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OIL salinization is a major environmental issue in Egypt's semi-arid region, characterized by low 

precipitations rate, high temperatures, and high evaporation rates,  ultimately lowers  agricultural 

sustainability. Consequently, effective soil salinity observation, evaluation and mapping are vital to 

mitigate the negative impacts of soil degradation and ensure sustainable land management. Therefore, 

this study focused on estimating and mapping soil salinity in semi-arid lands (Sohag Governorate, 

Egypt), using PRISMA (PRecursore IperSpettrale della Missione Applicativa) visible-Near-Infra-Red 

(vis-NIR) hyperspectral images as an advanced tool that offers significant promise for extracting 

detailed information about the composition and condition of the observed areas. For this study, 

seventeen representative soil profiles were collected  in more than 150 cm depth from the field and 

subsequently analyzed in the lab to determine their EC (dS/m) values. Moreover, PRISMA 

hyperspectral image of the investigated area was acquired, processed, and some soil salinity 

hyperspectral indices were applied such as; Salinity Index (SI), Brightness Index (BI), Normalized 

Differential Salinity Index (NDSI), Combined Spectral Response Index (COSRI) and Coloration 

Index (CI). Among the PRISMA hyperspectral image, six bands were significant (12, 23, 25, 31, 32, 

and 49) and used for calculating the hyperspectral indices. Soil salinity spatial variability maps of the 

study area were generated using the relation between the developed hyperspectral indices and the 

observed soil salinity as EC values (dS/m). The study area demonstrated a relatively consistent level 

of salinity, with soil EC values ranging from 0.9 to 2.10 dS/m and averaging 1.40 dS/m, this moderate 

salinity, evident in the generated maps, suggests a relatively stable soil condition. The COSRI and CI 

hyperspectral salinity indices achieved the highest accuracy in estimating soil salinity (EC) with 

coefficient off determination (R2) values of 0.68  and 0.64 , respectively; and the root mean square 

error (RMSE) values were 0.26 and 0.29 dS/m, respectively. Other indices such as; normalized 

difference vegetation index (NDVI), NDSI, BI, and SI had lower capability for estimating soil salinity 

over the study area. The PRISMA hyperspectral data is a very potential tool for estimating soil 

salinity in the studied area, therefore, monitoring and analyzing soil salinity are essential for 

developing effective land management strategies.  

Keywords: Soil salinity, PRISMA image, hyperspectral data, soil indices. 
 

1. Introduction 

Soil salinity in Sohag Governorate, Egypt, poses a major challenge to agricultural productivity and land use, 

driven by both natural and human factors. Naturally, irrigation water from the Nile River contains dissolved 

salts, which contribute to soil salinity. In addition, the region’s high temperatures and low rainfall promote rapid 

evaporation, which leads to salts concentration. Human activities exacerbate these problems through excessive 

irrigation without proper drainage, which leads to salt accumulation. Furthermore, poorly designed drainage 

systems impede the leaching of excess salts from the soil profile, while the improper use of chemical fertilizers 
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exacerbates soil salinity concerns (Fadl et al. 2023). In Sohag Governorate, several soil related challenges have 

emerged due to urbanization, population growth, and other factors. A significant problem of the agricultural soils 

is the wastewater impact on clayey soils; whereas in Upper Egypt, regions situated on floodplain clayey soils 

(composed of silts, clays, and sands) near the River Nile have faced considerable difficulties (Moursy and Thabit 

2022). Additionally, the lack of sewage networks in newly developed areas  necessitates private wastewater 

storage in tanks located beneath or near houses. When these tanks overflow or rupture, the organic-rich 

wastewater infiltrates the clayey soils, increasing their plasticity and swelling potential, this has led to significant 

damage, including wall cracks and foundation tilting (Negim and Moursy 2023). Another issue is an urban 

sprawl and soil deterioration; whereas population growth has led to urban sprawl, resulting in the loss of old 

agricultural soils in Sohag Governorate. Furthermore, maximizing land resource utilization is crucial to mitigate 

the effects of soil degradation. The land cover change and fertile land loss is significant problem in agricultural 

soils of Sohag (Abdel-rahman and Negim 2016). Furthermore, the conversion of fertile lands into urban 

settlements has adversely affected soil quality and another significant issue concerns groundwater salinization 

and soil salinity, with groundwater salinity levels increasing over the past 15 years, thereby impacting soil 

layersby leading to the accumulation of salts, increasing electrical conductivity, and altering soil structure. This 

results in higher salinity levels, particularly in surface layers, and can cause degradation of soil fertility through 

processes like sodicity, which reduces water infiltration and root penetration (El-Aziz et al., 2024). 

Consequently, these changes pose serious challenges to agricultural productivity, necessitating effective 

management practices to monitor salinity and maintain soil health for sustainable land use (Wang et al., 2024). 

