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Abstract 

In this paper, we discuss the estimation of δ = P(Y < X) based on Type-II 

progressive hybrid censored samples when X and Y are two independent 

Inverse Weibull distributions with different scale parameters, but having the 

same shape parameter. Different methods for estimating δ are applied. The 

maximum likelihood estimator and the The observed Fisher information 

matrix is computed and it is used to construct an asymptotic confidence 

interval for δ. Bayes estimate of δ under the assumptions of independent 

gamma priors. Markov Chain Monte Carlo (MCMC) technique is used for 

Bayes computation. Moreover, by using the MCMC method, we achieve the 

highest posterior density ( HPD) credible intervals. Monte Carlo simulations 

are performed to compare the efficiency of the proposed estimators. One data 

analysis has been presented for illustrative purposes. 

Keywords: Stress-strength model, Inverse Weibull distribution, maximum 

likelihood estimator, Bayes estimator, Markov Chain Monte Carlo,, Type-II 

progressively hybrid censoring. 
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1 Introduction 

One significant use of reliability theory is the stress-strength reliability δ = 

P(Y < X) model.This model is used in many applications of physics and 

engineering such as strength failure and system collapse. In electrical and 

electronic systems δ arise as a measure of system performance. Some authors 

used δ as a broad measure of the difference between two populations. Dagum 

[8] utilized δ to quantify inequality between income distributions. (Adimari 

and Chiogna [1]) utilized it to indicate the evaluation of the area under the 

receiver operating characteristic (ROC) curve for diagnostic tests that produce 

continuous results. For more details and applications of δ, see Kotz et al. [17]. 

Statistical inference about the reliability model has gotten a lot of attention 

in the field of reliability. For P(Y < X),X is the strength of a system which is 

subjected to stress Y . The system fails when the stress surpasses the strength. 

Therefore, the stress-strength parameter δ assesses system reliability. In 

statistical science, estimating δ has been an attention problem for statisticians 

since 1956 starting with the work of Birnbaum [5]. Since that time, δ has been 

estimated from both frequentist and Bayesian viewpoints. Recently, some 

authors have studied the estimation of the stress–strength parameter, such as 

(Kundu and Gupta [19]), (Babayi and Khorram [3]), Nadar et al. [22], (Nadar 

and Kizilaslan [21]) and (Kizilaslan and Nadar [14]). Despite extensive 

research on the stress-strength model in complete sample cases, censored 

sample studies have received less attention of This parameter. However, in 

some real instances, for various reasons, Researchers confronted the censored 

data. Recently, some authors have studied the estimation of the stress–strength 
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parameter, such as (Shoaee and Khorram [26], [27]), Kohansal [15], 

(Kohansal and Nadarajah[16]), Yadav et al. [29] and Alshenawy et al.[2]. 

Type-I and Type-II censoring schemes are the two most critical schemes for 

the study of censored data theory. A mixture of Type-I and Type-II schemes, 

which has been introduced by Epstein [10], is the hybrid censoring scheme. In 

the hybrid scheme, during the experiment, the active units cannot be removed. 

So, Type-I and II progressive hybrid censoring (PHC) schemes have been 

introduced by Kundu and Joarder [20] and Childs et al. [7]. The Type-I 

progressive hybrid scheme can be illustrated as follows. Consider one 

progressive censoring scheme {R1,...,Rr} with n units on the test. The test 

stopping time , where T > 0 and X(1) ≤ ··· ≤ X(r) are a fixed 

time and a progressive censoring sample, respectively. The number of 

observed samples in the Type-I progressive hybrid scheme may be small. So, 

the Type-II progressive hybrid (TII-PHC) scheme overcomes the drawback of 

the Type-I progressive hybrid scheme. The TII-PHC scheme involves the end 

of experiment at time . It is obvious that if X(r) ≥ T, then we 

end the test at time X(r), and  is the observed progressive sample. 

In this case, we confront the progressive scheme. Some authors studied the 

progressive scheme properties, such as Soliman et al. [28]. For further details 

on progressively censoring, the book by (Balakrishnan and Aggarwala [4]) 

may be a suitable reference for readers. If X(r) < T, the process will not only 

follow the prespecified scheme to remove the units after each failure, but 

continue to observe failures (without any further withdrawals) up to time T. 
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So, in this censoring, the scheme is {R1,...,Rr,Rr+1,...,RD}, where Rr = Rr+1 = ··· = 

RD = 0, and the observed sample is 

, this paper obtains some different point and 

interval estimates of 

the reliability parameter, δ = P(Y < X), when X and Y follow two independent 

Inverse Weibull distributions (IWD). 

