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In recent years, the global gravity model EIGEN-6C4 has been evaluated as one of the 
modern global gravity models with high resolution and accuracy thanks to the 
combination of satellite and ground data. This study uses different technical maps of 
Bouguer gravity anomaly data of the north of the Paracel Islands to contribute to a 
better understanding of the geological structure and tectonic faults. The modern edge 
detection techniques were tested on a synthetic model before being applied to the 
gravity data of the Paracel islands. The obtained structural map from the real model 
aligns with the primary fault system of the study area, which extends in multiple 
directions including NE–SW, NW–SE, WSW-ENE, WNW-ESE, and NNW-SSE. These 
orientations often represent the distribution and orientation of islands, reefs, and coral 
atolls; playing an important role in elucidating the geological structure of the study area 
and providing useful information about the study area's rich resources. 

 

1. Introduction  

The boundary detection methods are important in 
analyzing and processing magnetic and gravity data, 
especially in identifying subsurface structures such as 
faults, geological boundaries, and density or magnetic 
anomalies (Kafadar 2017; Saada et al., 2021, 2022; 
Ghomsi et al., 2022a,b; Sahoo et al., 2022a, b; Hamimi et 
al., 2023; Ekwok et al., 2024; Pham et al., 2024a). Some 
classical edge detection methods include the total 
horizontal derivative (THD), analytic signal (AS), tilt angle 
(TA), and vertical and horizontal derivatives (Ekinci et al., 
2013). However, these methods may encounter issues, 
such as difficulty detecting edges at different positions 
simultaneously, or producing structure maps with low 
resolution (Eldosouky et al., 2022a, b; Kamto et al., 2023). 
Some authors have been introduced the balanced methods 
to outline the edges of deep structures more clearly (Pham 
et al., 2024b). One of the balanced techniques proposed by 
Wijns et al., (2005) is the theta map method (TM).  

This method relies on the amplitude of the analytic 
signal to normalize the total horizontal gradient. The 
horizontal tilt angle method (TDX) introduced by Copper 
and Cowan (2006) uses the absolute value of the vertical 
derivative to normalize the total horizontal gradient. 
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Ferreira et al., (2013) suggested a method that uses 
the total horizontal gradient of THD to normalize the 
vertical derivative of THD called the tilt angle of THD 
method (ETHD). The improved horizontal tilt method 
(ITDX) proposed by Ma et al., (2016) uses higher-order 
derivatives to improve the boundary determination results. 
Chen et al., (2017) presented an advanced high-resolution 
technique called the improved theta map method (ITM). 
Pham et al., (2018) proposed the logistic method (L) based 
on the logistic function and the ratio of derivatives of AS. 
The logistic of the total horizontal gradient (LTHG) method 
is based on the ratio between the derivatives of the THD 
and the logistic function. The enhanced horizontal gradient 
amplitude (EHGA) and the improved logistic (IL) methods 
were suggested by Pham et al. (2020a, b). The EHGA 
technique uses the arcsine function of THD to improve 
resolution. The IL technique used the ratio of THD 
derivatives instead of AS derivatives. 

An improved version of LTHG, based on the 
combination of the logistic function and the derivatives of 
the total horizontal gradient of the vertical derivative, is 
presented by Melouah and Pham (2021), known as the 
ILTHD method. In addition, many other boundary 
description methods have been developed to overcome the 
limitations of traditional methods and at the same time 
contribute to perfecting geological structure maps (Nasuti Y 
and Nasuti A, 2018; Nasuti et al., 2019; Oksum et al., 
2021; Kafadar, 2022; Prasad et al., 2022a, b, c; Alvandi 
and Ardestani, 2023; Alvandi et al., 2023; Pham 2023, 
2024a, b, c, d; Ai et al., 2024). 
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The Paracel Islands are a collection of islands, reefs, 
and coral atolls in the East Vietnam Sea (EVS). The 
formation of the Paracel Islands is the result of the 
combination of tectonic plate activity and coral reef 
development and is closely linked to the evolution process 
of the EVS. Fig. 1(a) illustrates the place of study region 
with a longitude extending from 110° E to 114° E and a 
latitude extending from 15° N and 18° N. This area is 
mainly between the South China Plate and the EVS Plate. 
These two plates play a major role in the formation and 
activity of the region's geology (Manh and Dinh, 2014). The 
Paracel Islands have great potential for oil, gas, and 
minerals under the seabed, especially oil and gas, along 
with minerals such as manganese and rare earths (Nhu et 

al., 2014). However, large-scale exploitation activities have 
not yet occurred due to the complex geological conditions 
of the region (Yang et al., 2022; Li et al., 2023). Elucidating 
the geological structures of the Paracel area contributes to 
predicting future exploration activities, and effectively 
protecting and developing the area. 