Moreover, soil salinity has shown an upward trend from 1991 to 2006, particularly within specific categories, 

strongly saline soils (ECe = 10 dS/m) and extremely saline soils (ECe = 50 dS/m) as studied by Abd El-Aziz et 

al.(2018). Another challenge in Sohag soils is zinc contamination; exacerbated by increased clay content due to 

industrial, sewage, and Nile-irrigated activities whereas the clay minerals can interact chemically with zinc ions, 

potentially forming complexes that may increase the bioavailability of zinc to plants and microorganisms (Wang 

et al., 2024). The specific mineral composition of the clay affects these interactions; for instance, certain clays 

may enhance the solubility of zinc under specific pH conditions, leading to greater mobility and availability in 

the soil (Seifollahi-Aghmiuni et al., 2022). This alteration affects the solubility of Zn
2+

 in the soil. Addressing 

these issues underscores the significance of adopting sustainable soil management implementations and 

enhancing environmental awareness to maintain soil health in Sohag Governorate (Ibrahim et al., 2021). 

The effects of soil salinity significantly impact crop yield reduction by hindering plant growth, nutrient uptake, 

and water balance, whereas, salinity stress leads to decreased crop productivity (Rafie, 2024). Additionally, high 

salt concentrations degrade soil structure, reducing porosity and aeration. This renders land unsuitable for 

agriculture, affecting livelihoods and saline soils, characterized by elevated soluble salt levels in both surface and 

root zones, pose a threat to soil health and productivity. Soil salinization can lead to reduced productivity, 

unstable soil, lower water availability, and diminished biodiversity (Jalali et al., 2021). Salinization is prevalent 

in arid and semi-arid regions and tends to vary in distribution. Apart from natural processes such as, rock 

weathering, rainfall, and human activities also contribute significantly to soil salinity in these regions (Hassani et 

al., 2020; Ghanbari et al., 2023). Soil salinity provide as a crucial indicator when assessing soil salinization, 

which exhibits significant variation over time and across different locations (Zaman et al., 2018). Traditional 

methods for monitoring soil salinization, such as particular-point soil surveys followed by estimation of soil 

salinity paremetrs in laborotry analysis, which are labour-intensive and time- consumpting . Unfortunately, their 

slow update cycles do not align with the need for rapid acquisition of large-scale soil salinity data (Shepherd et 

al., 2002).  

Hyperspectral remote sensing significantly impacts soil research by providing detailed spectral information. It 

enables rapid, non-destructive monitoring of soil nutrients, including moisture levels, nitrogen content, and 

organic matter (Lassalle et al., 2023). Through detailed spectral recordings, hyperspectral techniques facilitate 

the prediction of various physio-chemical and biological soil characteristics. These techniques can differentiate 

between bacterial and fungal influences on soil by analyzing specific chemical indicators and utilizing machine 

learning algorithms to classify soils based on their spectral data. Studies have demonstrated the effectiveness of 
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hyperspectral imaging in assessing soil attributes, such as organic compounds and nutrient levels, which vary 

according to microbial activity (Shen et al., 2020). Overall, hyperspectral methods provide a robust framework 

for understanding soil health and informing sustainable land management practices by revealing the intricate 

relationships between soil composition and microbial processes (Ewing et al., 2020). Researchers leverage this 

richness of data to enhance sustainable resource management and informed decision-making. Ultimately, 

hyperspectral remote sensing enhances agricultural practices and environmental management by providing 

deeper insights into soil composition and ecosystem dynamics (Cao et al., 2023).  

Hyperspectral indices such as Salinity Index (SI), Brightness Index (BI), Normalized Differential Salinity Index 

(NDSI), Combined Spectral Response Index (COSRI) and Coloration Index (CI) are effective tools for soil 

salinity assessing and mapping, facilitating monitoring and informed land management strategies. For instance, 

Ferna´ndez-Buces et al. (2006) utilized COSRI and NDVI indices to establish a correlation between soil salinity 

and these indices. Numerous studies have employed hyperspectral indices to estimate and map various soil 

properties. Among these studies, Hu et al. (2019) used the un-manned aerial vehicle and hyperspectral satellite 

image for estimating and mapping soil salinity in some Chinese soils with R
2
 values between 0.81 and 0.94. 

Gorji et al. (2017) found that the Hyperion (EO-1) hyperspectral image was better than Landsat 8 (OLI) 

multispectral image for estimating soil salinity in Mediterranean countries. Hamzeh et al. (2016) assessed the 

precision of hyperspectral (Hyperion1) and multispectral (Landsat 7) satellite images for schematic diagram of 

quantitative classification of salinity stress in some Iranian sugarcane fields, and they found that, the best 

performance of predicting and mapping soil salinity was recorded for the hyperspectral data.  

PRISMA hyperspectral imagery (PHSI) is an instrumental widely used in soil research due to its high spectral 

resolution (≤12 nm) which allows precise analysis of soil physical and chemical properties. PHSI applications 

include vegetation mapping, soil mineral identification, and nutrient deficiency diagnosis. Challenges associated 

with PHSI include limited data availability, noisy bands, atmospheric interference, and computational demands. 