The Inverse Weibull distribution(IWD) was introduced by Keller and 

Kamath [13] with scale and shape parameters as σ and α, respectively, denoted 

by IW(σ,α) has the probability density function (pdf) and the cumulative 

distribution function (cdf) respectively is investigated. 

f(x;σ,α) =σαx
−(1+α)

e
−σx−α

, x > 0,α,σ > 0 (1) F(x;σ,α) =e
−σx−α

, x > 0,α,σ > 0 (2) 

In this paper, we discuss the estimation of δ, when X ∼ IW(σ1,α) and Y ∼ 

IW(σ2,α) are independent random variables Based on the TII-PHC scheme. 

The rest of this paper is organized as follows. We obtain the Stress Strength 

Parameter in Section II. The MLE of δ in Section III. The asymptotic 

confidence interval for δ in Section IV. The Bayes estimate of δ by using the 

MCMC method, We achieve the highest posterior density ( HPD) credible 

intervals in Section V. The simulation study in Section VI. The analysis of real 

data set is presented in Section VII. Finally the conclusion is given in Section 

VIII. 

2 Stress Strength Parameter 

Let X ∼ IW(σ1,α) and Y ∼ IW(σ2,α) be two independent random variables 

with the same shape parameter α and δ = P(Y < X) is the stress-strength 

reliability model, then: 
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.                                                                                  (3) 

3 Maximum Likelihood Estimation of δ 

Let  and  be two 

TII-PHC sam- 

ples with the schemes {n,r,T1,D1,R1,...,Rr−1} and {m,k,T2,D2,S1,...,Sk−1}, 

respectively. Under these assumptions, we can write the likelihood function of 

the unknown parameters as 

 

where 

 (n − r − Pri=1−1 Ri, if x(r) ≥ T;, if y(k) ≥ T; 

Rr = 0, if x(r) < T.if y(k) < T. if x(r) ≥ T;if y(k) ≥ 

T; , if x(r) < T., 

if y(k) < T. if x(r) 

≥ T;if y(k) ≥ T; , if x(r) < T., if y(k) < T. 

the likelihood function, based on the observed data, is 
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  (4) 

taking the natural logarithm of (4), we obtain 

 (5) 

to derive ˆσ1,σˆ2, and ˆα, the MLEs of σ1,σ2, and α, respectively, we should 

solve the following equations: 
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(6) 

(7) 

 

(8) 

 

 

 

 

The MLEs ˆσ1,σˆ2,αˆ of the model parameters are the solution of non-linear 

Eqs. (6)-(8) after setting them equal to zero. These equations are very difficult 

to be solved, so iterative procedures are used as Newton Raphson or 

conjugate-gradient. 
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4 Asymptotic Confidence Interval of δ 

the asymptotic confidence interval is obtained by deriving the asymptotic 

distribution of δ. Since δ is a function of the parameters, we first obtain the 

asymptotic distribution of θ
ˆ 
= (σˆ1,σˆ2,αˆ). If 

3, is the observed Fisher information matrix, 

then we achieve 

the elements of I(θ) by obtaining the second partial derivatives of function (5) 

as follows: 

 , 

where 
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Let ˆσ1,σˆ2 and ˆα be the MLEs of σ1,σ2, and α, respectively. So 

 , 
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where I(σ1,σ2,α) and I
−1

(σ1,σ2,α) are symmetric matrices and 

I  , I 

in which

, 

, u12 = I13I23, u13 = 

−I13I22 

, 

Let δ
ˆMLE 

be the MLE of δ, we have 

u23 = 

−I11I23, 

u33 = 

I11I22 

MLE 

) in distribution 

Now, the variance of δ
ˆ
, denoted by B, can be obtained use the delta 

method. 