In this study, we applied several modern boundary 
determination methods including ETHD, ITDX, ITM, EHGA, 
IL, and ILTHD to gravity data from the global gravity model 
EIGEN6C4 to elucidate the structural features of the 
Paracel islands. We evaluated the effectiveness of the 
methods on the synthetic model before interpreting real 
data of the Paracel Islands. 

 

 
 
Fig. 1. (a) Location of the study area, (b) Bathymetry map. Paracel islands are shown by small black areas. 
 

2. Geological context  
The EVS is located east of the Indochinese Peninsula, 

south of China, east and south of Vietnam, as part of the 
western Pacific Ocean. The EVS is situated at the 
intersection of three major tectonic plates: Australian, 
Indian, and Eurasian plates (Luong et al.,2021). The EVS 
includes several small basins: Northwestern, Eastern, and 
Southwestern (Pham et al., 2022a). The EVS has a 
complex tectonic history, involving seafloor spreading, 
volcanic activity, and subsidence (Sibuet et al., 2016). 
These processes have contributed to the geological 
foundation on which the coral reefs and the Paracel Islands 
developed.  

The Paracel Islands position is the northwest quadrant 
of the EVS. They lie to the southeast of Hainan Island 
(China) and east of the central coast of Vietnam. The 
Paracel Islands are a collection of islands, reefs, and coral 
atolls. The bathymetry map of the study area is presented 

in Fig. 1(b). The tectonic map of the region is depicted in 
Fig. 2(a). The process of seafloor spreading in the EVS, 
particularly in the northwest sub-basin, has led to the 
formation of deep basins. Plate tectonic movements have 
created fault systems and structural (fold and stratigraphic) 
traps are ideal for hydrocarbon accumulation. In addition, 
the development of coral reefs and limestone in the 
Paracel Islands not only formed coral islands but also 
provided a source for thick carbonate sediments. Large 
amounts of methane hydrates are predicted to accumulate 
in the Paracel Islands, indicating that it will become one of 
the significant carbon sinks in the world (Bouchat, 2014).   
3. Data 

Recently, applying of the edge filters to satellite data 
have shown great success in mapping geological 
structures (Sahoo and Pal, 2019; Sahoo et al., 2022a, b; 
Nzeuga et al., 2022; Ghomsi et al., 2022; Pham and 
Prasad, 2023, 2024).  
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Fig. 2. (a) Tectonic map: OC: Oceanic crust, MB: 
Macclesfield Bank., (b) Free-Air gravity data of the Paracel 
Islands area. The red lines show the known faults, while 
the dashed red lines show the tectonic boundaries. 
 

In this study, we used gravity data from the EIGEN6C4 
model for detecting subsurface structures the study area. 
Figure 2b depicts the Free-air gravity dataset of the 
Paracel Islands provided by the EIGEN6C4 model. The 
EIGEN6C4 global gravity field model provides global 
coverage at a spatial resolution of about 12 km, which 
combines satellite data with surface gravity measurements 
such as LAGEOS, GRACE, GOCE, and DTU10 (Förste et 
al., 2014). The accuracy of the EIGEN-6C4 model has 
been confirmed by many articles, especially in the Vietnam 
area. Compared with EGM2008, GECO, SGG-UGM-1, 
SGG-UGM-2, XGM2019e_2159, and GGMPlus and 
concluded that the EIGEN6C4 model is one of the good 
EGM2008-related models when it shows more 
homogeneous accuracy over Vietnam (Pham et al., 2023). 
Some studies have used the EIGEN-6C4 model to map 

geological structures (Pal et al., 2016; Steffen et al., 2017; 
Roy et al., 2017; Melouah et al., 2023). Figure 6a illustrates 
the Bouguer gravity anomaly of the study area with the 
east containing high amplitude signals. The EIGEN-6C4 
gravity model has been widely used and highly successful 
in interpreting structure lineament. 