Despite these challenges, researchers can utilize PHSI for large-scale soil mapping and technology 

dissemination. Overall, PHSI significantly advances soil research by providing detailed spectral data that 

supports various applications (Shaik et al., 2023). In this research our study primarily aims to: (i) to characterize 

the soil salinity status in a specific area Sohag Governorate, Egypt; (ii) to estimate soil salinity using PRISMA 

hyperspectral image integrated with various soil salinity hyperspectral indices; and (iii) to map soil salinity 

across the investigated area.  

2. Materials and methods 

Figure 1 provides a visual representation of the materials and methods employed in this study, which depicts the 

experimental setup used to evaluate the effects of varying salinity levels. Soil samples were collected and 

analysed for the EC values. A PRISMA hyperspectral image was obtained which had the approximate date of 

soil sampling, the correlation between soil salinity hyperspectral indices and observed soil salinity (EC) values 

was assessed by applying the indices to the image, utilizing thesis indices, soil salinity maps were successfully 

generated for the studied area providing a valuable tool for assessing salinity distribution and its potential 

impacts. 

2.1. Description of the study area 

The research focuses on the area situated in the Sohag Governorate along the Nile River within the Nile Valley, 

where old agricultural alluvial soils, Figure (2). Sohag experiences a Subtropical Dry Arid (Desert) climate 

characterized by long, hot summers with scorching temperatures and clear skies. Winters in Sohag are relatively 

short, cool, dry, and mostly clear, with minimal snowfall or freezing conditions. Temperature typically varied 

from 7.8°C to 43.3°C (rarely dipping below 5°C or exceeding 43.3°C), and hot days are common throughout the 

year in Sohag. 
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2.2. Soil sampling and determination  

Seventeen georeferenced soil profiles were gathered from the investigated area, concentrating on the topsoil’s 

where salt accumulation is typically highest. The air-dried soil samples were passed through a 2mm sieve to 

ensure consistency for subsequent analysis. Soil reaction (pH) was measured in 1: 2.5 of soil to water suspension 

at 25 °C using a glass electrode as reported by Alvarenga et al. (2012). According to Bashour and Sayegh 

(2007) soil paste extracts were analyzed for electrical conductivity (EC, dS/m) using an EC meter device as part 

of a comprehensive assessment of soil salinization in the study area. Total calcium carbonate (CaCO3) was 

determined using Scheiblerʼs calcimeter (Nelson, 1982). Soluble anions: carbonates and bicarbonates were 

determined by the titration with a standard solution of hydrochloric acid, chlorides were determined using a 

standard solution of silver nitrate and sulphates were spectrophotometry measured using the turbidmetery 

method (Jackson, 1973). Soluble cations: Calcium and magnesium were determined using the titration with a 

standard versenate (EDTA) solution, while sodium and potassium were measured using the flamephotometery 

method (Jackson, 1973).  Sodium adsorption ratio (SARe) of saturated soil past extract was calculated using this 

equation that described by Richards (1954). Cation exchange capacity (CEC) was measured using 1 M sodium 

acetate (NaOAc) solution (pH 8.2) as a saturation solution and then exchangeable (Na
+
) was replaced by NH4

+
 

using 1 M ammonium acetate (NH4OAc) solution (pH 7.0) outlined by Bashour and Sayegh (2007).   

2.3. PRISMA image acquisition and pre-processing 

Before conducting field surveys and soil sampling, a freely available PRISMA image dated September 23, 2023, 

was obtained from the Italian Space Agency (ASI) website (http://prisma.asi.it/missionselect/), launched on 

March 22, 2019, with spectral range between 400 to 2500 nm. The primary mission objective was for high-

resolution hyperspectral imaging with a spatial resolution of 30m, and a swath width of 30 km, operates at an 

altitude of 614 km. The image was initially processed in the ENVI 5.3 software, where a format conversion 

algorithm was applied to stack its 173 spectral bands (66 in visible-Near Infrared (vis-NIR) and 107 in Near 

Infrared-Shortwave Infrared (NIR-SWIR)). It underwent atmospheric and geometric correction to enhance its 

quality (Figure 3.a) and was subsequently visualized as a false colour composite (FCC) (Figure 3.b). To focus 

specifically on the investigated area, the satellite image was masked using the study area border, resulting in the 

creation of a subset image (Figure 3.d). Both the full scene and the resized images were then subjected to a 

supervised classification process to delineate different land use and land cover (LULC) units within the research 

site. The resulting classified PRISMA images, representing both the entire scene and the study area subset, were 

presented in Figures 3.c and 3.e. Notably, areas depicted in brown indicate the presence of bare soil, which was 

identified as suitable for surveying and sampling purposes. 

2.4. Soil hyperspectral data acquisition  

Hyperspectral soil reflectance data from the soil samples were extracted from the stacked and rescaled PRISMA 

image of the study area utilizing the region of interest (ROI) tool which integrated in an environment of ENVI 

5.3 software.  

