝑢

𝜕v

𝜕𝑥
+ v

𝜕v

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈(

𝜕2v

𝜕𝑥2 +
𝜕2v

𝜕𝑦2) + 𝑔 cos 𝜑,      (8) 

where  0 ≤ 𝜑 <
𝜋

2
. 

 

Fig.1. Sketch of the problem. 

Applying the novel treatment theory [20] to the nonlinear 

system (6–8) in the previous sentence in the frame (𝑥, 𝑦), the 

result is 

𝜕𝑢

𝜕𝑥
+

𝜕v

𝜕𝑦
= 0,                                                                            (9) 

𝜕𝑢

𝜕𝑡
=  𝜈(

𝜕2𝑢

𝜕𝑥
2 +

𝜕2𝑢

𝜕𝑦
2),                                                               (10) 

𝜕v

𝜕𝑡
=  𝜈 (

𝜕2v

𝜕𝑥
2 +

𝜕2v

𝜕𝑦
2) + 𝑔 cos 𝜑.                                            (11) 

In terms of dimensional ones, the nondimensional parameters 

take the following form. 

𝑥 = 𝑎 𝑥, 𝑦 = 𝜆𝑦,   𝑢 = 𝑐𝛿𝑢,    v = 𝑐v,   𝛿 =
𝑎

𝜆
,  𝑡 =

𝜆

𝑐
t,  

𝜓 = 𝑎 𝑐𝜓 , 𝑒 =
𝑏

𝑎
,   𝛾 =

𝑎

𝑐2 and  ℎ =
𝐻

𝑎
1 + 𝑒 sin(2𝜋𝑦).        (12) 

The aforementioned equations (9–11) create a linear partial 

differential equation in terms of fluid velocity components u 

and v by applying the aforementioned transformations (12) in 

frame (x, y) in the form    

𝑅𝑒 𝛿 u𝑡 = (u𝑥𝑥 + 𝛿2u𝑦𝑦),                                                    (13) 

𝑅𝑒 𝛿 v𝑡 = (v𝑥𝑥 + 𝛿2v𝑦𝑦) + 𝑅𝑒 𝑔 𝛾 cos 𝜑.                           (14) 

The analytical solution of the aforementioned linear partial 

differential problem (13-14) obtained using the Picard 

technique [16] has the following form 
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v(𝑥, 𝑦, 𝑡) =  𝐴1    𝑒
𝑡

𝑅𝑒 𝛿
(𝑐1

2+ 𝛿2𝑐2
2) −(𝑐1𝑥+𝑐2𝑦)

+𝑅𝑒𝑔 𝛾 𝑡 cos 𝜑,(15) 

and 

u(𝑥, 𝑦, 𝑡) = −
 𝑐2 𝐴1

𝑐1
𝑒

𝑡

𝑅𝑒 𝛿
(𝑐1

2+ 𝛿2𝑐2
2) −(𝑐1𝑥+𝑐2𝑦)

.                       (16) 

On basis of fluid velocity (13) and the following conditions  

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) = 𝑒−(𝑐1 𝑥+ 𝑐2 𝑦) , 

u(𝑥, 𝐿1, 𝑡) = 3,        u(𝑥, 𝐿2, 𝑡) = 1, 

u(ℎ1, 𝑦, 𝑡) = 5,           u(ℎ2, 𝑦, 𝑡) =4.                                  (17) 

On the basis of initial and boundary conditions (17) and 

equation (16), the constants 𝑐1, 𝑐2 and 𝐴1 are estimated as 

follows: 

𝑐1 =  
1

ℎ2−ℎ1
ln 5/4,           𝑐2 =  

1

𝐿1−𝐿2
ln 1/3,    , 𝐴1 = 1,  

ℎ = 1 + 𝑒 sin (2𝜋𝑦) .                                                          (18) 

on basis of equations (15), (16) and (6), the stream function 

becomes 

𝜓(𝑥, 𝑦, 𝑡) =
 𝐴1

𝑐1
𝑒

𝑡

𝑅𝑒 𝛿
(𝑐1

2+ 𝛿2𝑐2
2) –(𝑐1𝑥+𝑐2𝑦)

+  𝑅𝑒 𝑔 𝛾 𝑥 𝑡 cos 𝜑.  (19) 

The relations (15), (16) and (19) represent the analytical 

solutions of the present model (9-11). 

