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Abstract

RITICAL-SIZED bone defects, as well as delayed and non-union fractures, are unable to heal
‘ naturally without targeted intervention. Bone graft was the gold method in treating such

conditions with potential deleterious disadvantages including immune rejection, persons
needed for graft harvesting, increased pain and morbidity, and failure of healing in large bony lesions.
Recently, the regenerative therapeutic strategies involving stem cells, microvesicles, and biological
scaffolds have shown promising results in bone healing even in large-sized defects in experimental
and clinical studies. Mesenchymal stem cells and microvesicles can secrete growth factors that aid
vascularization and osteoblast differentiation. This systematic review represents an overview that
investigates the advantages, disadvantages, and outcomes of using mesenchymal stem cells,
exosomes, and biological scaffolds to manage critical-sized bone defects. In recent years, regenerative
therapy for the treatment of critical-size bone defects was considered a major issue in bone tissue
engineering and received extensive attention. Stem cells, EVs, and scaffolds played a crucial role in
the improvement of the rate and quality of osteogenic differentiation, mechanical strength, and
osteogenic conductivity. Studies on EVs and composite biomaterials showed promising results for the

future of bone tissue engineering.
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Introduction

Critical size defect (CSD) is one of the most
challenging issues in orthopedic practice. It is
defined as the smallest size of the intraosseous
wound in a particular bone and species of animal
which shows less than 10% spontaneous healing
during the animal's lifetime [1]. Bone tissue has the
potential for spontaneous healing after injuries. The
regenerative capacity of bone tissue is limited by
many factors, such as age, type of fracture, and
genetic bone disorder [2]. The reconstruction of large
CSD remains a major problem for orthopedic
surgeons.

Bone grafts or biomaterial substitutes are
commonly used as therapeutic strategies for filling
and reconstructing large bone defects. Autologous
bone grafts (ABGs) were considered a gold therapy
to support and accelerate bone regeneration [3].
However, major disadvantages included immune-
mediated rejection, persons required for graft

harvesting, graft quantity, and additional anaesthetic
time [3,4,5]. Stem cell therapy is a promising
therapeutic strategy for repairing CSD. Mesenchymal
stem cell (MSC) tissue engineering avoids some
drawbacks associated with other treatment methods
such as the limited number of grafts/scaffolds,
requirements of microvascular surgeries, and long
treatment duration [6].

Giannoudis et al and Dilogo et al reported that
osteogenic cells must work together with
osteoconductive/osteoinductive scaffold and
mechanical environment to achieve excellent fracture
healing. Mechanical stability and solid fixation are
often required to facilitate and accelerate bone
reconstruction. [7,8]. Bone tissue engineering (BTE)
therapeutics primarily focuses on the development of
biomaterials that facilitate and support bone
regeneration in a physiologically appropriate manner
[9]. BTE includes stem cells, microvesicles, and
exosomes, scaffolds, microenvironments that support
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cell differentiation and adequate vascularization [10].
The aim of this systematic review was to investigate
the regenerative capability of mesenchymal stem
cells, exosomes, and biological scaffolds for the
management of critical-sized bone defects.

Stem cells

Stem cell therapy is a potential strategy for bone
regeneration. Mesenchymal stem cells (MSCS) can
be harvested from different body sources such as
adipose tissue, bone marrow, dental pulp, amniotic
membrane, and umbilical cord. MSCS are multi-
potent cells characterized by self-renewal capacity,
fast proliferation and long-term viability. They are
classified according to their progressive stage and
capacity for dissimilarity [11,12].

The valuable impact of mesenchymal stem cells
(MSCs) is mainly due to their capacity to enhance
natural regeneration and liberate some biomolecules,
such as cytokines, chemokines, and exosomes
[13,14,15].