 

  

  

 

 

 

 

 

 

Fig. 1. The materials and methods of the study. 
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Fig. 2. Location map of the study area with soil profiles. 

Figure (4.a) displays the reflectance data of the soil samples’ locations. To enhance spectral data quality, 

prediction accuracy, and soil properties estimating and mapping, hyperspectral noises (bad spectral bands) have 

been removed (Figure 4.b). The removed spectral bands were from B101 to B122 and from B152 to B182 in 

SWIR region. The remaining spectral bands, along with laboratory soil property data, were then transferred to an 

MS Excel spreadsheet for further processing and modeling as shown in Figure (5). 

2.5. Hyperspectral variables’ selection 

The Competitive Adaptive Reweighted Sampling (CARS) algorithm, based on Darwin's "survival of the fittest” 

principle is used for selecting variables in vis-NIR hyperspectral data, aiming to maximize their correlation with 

soil properties. Assessing each variable importance is carried out by considering the stability index in CARS 

model as described in equation (1). 

𝐂𝐣 = |
𝐛�̅�

𝐒 (𝐛𝐣)
|              (1) 

The CARS includes four steps as described by Jobson (2012), these steps are; (i) Monte Carlo approach whereas 

70% of the dataset are randomly selected to represent the calibration dataset, (ii) during the exponential 

decreasing function (EDF) stage, the algorithm systematically eliminates less significant variables, as described 

in equation (2). 

𝒓𝒊 = 𝒂𝒆−𝒌𝒊                  (2) 

whereas the compound 𝐚 = (
𝐏

𝟐
)

𝟏

(𝐍−𝟏) ;  𝐤 =
𝐈𝐧 (

𝐏

𝟐
)

𝐍−𝟏
; P = number of total variables; and N is the number of sampling 

runs, (iii) Adaptive Reweighted Sampling (ARS) that used to competitively eliminate variables after the initial 

EDF-based elimination, whereas variables having weights exceed a specified threshold are kept, while others are 

removed, and (iv) quality evaluation of the generated subsets by calculating their respective RMSE values, 

whereas the lowest subset in RMSE regards is chosen as an optimal. 

2.6. The hyperspectral soil salinity indices 

The selected hyperspectral bands (12, 23, 31, 33, 43, and 49) derived from the CARS model for soil EC were 

used to compute various hyperspectral indices. Among these, the COSRI index, as introduced by Fernandez-
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Buces et al., (2006), is noteworthy. Vegetation reflectance has proven to be a valuable tool for estimating soil 

salinity in numerous studies, with many researchers favouring the use of vegetation indices, particularly the 

NDVI index (Tilley et al., 2007). While NDVI's response to soil salt has been studied, these investigations did 

not simultaneously consider soil and vegetation. Therefore, Fernandez-Buces et al. (2006) used a modified 

NDVI to acquire a high correlation with salinity (R
2
 >0.8) in a semi-arid Mexican region.  

However, this method's predictive power remains untested in other areas, such as arid regions, where NDVI's 

sensitivity to soil optical properties and limited vegetation information poses challenges.  

   The COSRI was adapted to predict soil salinity for both bare soil and vegetation areas. Additionally, the NDSI 

index was described by Khan et al. (2005), the colour index (CI) was described by Huete et al. (1994), the BI 

index was explained in the studies done by Asfaw et al. (2016) and Dehni and Lounis (2012), and the SI index, 

incorporating the blue and red band, is particularly responsive to surface reflectance changes in salt-affected, 

sparsely vegetated areas, demonstrating its ability to effectively differentiate between varying levels of soil 

salinity (Douaoui et al., 2006). The hyperspectral indices are represented in the following equations (3-8). 

𝑁𝐷𝑉𝐼 =  
𝐵43−𝐵33

𝐵43+𝐵33
 (3) 

𝐶𝑂𝑆𝑅𝐼 =  
𝐵12+𝐵23

𝐵31+𝐵49
∗ 𝑁𝐷𝑉𝐼         (4) 

𝑁𝐷𝑆𝐼 =  
𝐵32−𝐵49

𝐵32+𝐵49
                       (5) 

𝐵𝐼 =
(𝐵122+𝐵232+𝐵312)

3
                  (6) 

𝐶𝐼 =  
𝐵32−𝐵25

𝐵32+𝐵25
                                  (7) 

𝑆𝐼 = 𝐵12 ∗ 𝐵31                              (8) 

2.7. Accuracy assessment of each salinity index 

After applying each soil salinity index on the PRISMA image, the values of each index which corresponding to 

the soil profiles’ locations were extracted to be correlated with the observed salinity. Regression equations 

between the observed EC (dS/m) and each soil salinity index were developed based on the correlation coefficient 

(R
2
) and RMSE that were calculated according to the next equations (9-10). 