 
4. Methods 

The ETHD method (Ferreira et al., 2013) is an 
enhanced version of the total horizontal derivative (THD) 
and can improve the ability to balance the anomalies of 
different amplitudes. The ETHD function is expressed as: 

 

 

(1) 

 
with THD is defined as: 
 

 

(2) 

 
Ma et al. (2016) introduced the improved horizontal tilt 

angle method (ITDX) that detects clearer geological 
boundaries based on a higher-order derivatives ratio. The 
ITDX method is given by: 

 

 

 

 

(3) 

 
Chen et al. (2017) introduced a high-resolution method 

capable of detecting clearer subsurface structures known 
as the improved theta map method (ITM). The ITM method 
is calculated using the following formula: 

 

 

 

 

(4) 

 
The EHGA method is an improved boundary 

determination technique by Pham et al., (2020a) using the 
arcsine function of the ratio between the vertical derivative 
and the total horizontal gradient of the THD. The formula 
for the EHGA filter is: 
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(5) 

where  is the real part, and  will provide the best 

result.  

 Pham (2020b) proposed another boundary 
determination method, the improved logistic function to 
enhance the resolution of subsurface structures. The IL 
method uses the formula: 

 

(6) 

where  will give high resolution results, and  

 is defined by: 

 

 

(7) 

The improved logistic total horizontal derivative (ILTHD) 
was suggested by Melouah and Pham (2021). The method 
is defined by the formula: 

 

 

(8) 

with LTHD is calculated by: 

 

(9) 

where VD is the vertical derivative of the potential field F. 

 

5. Results 

In this section, we evaluate the effectiveness of 
modern edge detection methods (ETHD, ITDX, ITM, 
EHGA, IL, and ILTHD) through a synthetic gravity model 
(normal gravity field and gravity field with noise after 
upward continuation of 2km). This model consists of 5 
objects, of which 3 prisms have the same size but different 
depths (A, B, C), and 2 thin prisms have various sizes and 
depths (D, E). The aim was to evaluate the ability of the 

methods to balance signals at different depths. Figure 3 (a, 
and b) illustrates 3D and plan views of the model. Table 1 
details the parameters of the objects. Figure 3(c) shows 
gravity anomalies caused by prisms. Figure 4(a) presents 
the obtained edges from the ETHD, ITDX, and ITM 
methods in Fig. 3c. The ETHD, ITDX, and ITM methods 
can simultaneously balance anomalies of different 
amplitudes but they do not provide sharp signals on the 
boundaries of objects. The edges obtained from the ETHD 
method are thick and tend to overflow inside the object, 
making the obtained object size smaller than the real. The 
ITDX and ITM methods generate secondary edges 
surrounding objects at the deep source (B, C) and fail to 
accurately reflect the size of the thin prism (D). Figure 4(d) 
depicts the results obtained from the EHGA method with 

. The EHGA technique provided better results than 

the above methods in accurately representing the 
boundaries of objects. This method not only effectively 
balances anomalies at different depths but also yields clear 
and sharp results. The boundaries obtained from using the 

IL method  are displayed in Fig. 4e.  Like the EHGA, 

the IL function balances the signals from different sources. 
Furthermore, the IL method provides higher resolution than 
the EHGA method. The boundaries of deep objects (B, D) 
obtained by the EHGA method are thicker than those by 
the IL method. The results obtained from the ILTHD 

method with  are illustrated in Figure 4(f). We can 

observe that the ILTHD method offers the highest 
resolution among the above-discussed methods. However, 
the ILTHD method produces false edges around the 
objects (A, B, C). 

 

Table 1. The parameter of the synthetic model. 