MSCs have a particular systemic anti-
inflammatory effect on cytokines generated after
fracture. They had a marked effect on reducing IL-6,
tumor necrosis factor o (TNF-a), and IL-1f levels on
the 3™ day after fracture which resulted in reduce
tissue damage and stop fibrosis formation [15]. They
express CD105, CD73, and CD90, and are not able
to express CD45, CD34, CD14, or CD11b, CD79a. or
CD19 antigens. In addition, many studies confirmed
that  MSCs  are useful for fracture repair by
differentiation into osteoblasts [1,10,11]. Another
study found that transplanted MSCs support the bone
fracture healing by expressing BMP-2 which induces
osteogenesis [16]. It's unknown how MSC homing
processes to bone fracture occurred. Moreover, the
precise functions of MSCs in fracture healing are still
unclear [17].

The origin of MSCs has a crucial influence on
their characteristics. The anatomical source and
donor-specific characteristics like age and health are
among the elements that contribute to MSC
variability, which makes the therapeutic translation
of these cells challenging [18]. Bone marrow-derived
mesenchymal stem cells (BM-MSCs) were
considered the most utilized source of mesenchymal
stem cells due to their high regenerative capacity
[19]. Chuang et al reported rejection of (BM-MSC)
xenotransplantation after one week, while, adipose-
derived stem cells (ADSCs) scaffolds were able to
avoid rejection and support the bone-healing process
[20]. Han et al found that BM-MSCs are more
efficient than (ADSCs) in differentiating into
osteoblasts [21]. On the contrary, recent studies
found that ADSCs showed a higher proliferation
capacity, angiogenesis, and Vasculogenesis than
BM-MSCs [18,22]. Stromal vascular fraction (SVF)
is a component of adipose tissue that is considered a
rich source of inflammatory cells, preadipocytes,
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MSCs, and cytokines. SVF is essential for tissue
healing because it promotes the growth,
differentiation, and viability of ADMSCs [22]. Both
dental pulp-derived stem cells (DPSCs) and ADSCs
are easily harvested with minimally invasive
approaches compared to BM-MSCs. They showed a
high proliferation rate. Moreover, ADSCs showed
faster bone regeneration than DPSCs in the treatment
of mandibular defects in a rat model [23]. Platelet-
rich plasma (PRP) significantly enhanced bone
growth and improved the quality of bone healing
when added to bone grafts by producing platelet
lysate (PL) and growth factors [24,25].

Mesenchymal stem cells (MSCs) that were grown
in a PL medium displayed faster proliferation and the
greatest potential for bone repair [26]. The PL
improves vascularization and continuous releases of
growth factors that result in increased bone volume
and osteoclasts when combined with MSCs [27].

The use of serum-free media supports MSCs to
maintain their phenotype (higher genetic stability)
and to enhance their osteogenic ability with reduced
incidence of immune rejection [28].

MSCs have been used alone or added to scaffolds
to designate three-dimensional structures planning to
reinforce bone restoration [29,30]. However, the
effectiveness of these approaches may be limited by
variable regulatory considerations [31,32].

Stem cells cannot support healing in a less
vascularized environment, inadequate nutrition, and
massive tissue damage. Moreover, the use of MSC
therapy included the risk of in vivo unintended
differentiation,  phenotypic  changes, immune
rejection, the tendency to stimulate tumor growth,
and the variable cell survival rate that restricts its
clinical applications [33,34].

Extracellular vesicles (EVs)

The favorable biological effects of stem cells on
tissue regeneration are mediated through the
paracrine effect of nanostructured extracellular
vesicles (EVs). EVs overcome the limitations of stem
cell treatments [35,36]. Extracellular vesicles (EVs)
can be classified into three types, exosomes,
microvesicles (MVs), and apoptotic bodies [37].

Exosomes  (Microvesicles) are  cell-free,
phospholipid bilayer nanostructures (with diameters
ranging approximately from thirty to one hundred
and fifty Nanometres). They function to transport a
wide range of active proteins, lipids, and abundant
nucleic acids. It has the same functions as their
mesenchymal stem cells [13,38,39].

Previous studies have shown that these
microvesicles have  pro-regenerative, anti-
inflammatory, anti-fibrotic, and anti-apoptotic

pathways [40].
Exosomes are stable (can overcome proteolytic
degradation), and have a minor risk of immune
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rejection and no risk of aneuploidy, so, they provide
a promising alternative remedy in different medical
fields [41,42].