RMSE = √
1

N
∑ [Z∗N

i=1 (xi) − Z(xi)]2   (9) 

R2 = N − (
∑(Z∗(xi)−Z(xi))2

∑(Yi−Z(xi))2 )                (10) 

 

 

(f

) 
(e

) 

(d

) 

(c

) 
(b

) 

(a

) 

LULC
Nile River

Urban areas

Vegetation

Reclaimed soils

Desert areas0 4 82 km

Fig. 3. The PRISMA image processing: (a) full scene PRISMA image; (b) FCC of 

the full scene; (c) full scene supervised classification (White = Nile River, green= 

vegetation, yellow = desert areas, brown = reclaimed soil, black = urban areas); (d) 

the resized PRISMA image of the study area; (e) the FCC of the study area; (f) the 

supervised classification of the study area. 
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Fig. 4. PRISMA vis-NIR hyperspectral reflectance data of all soil profiles: (a) before removing the 

spectral noises (bad bands); and (b) after removing spectral noises. 

 

where, RMSE, a widely used metric in evaluating model performance, measures the average difference between 

predicted salinity values from spectral indices 𝑍∗(𝑥𝑖) and the actual salinity measurements Z(xi), indicates the 

average distance between the data points and the line of best fit with a lower RMSE indicating a tighter 

clustering of data points N and a higher RMSE suggesting a greater spread. The coefficient of determination (R²) 

quantifies how well a regression relation predicts an outcome. R
2
 provides insight into how well a linear 

regression model fits the data. If R
2
 is close to 1, the model explains a significant portion of the variance in the 

dependent variable; whereas if R
2
 is close to 0, the model does not explain much of the variance, and the 

predictions are similar to using the mean of measured values. R
2
 represents the proportion of variance in the 

dependent variable (measured soil salinity) that is explained by the independent variable (s) (predicted value of 

soil salinity 𝑍∗(𝑥𝑖).; Ymⅇas: the mean of the measured values; and Z(xi) represents the measured value for each 

data point (𝑥𝑖). 

2.8. Mapping of soil salinity using the hyperspectral indices 

Relations between the observed soil EC and the applied hyperspectral salinity indices were established through 

regression equations. These equations were then applied to PRISMA satellite imagery for mapping the spatial 

variability of soil EC over the investigated area. This mapping utilized all spectral soil salinity indices and was 

conducted using ENVI 5.3 software.  

3. Results  

3.1.Soil Properties  

As data given in Table 1, the soil pH values of the investigated area differ between 7.71 and 8.13. These soils are 

considered as slightly alkaline, moderately alkaline according to Schoenberger et al. (2012). The soil salinity 

data (ECe dS/m), was analyzed to understand its distribution within the soil profiles. The data exhibited a 

moderate range of 1.20 dS/m, with a minimum of 0.85 dS/m, maximum of 2.10 dS/m. According to the 

classification of soil salinity suggested by Schoenberger et al. (2012), approximately 94.12 % of the total soil 

profiles are non-saline (ECe <2 dS/m), while 5.88 % of them are very slightly saline (ECe 2 to <4 dS/m) as 

shown in Table 1. Concerning the calcium carbonate content of the studied soil peofiles varies from 0.65 to 

3.71%. The soil profiles in the studied area are slightly calcareous according to the classification which prepared 

by Schoenberger et al. (2012). Regarding The bicarbonate ions (HCO3
-
) in the saturated soil past extract of the 

studied soil profiles differ from 2.30 to 6.15 meq/L (Table 1). Meanwhile, chloride ion (Cl
-
) concentrations of 
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the studied soil profiles extend from 3.38 to 7.34 meq/L. The soluble sulfate (SO4
-2

) of the studied soils varies 

from 0.25 to 3.08 meq/L. Generally, the soluble anions in the saturated soil paste extract of these soils could be 

arranged in the descending order of Cl
-
 > HCO3

-
 > SO4

-2
. The obtained results reveal that the soluble calcium 

ions (Ca
+2

) range between 1.99 and 6.64 meq/L. Moreover, the soluble magnesium (Mg
+2

) concentration is 

generally less than the soluble calcium in the investigated soil profiles that differs from 1.01 to 4.22 meq/L. The 

findings also observed that the soluble sodium (Na
+
) in the studied soils varies between 3.08 and 6.47 

meq/L.Whlist the soluble potassium ion (K
+
) concentrations of the investigated soil profiles range from 0.26 to 

2.09 meq/L (Table 1). Generally, the soluble cations in the saturated soil paste extract of these soils could be 

ranked in the decreasing order of Na
+
> Ca

+2
 > Mg

+2
 > K

+
. In regard to the sodium adsorption ratio (SARe) of the 

soil profiles differ among 1.87 to 3.67. According to Bohn et al. (2001), these soils have a SARe value of less 

than 13 which they are considered non-sodic soils. As data given in Table 1, the CEC values of the studied soil 

profiles vary from 19.44 to 23.58 cmol (+)/kg. Figure (5) visually depicts the spatial distribution of soil salinity 

(EC values) across the study area, highlighting areas with high and low salinity levels. 