Parameters / Prims A B C D E 

X-coordinates of the center (km) 
50 50 50 125 175 

Y-coordinates of the center (km) 
200 125 50 125 125 

Width (km) 
70 70 70 5 15 

Length (km) 
45 45 45 200 200 

Depth of top (km) 
5 9 13 4 3 

Depth of bottom (km) 
9 13 17 6 5 

Density contrast (g/cm3) 
0.1 -0.3 0.4 -0.5 0.2 
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We further evaluate the sensitivity of the above 
methods to noise. We added 10% Gaussian noise to the 
gravity anomaly. In this case, to reduce the influence of 
noise on the methods, we use an upward continuation to 2 
km before applying the boundary determination methods 
(Nasuti and Nasuti, 2018; Pham et al., 2022b). The 
boundary map obtained from the ETHD method is depicted 
in Figure 5(a). This method can accurately determine the 
position of objects without creating secondary edges. 
However, the resulting edges are not clear and sharp. 
Besides, this method reflects the wrong size of objects 
even when the objects are shallow (D, E). Fig. 5(b), and 
5(c) illustrate the structures obtained by ITDX and ITM 
methods. We can see that both methods are strongly 
affected by noise. The analysis maps obtained by these 
two methods have low resolution. Furthermore, ITDX and 
ITM methods generate false edges around the objects. The 
edges obtained by the EHGA and IL methods are shown in 
Fig. 5(d) and 5(e). Similar to the first case, the EHGA and 
IL methods can simultaneously balance large and small 
amplitude anomalies without creating false boundaries. 
The IL method provides higher resolution results than the 
ETHD, ITDX, ITM, and EHGA methods. The results 
obtained from the ILTHD method are presented in Fig. 5(f). 
We can see that the ILTHD technique is also strongly 
affected by noise. The boundaries of objects at deep 
sources (A, B, C) are faintly outlined and have low 
resolution. 

The Bouguer gravity map from the EIGEN6C4 gravity 
model of the Paracel Islands is depicted in Figure 6a. To 
reduce the effects of noise, the gravity field was upward-
continued to 2 km before using the methods (Fig 6b). The 
structural maps obtained from ETHD, ITDX, and ITM 
techniques are shown in Figures 7(a), 7(b), and 7(c). 
These methods highlight major boundaries and provide 
important information in identifying regional faults. 
However, the boundaries derived from the ITDX and ITM 
methods are interconnected, complicating mapping 
geological structures. Figures 7(d) and 7(e) show the 
geological structures calculated from the EHGA and IL 
methods. Both methods provide a large amount of 
information about the structures of the Paracel Islands. 
Furthermore, EHGA and IL can accurately delineate 
boundaries at shallow and deep sources without creating 
false boundaries. Like the results calculated from the 
synthetic model, the IL method also provides a higher-
resolution geological structure map of the study area than 
the EHGA method. The structural geological of the Paracel 
Islands obtained from the ILTHD technique is depicted in 
Figure 7(f). Although the ILTHD technique can provide 
high-resolution results, it produces discrete boundaries in 
the analysis map. This method generates many false 
boundaries around known geological structures. These 
limitations make it difficult to assess the structural geology 
of the area. 

 

 
 
Fig. 3. (a) 3D, (b) 2D of the model, (c) gravity anomaly, (d) gravity anomaly with noise after upward continuation of 2 km. 
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Fig. 4. The obtained results of gravity anomaly: (a) ETHD, (b) ITDX, (c) ITM, (d) EHGA, (e) IL, and (f) ILTHD. 
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Fig. 5. The obtained results of gravity anomaly with noise after upward continuation of 2km: (a) ETHD, (b) ITDX, (c) ITM, 
(d) EHGA, (e) IL, and (f) ILTHD. 
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To improve the structural knowledge of the Paracel 
Islands, the EHGA, and IL methods were also applied to 
bathymetric data of the region. Although edge filters have 
been developed to interpret potential data, they were also 
used for interpreting non-potential fields (Beamish, 2012). 
Fig. 8(a), and 8(b) illustrate the maps obtained by applying 
the EHGA, and IL techniques to bathymetric data in Figure 
1(b), respectively. Both methods provide a uniform gain for 
all transformed data and represent the signatures of 
topography due to depth variations. 