3. Results and Discussion: 

The incompressible Newtonian fluid in a peristaltic inclined 

tube with angle 𝜑 with axis y is studied. The linear continuity 

and Navier-Stokes equations based on the notion of fluid 

pressure gradient (2) are described the current problem. The 

non-dimensional linear equations (13-14) is created from the 

set of linear partial differential equations (6–8). The Picard 

approach is used to arrive to the simplest solution [13] in terms 

of fluid velocity components (15-16) and stream function (19). 

All wavelength and Reynolds number values can be satisfied 

using the obtained solutions. In other words, the fluid velocity 

components can be estimated for all values wave lengths and 

Reynolds numbers in fluid mechanics. Moreover, the fluid 

flow is valid in a vertical Tube (𝜑 = 0) and in case of inclined 

Tube (0 ≤ 𝜑 <
𝜋

2
). 

In the follows, numerical values, which are used in 

calculations of solutions and graphs are considered for flow 

patterns as in In Table 1. 

 
Table 1. The variable data 

 

Symbol a b e 𝑅𝑒 𝐿1  𝐿2 

value 10 0.1 0.01 7 0 10 

 

 

The tube radius a, amplitude e, Reynolds number 𝑅𝑒,  

distances  𝐿1 and  𝐿1 takes a limited value. Moreover, it is 

shown that in Figures 2-6 such that, each group of 

alphabetically lettered figures are put in one row so that all 

parameters are fixed except one parameter.  

The fluid velocity for various values of 𝛿 = 0.01 and 𝛿 =
0.1 is shown in Fig.2. It is observed that, the velocity of fluid 

proportional with parameter “𝛿". The velocity for various 

values of inclined angles 𝜑 = 30 and 𝜑 = 30.002 is shown in 

Fig.3. It is observed that, the velocity of fluid proportional with 

parameter “𝜑". The velocity for different values of 𝑡 = 0.5 and 

𝑡 = 0.51 is shown in Fig.4. It is observed that, the velocity of 

fluid proportional with interval time  "𝑡". The velocity for 

various values of 𝑒 = 0.5 and 𝑒 = 0.6 is shown in Fig.5. It is 

observed that, the velocity of fluid proportional with amplitude 

ratio parameter"𝑒". For instance, when (𝜑 = 0), the current 

problem represents the fluid flow in a vertical Tube and 

affected by gravity force. 
 

 
Fig. 2. The velocity for different values of 𝛿 = 0.01 and 𝛿 = 0.1. 

 

 
Fig.3. The velocity for different values of 𝜑 = 30 and 𝜑 = 30.002. 
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4. Conclusion 

The linear equations (13-14) is created by transforming the 

system of linear partial differential equations (9–11). By using 

the Picard technique [20], the analytical solution of equation 

(13-14) are found in terms of the fluid velocity components 

and stream function (15-16) and (19) respectively. The results 

are valid for all wavelength and Reynolds number values. The 

following bullet points list the final observations: 

1. The fluid velocity is increasing with the decreasing of 

wavelength parameter “𝜆". 

2. The fluid velocity in the inclined tube with angle “ 𝜑" is 

proportional with the values of angle parameter “𝜑" in the 

interval (0 ≤ 𝜑 <
𝜋

2
). 

3. The velocity of fluid proportional with interval time  "𝑡".  

4. The fluid velocity is proportional with amplitude ratio 

parameter"𝑒". 

5. The fluid flow is valid in a vertical and inclined directions 

of Tube (𝜑 = 0 ) and (0 ≤ 𝜑 <
𝜋

2
) respectively, which can 

be considered as two coupled problems in same time.   

6. The obtained solutions u (x, y, t), u(x, y, t), and 

𝜓(𝑥, 𝑦, 𝑡)represent the fluid flow in terms of wave function. 

7. The motivation of this method introduced that, the obtained 

analytical solutions (15-16) and (19) satisfy the linear and 

non linear Navier-stokes and continuity equations (6) and 

(13-14) for all physical values for a first time in the 

periodical journals up to date. 

8. This effort is the first treatment of a viscous and 

incompressible Newtonan fluid flow in an inclined tube 

(0 ≤ 𝜑 <
𝜋

2
) in two dimensions without ignoring 

wavelengths and Reynolds numbers. 

9. The concluded results proved the validity of the proposed 

physical model. Moreover, this model can be modified for 

some properties of fluid and flow.  

The author considered this work as an contribution of 

solving the millennium problem; which proposed by clay 

institute in this century. 