3.2.The derived soil spectral salinity indices 

The applied indices (NDVI; COSRI; NDSI; CI; BI; and SI) were mapped to display the spatial variability of the 

soil salinity over the investigated area, as presented in the Figure (6). The NDVI index which is a relation 

between the red and near infrared (NIR) classified the soil surface to several classes based on the soil cover. 

Moreover, when the vegetation cover increase, the bare soil decrease, and soil salinity decrease. Furthermore, the 

reflectance of other surface objects such as water bodies represented as high salinity because NDVI is a relation 

of soil and vegetation. Figure (7) showed this relation between NDVI and salinity. The typical relation was 

observed for COSRI whereas a positive correlation between NDVI and COSRI. The more NDVI, the more 

COSRI, and the low salinity. The NDSI is typically similar to the NDVI in the values range (-1 to 1); while the 

NDSI used for identifying the soil salinity in the land surface using the green and shortwave infra-red (SWIR) 

spectral bands. The BI works in the visible-near-infra-red (Vis-NIR) range of spectra. It plays a crucial role in 

soil salinity mapping which it can analyse the brightness variations in the soil surface. Moreover, BI helps 

identify areas with higher salt content. The CI assesses soil colour variations, indirectly providing insights into 

soil composition and salinity. Meanwhile, the SI specifically targets soil salinity assessment, considering factors 

like EC. SI aids in evaluating soil salinity severity, impacting plant growth and land use decisions. 

Table 1. Profiles weighted mean of some soil characteristics of the studied area.  

 Profile 

No 

pH ECe 

dS/m 

CaCO3  

% 

Soluble anions (meq/L) Soluble cations 

 (meq/L) 

SARe CEC 

cmol(+)/kg 

    HCO3
-1 Cl-1 SO4

-2 Ca+2 Mg+2 Na+1 K+1   

1 7.77 1.11 3.52 2.3 5.72 1.01 3.08 2.48 4.46 0.49 2.68 20.91 

2 8.02 1.08 3.11 3.53 6.34 0.68 3.41 2.21 3.9 0.79 2.33 19.44 

3 7.89 0.85 1.26 4.07 3.49 0.25 1.99 1.01 4.5 0.71 3.67 20.29 

4 8.01 0.93 2.5 3.89 4 0.47 3.86 1.73 3.15 0.26 1.88 21.23 

5 7.93 0.93 2.45 4.21 4.39 0.29 3.68 1.35 3.08 0.34 1.94 20.79 

6 7.86 0.86 2 3.6 4.03 0.61 3.23 1.16 3.41 0.41 2.3 20.48 

7 7.79 1.27 2.88 3.53 5.9 1.58 4.91 1.58 4.16 0.86 2.31 21.82 

8 7.73 0.94 1.57 4.75 3.49 0.61 4.09 1.35 3.71 0.34 2.25 19.83 

9 7.98 1.2 0.65 4 4.18 1.15 3.53 2.06 4.05 0.45 2.42 19.99 

10 8.07 1.08 3.71 4.64 4.03 0.65 4.2 2.18 3.34 0.79 1.87 22.45 

11 7.96 1.11 3.21 4.64 5.62 0.86 3.68 1.39 4.58 1.09 2.88 20.14 

12 7.71 0.98 2.46 3.49 3.38 1.12 4.99 2.93 3.75 1.05 1.89 21.07 

13 7.72 1.23 2.11 5.26 5.26 0.61 4.73 2.1 4.13 0.64 2.23 20.91 

14 7.99 1.16 1.16 4.07 4.43 1.58 4.43 1.8 4.09 0.83 2.32 20.94 

15 8.13 2.1 1 6.15 7.34 3.08 6.64 4.22 6.47 2.09 2.78 21.08 

16 7.94 0.89 1.24 3.2 4.75 0.25 3.34 1.28 3.64 0.49 2.4 23.58 

17 8.03 1.01 1.13 3.85 3.71 1.19 3 1.46 4.61 0.38 3.09 21.63 
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Fig. 5. The spatial variability map of soil salinity (EC ‘dS/m’) of the study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Relation of NDVI and salinity. 

NDVI 

S
a

li
n

it
y
 

High land cover and low 

salinity 

Moderate land cover and 

salinity 

Low land cover and high 

salinity 



 ALI R. A. MOURSY, et al., 

Egypt. J. Soil Sci. 65, No. 1 (2025) 

24 

   
(a) (b) (c) 
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Fig. 7. Spatial variability maps of spectral soil salinity indices: (a) NDVI; (b) COSRI; (c) NDSI; (d) CI; (e) BI; and (f) SI. 
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3.3.Accuracy assessment of the applied indices  

Table (2) demonstrated the accuracy of each index in mapping soil salinity, assessed using R
2
, RMSE and 

regression equations. The obtained data revealed that the best index for mapping soil salinity was COSRI which 

had R
2
 value of 0.6781 and RMSE of 0.267 dS/m. The second-best index was CI whereas R

2
 and RMSE values 

were 0.6376 and 0.297 dS/m, respectively. The NDVI showed moderate performance in mapping soil salinity 

which recorded R
2
 of 0.5269 and RMSE of 0.127 dS/m. Moreover, the NDSI achieved the same performance of 

NDVI with R
2
 and RMSE values of 0.5098 and 0.267 dS/m, respectively. Furthermore, the CI model achieved 

similar accuracy for mapping soil salinity with R
2
 of 0.5304 and RMSE of 0.297 dS/m. The lowest accuracy was 

recorded for the SI (R
2
 = 0.1129 and RMSE = 0.326 dS/m). Figure (8) showed the scatter plotting between the 

observed or measured values of the EC (dS/m) and the predicted soil salinity values using derived indices.  
  