Previous studies showed the major regenerative
capability of exosomes in tendon and tendon-bone
healing [43,44], treatment of osteoarthritis [40,45],
and improving bone regeneration via promoting bone
homeostasis, osteogenesis, angiogenesis, and
inflammatory modulation [46,47]. Although much
research focused on EVs for the repair of critical-size
bone defects, the specific mechanisms remain
unclear.

The intra-articular injection of exosomes played a
crucial role in delayed OA progression and repair of
critical-sized  osteochondral  defects  [48,49].
Bioactive material-loaded EVs have the potential to
efficiently heal critical-size bone defects [50].

Exosomes can be harvested from various sources
such as adipose tissue, bone marrow, embryonic stem
cells, umbilical cord, or induced pluripotent stem
cells. The selection of a suitable source of parent
cells of EVs has a great influence on the rate and
quality of bone regeneration [51]. EVs formed by
MSCs accelerate bone repair via similar mechanisms
to their parent cells [52]. The commonly used parent
MSCs of EVs mainly include umbilical cord
mesenchymal stem cells [53], adipose-derived stem
cells (ADSCs) [54], and bone marrow [55]. ADSCs
are considered the favorable and most applicable
parent cells for EVs because they are easily
harvested, rapidly proliferated, widely distributed in
the animal body, and decrease susceptibility to aging
[56,57]. The exosomes formed by MSCs can prevent
osteocytes from apoptosis in a hypoxia/serum
deprivation model and an induced osteonecrosis
model [58]. In addition, MSC-derived exosomes
have been shown to have a significant role in fracture
repair in addition to osteoporosis [59].

MSCs exosomes could enhance bone formation at
every step of bone repair, suppress bone loss, share
in bone rehabilitation through immune regulation,
and prevent osteoporosis [54,60,61,62]. Application
of EVs alone could not guide bioactive molecules to
reconstruct the CSD and this could be attributed to
the clearance of the reticuloendothelial system that
leads to a quick loss of EVs and failure to reach the
effective therapeutic concentration locally [63].
Thus, some bioactive scaffolds are needed in EVs-
based BTE applications to ensure the sustained
release of EVs [64].

Biological scaffolds

Biological scaffolds, also known as bioactive
materials can be wused in conjunction with
mesenchymal stem cells (MSCs) and their released
biomolecules to restore critical-size bone lesions.
These scaffolds maintain the shape of critical-size
bone defects and also help stem cells and EVs for
better osteogenesis through different mechanisms
[65]. Scaffold permits the formation of new bone

along a predictable pattern determined by the biology
of the graft and the mechanical environment of the
host-graft interface [66].

The ideal biomaterial should have high
osteoinductive and angiogenic potentials, biological
safety, low patient morbidity, high volumetric
stability, easy market availability, long shelf life, and
reasonable production costs [67,68].

Hydrogels were considered the ideal carrier
material for delivering EVs to bone defects with
controlled production and suitable biocompatibility
[69]. EVs loaded in hydrogels showed a significant
increase in both bone mineral density and volume
[70]. Hydrogel can be fully absorbed with osteogenic
induction and accelerated bone remodelling [62].
Engineered modified EVs loaded with sodium
alginate hydrogels were used for the continuous and
controllable release of EVs to repair critical-size
skull defects [71].

Hydroxyapatite (HA) has a similar composition
to bones and teeth. HA synthetic grafts result in
excellent stability and bone regeneration as they
stimulate bone regeneration and are gradually
replaced by bone [72,73]. Injectable hydrogel
including hydroxyapatite, hyaluronic acid, and
alginate had an effective role in accelerating
osteoblast differentiation [62].

Porous bioceramics are now the material of
choice for scaffolds for transplanting stem cells or
EVs. They are characterized by mechanical strength,
biocompatibility, and  biodegradability  [74].
Bioceramics  were classified as absorbable
bioceramics, such as B-TCP (tricalcium phosphate),
and non-absorbable bioceramics, such as alumina
and zirconia.

Porous-silicated calcium phosphate biomaterials
were found to facilitate functional bone production at
the defect site. Their use in bone regeneration is
limited due to their stiffness and low osteoinductivity
[75].