Therefore, B = u
T 

I
−1

(σ1,σ2,α)u, where 

         (9) 
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with 

, 

in which 

(10) 

we obtain the asymptotic confidence interval of δ. We noted that using the 

MLEs of σ1,σ2, and 

α, the value of B should be estimated. Hence, a 100(1 − γ)% asymptotic 

confidence interval of δ can be constructed by 

MLE MLE  

where zγ is 100γ-th percentile of N(0,1). 

5 Bayes estimation of δ 

We consider the Bayes estimation of δ under the assumption that the shape 

parameter α and scale parameters σ1 and σ2 are random variables. It is assumed 

the σ1, σ2 and α have independent gamma priors with PDFs: 

− z 1 − γ 2 
p ˆ B, ˆ δ 



133 

, 

where a1,b1,a2,b2,a3 and b3 are the hyper-parameters. Then, the joint prior 

density of σ1,σ2 and α can be written as 

 0         (11) 

Combining equation (4) with equation (11) then 

 

The joint posterior density of σ1,σ2 and α can be written as 

 (13) 



134 

The joint posterior density of the unknown parameters given in (13) is 

complicated and no closed form estimates appear to be possible. We, 

therefore, consider MCMC techniques namely, Gibbs sampler and Metropolis-

Hastings (M-H) algorithm to obtain the sample based Bayes estimator of the 

stress-strength reliability δ and to construct the corresponding HPD credible 

interval. The full posterior conditional distributions for σ1, σ2 and α 

respectively, are given by 

            (14) 

 (15) 

(16) 
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We use following hybrid algorithm to generate samples from the full 

conditional posterior densities: 

Step 1: Set an initial values . 

Step 2: Let t = 1. 

Step 3: Generate  from ) in (14) using M-H 

algorithm withnormal proposal distribution. 

Step 4: Generate  from ) in (15) using M-H algorithm 

withnormal proposal distribution. 

Step 5: Generate α
(t) 

from ) in (16) using M-H algorithm 

withnormal proposal distribution. 

Step 6: Compute δ
(t) 

from Equation (3). 

Step 7: Set t = t + 1. 

Step 8: Repeat steps 3-7, N times. 

Using this algorithm, Bayesian estimation of δ, under the squared error loss 

function, is derived as 

                                                         (17) 
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where M is the burn-in period. Moreover, a 100(1 − γ)% HPD credible 

interval of δ can be constructed by applying the method accomplished by 

Chen and Shao [6]. 

6 Monte Carlo Simulations 

This section evaluates and compares the offered theoretical results for point 

and interval estimators about σ1, σ2, α, and δ based on a series of extensive 

Monte Carlo simulations. 

6.1 Simulation designs 

From the proposed IW model when (σ1,σ2,α) = (1.5,2.5,5), we simulate 

1,000 TII-PHC samples based on various choices of n,m(complete sample 

sizes), r,k(effective sample sizes), Ti, i = 1,2,(threshold times), and 

R,S(progressive censoring patterns). Here, the plausible value of δ from the 

proposed populations is taken as 0.375. 

Specifically, using T1(=2.5,9.5) and T2(=5.5,7.5), the values of r (or k) are 

utilized as a failure percentage (FP), such as FP[  100% = 50 and 80% 

(as an example). Without loss of generality, in Table 1, different comparison 

setups of IW(σ1,α) and IW(σ2,α) populations are provided. To distinguish, in 

Table 1, the progressive design (5∗4,0∗16) (as an example) means that five 

survival items will be drawn at each stage of the first four stages, and the 

experimenter will stop the removals for the remaining sixteen stages. 
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Table 1: Comparison scenarios used in Monte Carlo simulations. 

Te

st 

n(FP[r]

%) 

m(FP[k]

%) 

{R,S} 

A 40([50

%]) 

30([50

%]) 

PC[1]:{(5*4,0*16),(5*3,0*12)} 

PC[2]:{(0*8,5*4,0*8),(0*6,5*3,0*

6)} 

PC[3]:{(0*16,5*4),(0*12,5*3)} 

B 40([80

%]) 

30([80

%]) 

PC[1]:{(2*4,0*28),(2*3,0*21)} 

PC[2]:{(0*14,2*4,0*14),(0*11,2*

3,0*10)} 

PC[3]:{(0*16,5*4),(0*12,5*3)} 

C 60([50

%]) 

80([50

%]) 