4. Discussion  

4.1. Soil salinity in the study area 

The soil salinity of the study area was low is similar to the average soil salinity levels in the other regions 

(Moustafa (2023); Thabit et al. (2023); and Moursy and Thabit (2022)). Low salinity soils offer several 

advantages for plant growth and crop production. These include improved plant growth due to better water 

accessibility, higher crop yields, reduced drought stress, easier nutrient uptake, and prevention of desertification 

(Mustafa and Akhtar 2019; Ganzour et al., 2024) Proper management is essential to maximize these benefits. 

Sohag soil have been mapped for their salinity by many research studies. Among them, Moustafa and Moursy 

(2020) utilized the analytical hierarchy process (AHP) and GIS approaches for mapping some soil properties of 

some soils in Sohag included the soil salinity. Ismail et al. (2024) utilized the remote sensing and GIS tools for 

mapping several soil types as well as some physicochemical soil properties in Elbahrya Oasis region. Soil 

salinity can arise from natural or anthropogenic factors. Primary salinization as a natural process occurs 

primarily due to the presence of soluble salts in the soil, including sodium, calcium, and magnesium, these salts 

originate from the weathering of rocks and minerals and can be transported to the soil surface through various 

natural processes. The physical or chemical weathering is another process whereas the breakdown of minerals 

releases salts into the soil (Zaman et al., 2018). The anthropogenic factors which are considered as secondary 

salinization include the overuse of irrigation water which can lead to salt accumulation in the soil. Climate 

change also affect soil salinity; while intensive farming practices can also exacerbate salinization. Another 

important reason is Poor Drainage or Waterlogging whereas, inadequate water transport prevents salt removal 

from the soil. Certainly, evaporation concentrates salts at the surface (Stavi et al., 2021). There are many 

processes which can be followed in order to mitigate the impacts of soils salinity. Among these processes, 

improving the irrigation practices (Saffan et al., 2024). Farmers can explore using brackish water for irrigation to 

reduce reliance on saline river water. Moreover, precise application of water minimizes salt accumulation. 

Promoting crops adapted to saline conditions can mitigate yield losses. Furthermore, constructing and 

maintaining efficient drainage networks is crucial. Besides, installing subsurface drains helps remove excess 

salts. Traditional methods for determining soil salinity have drawbacks, including being time-consuming, 

operator-dependent, labour-intensive, limited in spatial coverage, inadequate for dynamic environments, and 

costly. Modern techniques, such as satellite imagery and remote sensing, offer more efficient and comprehensive 

ways to monitor soil salinity. 

4.2. Hyperspectral remote sensing for soil salinity estimation  

Hyperspectral remote sensing technology provides several advantages for estimating soil salinity. First, it offers 

high-resolution data with continuous spectral bands, allowing precise discrimination of soil properties (Chen et 

al., 2023). Second, it enables dynamic monitoring by collecting data repeatedly over time, aiding in real-time 

decision-making. Third, it is non-destructive and rapid, suitable for large-scale surveys (Shaik et al., 2023). 

Finally, hyperspectral bands are sensitive to soil characteristics, including salinity, facilitating accurate retrieval 

of salinity data (Chen et al., 2023). Earlier research has investigated the possibilities of utilizing PRISMA 

hyperspectral remote sensing to evaluate soil salinity. However, a thorough review emphasized the difficulties 

associated with using remote sensing tools for estimating soil salinity on a large scale. These challenges 

primarily stem from limitations in data resolution and the high costs involved in data acquisition. 
 

Table 2. The accuracy assessment and repression equations of all spectral soil salinity indices. 

  Index R
2
 RMSE (dS/m) Regression equation 

NDVI 0.5269 0.127 y = 0.2356*NDVI + 1.2554 

COSRI 0.6781 0.267 y = 6.3984*COSRI + 0.6249 

NDSI 0.5098 0.489 y = -0.2246*NDSI + 1.2468 

CI 0.6376 0.297 y = -26.167*CI + 1.4501 

BI 0.5304 0.297 y = 113.75*BI + 0.918 

SI 0.1128 0.326 y = -0.3219*SI + 1.3694 
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Fig. 8. Scatter plots between the measured EC (dS/m) and: (a) NDVI; (b) COSRI; (c) NDSI; (d) CI; (e) BI; and 

(f) SI. 
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Fig. 9. Spatial variability maps of soil salinity using the best spectral salinity indices: (a) COSRI; and (b) SI. 