Hydroxyapatite (HA) glass ceramics exhibit
favorable biological activities. BMMSCs EVs loaded
hydroxyapatite/TCP  bioceramics showed better
osteogenesis [76]. HA biomaterials seeded with bone
marrow stroma showed complete fusion between the
implant and host bone with good implant integration
[77].

Osteoconductive B-TCP acts as an
osteoconductive scaffold those releases hiPSC-MSC-
derived exosomes in a controlled manner, which
promotes osteogenesis by proliferation, migration,
and differentiation of hBMMSCs [78].

Adding minerals such as strontium to bioceramics
significantly improved the rate and quality of
osteogenic differentiation of EVs [79]. Decreased
porous diameters of the bioceramics create a suitable
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microenvironment for EVs for better osteogenesis,
angiogenesis, and antimicrobial activities [80].

Bioceramics can be used only in low-loading
orthopedic applications due to their less sufficient
strength and low toughness [81].

Synthetic  polylactic-glycolic acid (PLGA),
PLGA  polyethylene  glycol triblock, and
Polycaprolactone polymers were considered effective
delivery carriers of EVs because of their ability to
release controlled and adjustable number of
exosomes resulted in the improvement of bone
regeneration [54,82,83]. Polymer composites have an
elastic modulus comparable to that of bone tissues,
although not have the same biological activity as
hydrogels or bioceramics [64].

Polycaprolactone is the most commonly used
polymer in Dbone tissue engineering. It is
characterized by its thermal stability, high
biocompatibility, high permeability, and ability to
maintain its mechanical properties for 6 months
[84,85].

Biodegradable  polymers showed  weak
mechanical properties and failure of strong bone
integration due to their poor adhesion and lack of
bioactivity [86].

Titanium and its alloys are the only metals that
have osseointegration characteristics. They are
widely used in BTE due to their optimal porosity,
biocompatibility, and high mechanical strength and
corrosion resistance of these metals [87]. Modified
titanium alloy had a better ability to repair critical-
size bone defects [88].

Composite biomaterials formed by a combination
of polymers and ceramics resulted in improved
bioactivity, biocompatibility, and mechanical
strength with reduced creep-induced failure [89].
Metals added to composites increased the strength
and osteogenesis. Fielding et al., found increased
bone density, mechanical strength, and rapid cell
proliferation of tricalcium phosphate by adding
silica. [90].

The combination of more than one polymer with
calculated ratios in one scaffold (composite)
improves the rate and quality of osteogenesis.
Combination of hydroxyapatite and poly lactic acid
(HA/PLA), Combination of tri calcium phosphate
and poly lactic glycolic acid (TCP/PLGA), phosphate
glass fiber/PLA composite, chitosan- B-tricalcium
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phosphate composite, PEGylated poly (glycerol
sebacate) (PEGS)/hydroxyapatite composite and
calcium phosphate-zirconia scaffold demonstrated
effective ~ osteogenesis,  vascularization  and
mechanical strength [91,92,93,94,95,96]. Moreover,
the ratio of biomaterials forming the composite
affects both osteogenesis and biodegradation.
Composite  biomaterials of  PGA/beta-TCP
biomaterials in a 1:3 ratio resulted in better bone
mineral density and superior biodegradability than
PGA/beta-TCP biomaterials in a 1:1 ratio for repair
of CSD in a rat model [97].

Carbonated hydroxyapatite (CHA)-gelatin was
effective in coating biomaterials when added to poly
(e-caprolactone)-tri calcium phosphate (PCL/TCP)
composite.

Arafat et al. found that (PCL/TCP) composite
coated with (CHA)-gelatin resulted in a significant
increase in proliferation rate and osteogenic
differentiation of cultured porcine (BM-MSCs) than
non-coated CHA-coated composites. [98].

Conclusion

In recent years, regenerative therapy for the
treatment of critical-size bone defects was considered
a major issue in bone tissue engineering and received
extensive attention. Stem cells, EVs, and scaffolds
played a crucial role in the improvement of the rate
and quality of osteogenic differentiation, mechanical
strength, and osteogenic conductivity. Studies on
EVs and composite biomaterials showed promising
results for the future of bone tissue engineering.
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