PC[1]:{(5*6,0*24),(5*8,0*32)} 

PC[2]:{(0*12,5*6,0*12),(0*16,5*

8,0*16)} 

PC[3]:{(0*24,5*6),(0*32,5*8)} 

D 60([80

%]) 

80([80

%]) 

PC[1]:{(2*6,0*42),(2*8,0*56)} 

PC[2]:{(0*21,2*6,0*21),(0*28,2*

8,0*28)} 

PC[3]:{(0*42,2*6),(0*56,2*8)} 

Not, to collect a TII-PHC sample of sizes r and k from the proposed 

lifetime populations IW(σ1,α) and IW(σ2,α), do the following procedure: 

Step 1: Set the actual values σ1 and α in IW(σ1,α) population. 

Step 2: Simulate a traditional progressive Type-II censored sample as: 

(a) Obtain ψ independent items (say ψ1,ψ2,...,ψr) from uniform U(0,1) 

distribution. 

(b) Set Ω , for i = 1,2,...,r. 
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(c) Set Ui = 1 − ΩrΩr−1 ···Ωr−i+1 for i = 1,2,...,r. 

(d) Collect a desired progressive Type-II sample (X(i), i = 1,2,...,r) from 

IW(σ1,α) by setting: 

 

Step 3: Obtain D1 at T1. 

Step 4. Determine the TII-PHC data type as: 

(a) Case-1: If T1 < X(r), stop the test at X(r). 

(b) Case-2: If X(r) < T1, set Ri = 0, i = r,r + 1,...,D1, then stop the test at T1. 

Step 5: Redo Steps 2–4 for IW(σ2,α) population. 

Once the 1,000 TII-PHC samples are collected, using the package ’maxLik’ 

(by Henningsen and Toomet [11]), the MLEs and 95% ACIs of σ1, σ2, α, and δ 

are evaluated. To carry out the proposed Bayes’ estimation, following the idea 

of prior mean and prior variance of hyper-parameters, which was introduced 

by Kundu [18], we utilized two informative sets of (a1,a2,a3,b1,b2,b3) called: 

• Prior-1:(a1,a2,a3) = (7.5,12.5,25) and bi = 5, i = 1,2,3; 

• Prior-2:(a1,a2,a3) = (15,25,50) and bi = 10, i = 1,2,3. 

To generate MCMC samples of σ1, σ2, or α, using the ‘coda’ package (by 

Plummer et al. [25]) 12,000 MCMC samples are generated, and the first 2,000 

variates are eliminated as burn-in. Then, using the remaining 10,000 MCMC 

samples, the computations of the proposed Bayes point and interval estimates 

of σ1, σ2, α, or δ are obtained. All programming language softwares presented 
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in this study were recently recommended by Elshahhat et al. [9] and developed 

by R 4.2.2. 

Of course, for each setup, we compute the average estimate (AvE) of δ (as 

an example) as follows: 

1000 

 AvE(  , 

i=1 

where δ
ˇ(i) 

represents the acquired estimate of δ at ith sample. 

The comparison between the proposed point estimators of δ is made based 

on two different criteria, namely: 

(a) Root Mean Squared-Error (RMSE): 

v u 

RMSE(. 

(b) Mean Relative Absolute Bias (MRAB): 

1000 

MRAB( . 

i=1 

On the other hand, the comparison between the proposed interval 

estimators of δ is made based on two accuracy criteria, namely: 

(a) Average Interval Length (AIL): 
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ACL . 

(b) Coverage Probability (CP): 

CP , 

where 1⋆(·) is the indicator function and (L(·),U(·)) denotes the estimated two 

interval bounds of δ. 

In a similar way, the AvEs, RMSEs, MRABs, AILs, and CPs of σ1, σ2, or α can 

be easily obtained. 

6.2 Simulation outputs 

All simulation findings are listed in Tables 2-9. To distinguish, in Tables 2-

5, the AvEs, RMSEs, and MRABs are listed in the first, second, and third 

columns, respectively. Furthermore, in Tables 6-9, the AILs and CPs are listed 

in the first and second columns, respectively. 

Now, from Tables 2-9, in terms of the lowest levels of RMSEs, MRABs, 

and AILs as well as the largest level of CPs, we report the following 

observations: 

• All offered inferential results of σ1, σ2, α, or δ behave satisfactorily. 