6. Discussion 

The ETHD, ITDX, and ITM methods can 
simultaneously balance gravity anomalies with large and 
small amplitudes. However, all three methods provided 
low-resolution images. The boundaries obtained from the 
ITDX and ITM methods are diffuse and interconnected. 
The EHGA and IL methods provided clear, sharp structures 
without creating false edges. The IL filter has a higher 
resolution than the EHGA filter. The ILTHD also generates 
high-resolution images but it is strongly affected by noise. 
The edges obtained using the real data appear quite 
discrete. The method also creates numerous false edges 
around known sources, complicating the classification of 
geological structures during real studies. It can be seen 
that both EHGA and IL methods are highly effective in 
determining the boundary. Therefore, we have combined 
these two methods to draw gravity and topographic 
lineaments of the Paracel islands. Figure 9 (a) illustrates 
the structure lineaments from the EHGA and IL methods 
(Fig. 7d and 7e). Figure 9 (b) describes the obtained 
topographic lines from the topographic EHGA and IL maps 

(Fig. 8). The gravity, topographic, and tectonic maps are 
overlapped, as depicted in Figure 10. Many structural lines 
correspond to topographic lineaments that may relate to 
young faults. Some gravity lineaments compare favorably 
with the signatures of topography. 

The detection structure lineaments in the Paracel 
islands follow several directions, primarily NE–SW, NW–
SE, NNW–SSE, WNW–ESE, and WSW–ENE. These 
orientations reflect the dominant structural and tectonic 
features, often associated with fault systems and 
geological formations in the EVS. Some obtained faults 
using EHGA and IL filters in the NE-SW and NW-SE 
directions (Fig.10) correspond to the existing faults. Due to 
the collision between the Indian and Eurasian plates, the 
northeast-oriented boundaries in the Paracel Islands area 
may be related to tectonic activity and movements of 
continental plates, especially the movement of the Shenhu 
plate (Pham et al., 2022a). The collision between these 
plates also created numerous NE-SW, NW–SE và WSW–
ENE-oriented faults, reflecting the stress and displacement 
of the rock masses. The WNW–ESE direction could be 
influenced by forces from the west, where there is 
interaction between the Philippine Sea Plate and the Euro-
Asian Plate. The NNW–SSE direction may relate to faults 
caused by the influence of the Sunda Plate or sliding 
between other plates. These orientations reflect the 
complexity of tectonic activities in the region, illustrating the 
continuous interaction and transformation between tectonic 
plates, which affects the geological structure and shape of 
the Paracel Islands. 

 

 

 
 
Fig. 6. (a) Bouguer gravity data, and (b) Bouguer gravity data after upward continuation of 2km of the Paracel islands area. The 
red lines show the known faults, while the dashed red lines show the tectonic boundaries.   
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Fig. 7. The results of Bouguer gravity anomaly after upward-continued of 2km: (a) ETHD, (b) ITDX, (c) ITM, (d) EHGA, 
(e) IL, (f) ILTHD. 
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Fig. 8. The results of bathymetric data: (a) EHGA, (b) IL. 
 

Fig. 9. (a) Gravity lineaments (black lines) and (b) Topographic lineaments (blue lines) by the EHGA and IL maps. The 
red lines show the known faults, while the dashed red lines show the tectonic boundaries. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Gravity (black lines) 
and topographic (blue lines) 
lineaments are overlapping 
on the tectonic map. The red 
lines show the known faults. 
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Conclusions  
The interpretation of Bouguer gravity data of the 

Paracel Islands, processed using modern methods and 
combined with bathymetric data interpretation, allowed us 
to map the structures in the islands. The results showed 
that the EHGA and IL methods provide better results than 
the ETHD, ITDX, ITM, and ILTHD methods in determining 
the structures. The information obtained from the EHGA 
and IL methods is clear, precise, and high-resolution 
without generating second boundaries. The obtained 
structural map of the study region reveals that the 
boundaries follow the NE–SW, NW–SE, NNW–SSE, 
WNW–ESE, and WSW–ENE orientations. The geological 
characteristics in the area are ideal conditions for the 
formation and accumulation of petroleum. Therefore, the 
findings from this study could aid future research in gaining 
a deeper understanding of the geological structures of the 
islands.  
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