 
Fig.4. The velocity for different values of 𝑅𝑒 = 1000 and 𝑅𝑒 =
3000. 

 
Fig.5. The velocity for different values of 𝑡 = 0.5 and 𝑡 = 0.51. 

 

 
Fig.6. The velocity for different values of 𝑒 = 0.5 and 𝑒 = 0.6. 

Data availability statement 

The data used to support the findings of this study are available 

from the corresponding author upon request. 

Declaration of competing interest 

The author declare that she has no known competing financial 

interests or personal relationships that could have appeared to 

influence the work reported in this paper. 

Acknowledgement 

The author  would like to thank the Editor-in-chief of Sohag 

journal of sciences for his invaluable suggestions that lead to 

the improvement of this paper. Moreover, the authors are 

grateful to the anonymous referee for helpful comments that 

improved this paper. 

 

Re = 1000

 Re = 3000

0.00 0.02 0.04 0.06 0.08
1.66

1.68

1.70

1.72

1.74

1.76

y

v

t = 0.5

t = 0.51

0.00 0.02 0.04 0.06 0.08
1.66

1.68

1.70

1.72

1.74

1.76

1.78

y

v

e = 0.5

e = 0.6

0.00 0.02 0.04 0.06 0.08
1.66

1.68

1.70

1.72

1.74

1.76

y

v

https://sjsci.journals.ekb.eg/


 

©2024 Sohag University    sjsci.journals.ekb.eg  Sohag J. Sci. 2024, 9(4), 583-587 587 

References 

[1] A. M. Abd-Alla, Journal of Computational and Theoretical 

Nanoscience, 10 (2013) 1914-1920. 

[2] Emad. M. Abo-Eldahab, J. Phys. D: Appl. Phys, 33  ( 2000 ) 3180.  

[3] I. Abbas, A. Abdalla, F. Anwar, H. Sapoor, Sohag J. Sci, 7 (2022) 

131- 141.  

[4] L. D. Landau, and E. M. Lifshitz,. Fluid Mechanics. 2nd Ed. 

Pergamon Press, (1987). 

[5] Alexandre Chorin, Mathematics of Computation,  22 (1968) 104.  

[6] Christianto, V. F. Smarandache, Progress in Physics, 1 (2008) 63-

67.  

[7] Mats D. Lyberg,  Henrik Tryggeson, J of Physics A: Mathematical 

and Theoretical, 40 (2007) F465-F471. 

[8] G. Nugroho, A.M.S. Ali, Z.A. Abdul Karim, International Journal 

of Mechanical Systems Science and Engineering, 1 (2009) 71-75. 

[9] F.A. El Hussiny, S.A. Mohammadein, A. A. Elbendary, Sara M. 

Elkholy and Maha S. Ali, Delta, Journal of scienc, 44 (2022) 

113-122.   

[10] S. A.  Mohammadein, Mathematical biosciences, 253 (2014) 88-

93. 

[11] S. A. Mohammadein, and A. K. Abu-Nab, Fluid Mechanics, 2 

(2016) 28-32. 

[12] S. A. Mohammadein, A. A. Hemada, M. A. El-Tantawy, M. A. 

Baghagho, M. S. Ali, DJS, 46 (2023) 99-110. 

[13] R. A. Ghoraba, S. A.  Mohammadein, M. Abdu, M. S. Ali, DJS, 

47(2023) 144-153. 

[14] G A. Shalaby, A. F. Abu-Bakr, Analytica solution. Thermal Sci, 

25 (2021) 503-514. 

[15] V. V. KULISH,  J.  L. LAGE, School of Mechanical & 

Aerospace Engineering, (2013) 1-9. 

[16] S. A. Mohammadein, R.G. El-Rab, Maha S. Ali, Info. Sci Lett,10 

( 2021) , 159-165. 

[17] S. A.Mohammadein, Ali S. Ali, Maha S. Ali, App. Math. Info. 

Sci, 16 (2022) 1043-1048.  

[18] N.T.M. Eldabe, M. O. Shaker, Maha S. A, Journal of Nanofluid, 

7 (2018) 595-602. 

[19] S. A. Mohammadein, Sh. A. Gouda, DJS, 47 (2023) –137-143. 

[20] S. A. Mohammadein, Appl. Math & Info Sci Lett, 8 (2020) 1-6. 

 

https://sjsci.journals.ekb.eg/
https://iopscience.iop.org/journal/1751-8121
https://iopscience.iop.org/journal/1751-8121