 

In summary, the review underscored the ongoing challenges faced in employing remote sensing for widespread 

assessment of soil salinity due to resolution and cost constraints (Sahbeni et al., 2023). In practical salinization 

mapping, achieving a balance between data resolution, spatial and temporal coverage, acquisition costs, and high 

accuracy expectations often involves making trade-offs. Another article discussed the role of the hyperspectral 

remote sensing data especially PRISMA images in estimating soil salinity (Cala et al., 2022). 

4.3. Spectral salinity indices  

Hyperspectral salinity indices such as COSRI and SI have proven a good efficiency for soil salinity mapping, 

however, similar findings were achieved by Ma and Tashpolat (2023). They recorded R
2
 value of above 0.60 

when regretted with the soil EC observed values. El-Horiny (2019) mapped the soil EC in the Bahariya Oasis, 

Western Desert of Egypt using the SI (R
2
 = >0.80). Han et al. (2023) conducted a study in Da'an City, utilizing 

machine learning techniques and Landsat 8 OLI imagery to estimate soil salinity. They calculated a 

comprehensive set of 19 spectral indexes, encompassing 15 salinity indexes, 3 vegetation indexes, and a 

brightness index, utilizing the blue, green, red, and near-infrared bands of Landsat 8 OLI images. Notably, their 

study found the Cubist model to exhibit the highest prediction accuracy (RMSE=0.31 mS/cm), with the canopy 

salinity index (CRSI) displaying the strongest correlation with measured electrical conductivity (correlation 

coefficient of −0.44). Based on their findings, the Cubist method is recommended for soil salinity monitoring in 

arid and semi-arid regions. In India, Kumar et al. (2015) utilized hyperspectral remote sensing data to derive 

spectral indices for characterizing salt-affected soils. Among these indices, the SI index exhibited strong 

correlations with salinity-related parameters, including EC value (R² = 0.81), pH (R² = 0.51), exchangeable 

sodium percentage (ESP) (R² = 0.80), and sodium adsorption ratio (SAR) (R² = 0.80).  

Additionally, the BI index also showed significant correlations with soil properties, such as EC (R² = 0.77), pH 

(R² = 0.49), EC (R² = 0.73), ESP (R² = 0.79), and SAR (R² = 0.77). These two spectral indices; SI and BI are 
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particularly useful for mapping salt-affected soil parameters. Notably, they rely on spectral bands at wavelengths 

9, 20, and 28, which represent shorter regions of the electromagnetic spectrum. In contrast, the NDSI index, 

based on NIR wavelengths (813.48 nm, corresponding to band 46), demonstrated weaker correlations with soil 

salinity compared to SI, BI, and COSRI spectral indices. Similarly, Fernández-Buces et al. (2006) also 

highlighted the strong correlation between COSRI and BI and soil salinity. In a study by Liu et al. (2018), they 

found that the NDVI index exhibits minimal correlation with soil salinity, whether at a depth of 10 cm or 4 cm. 

Interestingly, the correlation at the 4 cm depth is slightly higher (R² = 0.042) compared to the 10 cm depth (R² = 

0.032). It is hardly to find any research study used the PRISMA hyperspectral imageries for assessing the soil 

salinity.  

5. Conclusion 

The utilization of PRISMA visible-Near-Infrared (vis-NIR) hyperspectral images has demonstrated promise in 

estimating and mapping soil salinity within a specific region of Sohag, Egypt. In this study, seventeen 

representative soil profiles were meticulously collected and analyzed for their EC/dS/m values. Additionally, the 

PRISMA hyperspectral image of the study area was acquired, processed, and several soil salinity hyperspectral 

indices were applied, including SI, BI, NDSI, COSRI, and CI indices. 

Among the spectral bands captured by the PRISMA image, six specific bands (Band 12, 23, 25, 31, 32, and 49) 

were deemed significant and utilized for calculating the hyperspectral indices. Spatial variability maps of soil 

salinity were generated by establishing a relationship between these developed hyperspectral indices and 

observed soil salinity (EC dS/m). 

The results revealed that soil EC in the study area ranged from 0.9 to 2.10 dS/m, with a mean value of 1.40 

dS/m. Interestingly, the generated maps indicated a relatively small range of salinity across the study area. 

Notably, the COSRI and CI hyperspectral salinity indices exhibited superior performance in estimating soil 

salinity (EC). Specifically, the R² values for these indices were 0.6781 and 0.6376, respectively, while the RMSE 

values were 0.267 and 0.297 dS/m, respectively. 

In contrast, other indices such as; NDVI, NDSI, BI, and SI demonstrated lower capability for estimating soil 

salinity over the investigated area. Overall, the PRISMA hyperspectral data holds significant potential for 

enhancing land management practices by accurately estimating soil salinity in the specified part of Sohag, Egypt. 
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