• As r(or k) increases, the associated accuracy of all acquired estimates 

behaves well. A similar note is also reached when FP[r]%(or FP[k]%) 

increases. 

• As Ti, i = 1,2, increase, it is noted that the simulated RMSE, MRAB, and 

AIL values for both maximum likelihood and Bayesian estimation results 
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of σ1, σ2, α, and δ increase. Furthermore, the opposite comment is 

observed when the comparison is made in terms of their CP values. 

• Comparing the proposed point estimations, it is clear that the estimates of 

σ1, σ2, α, or δ created from the Bayes method behave better compared to 

those created from the maximum likelihood method. This result is due to 

the fact that the Bayesian estimation results involved more priority 

information on the unknown parameters than the classical estimates. 

• Comparing the proposed interval estimations, it is clear that: 

– The results of σ1, σ2, α, or δ created by the BCI (or HPD) method 

outperformed those created by the ACI-NA (or ACI-NL) method. 

This is an expected result given the fact that the BCI (or HPD) 

results included more precision information from the proposed joint 

gamma priors. 

– The results of σ1, σ2, and α created by the ACI-NA approach are the 

best compared to those obtained based on the ACI-NL approach. 

– The results of δ created by the ACI-NL approach are the best 

compared to those obtained based on the ACI-NA approach. 

• Comparing the proposed priors 1 and 2, it is shown that estimates made 

using the latter are superior to those developed using the former. This is 

an expected outcome because the variance of previous 2 is lower than 

that of prior 1. 

• Comparing the proposed PC[i], i = 1,2,3, we have noted that: 

– All point and interval estimates σ1, σ2, or δ behave better based on 

PC[1] (when remaining live elements are removed during the early 

stages) than others. 
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– All point and interval estimates α behave better based on PC[3] 

(when remaining live elements are removed during the last stages) 

than others. 

• As a recommendation, when the sample is collected from the proposed 

TII-PHC strategy, the Metropolis-Hastings algorithm is advised to 

estimate the unknown parameters when the stress and strength follow 

two independent inverse Weibull populations. 

Table 2: Point estimation results of σ1. 
 

Test Scheme  MLE  MCMC   

Prior-1   Prior-2  

    (T1,T2) = 

(2.5,5.5) 

    

     

 

     

A PC[1] 1.4315 0.7196 0.3961 1.5572 0.6988 0.3759 1.7182 0.6036 0.3408 

 PC[2] 0.9139 0.7660 0.4330 1.1166 0.7435 0.4142 1.5495 0.6450 0.3896 

 PC[3] 1.0266 0.7436 0.4132 1.1689 0.7309 0.4029 1.5045 0.6249 0.3787 

B PC[1] 1.0355 0.6541 0.3676 1.1157 0.6242 0.3313 1.2928 0.5620 0.2999 

 PC[2] 0.9058 0.6739 0.3855 0.9948 0.6262 0.3403 1.2196 0.5833 0.3005 

 PC[3] 0.8637 0.6865 0.3908 0.9680 0.6816 0.3538 1.2176 0.6029 0.3208 

C PC[1] 1.3326 0.5632 0.3097 1.4129 0.5411 0.3006 1.3613 0.4710 0.1545 

 PC[2] 0.9487 0.5949 0.3396 1.0464 0.5793 0.3090 1.1645 0.5137 0.2987 

 PC[3] 1.0607 0.5897 0.3156 1.1372 0.5816 0.3073 1.1906 0.4919 0.2317 

D PC[1] 0.9906 0.4358 0.2250 1.1564 0.3607 0.1571 1.0677 0.2325 0.1244 

 PC[2] 0.9217 0.5140 0.2434 1.0918 0.3919 0.1974 1.0249 0.2778 0.1355 

 PC[3] 0.8801 0.5610 0.2929 1.0624 0.4971 0.2772 1.0114 0.4507 0.1510 
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Table 3: Point estimation results of σ2. 
Test Scheme  MLE  MCMC   

Prior-1   Prior-2  

    (T1,T2) = (2.5,5.5)     

     

 

     

A PC[1] 1.6896 1.1507 0.4560 2.1469 1.0594 0.4182 2.4450 0.6597 0.2300 

 PC[2] 1.6100 1.1559 0.4611 1.9354 1.1256 0.4447 2.3191 0.7265 0.2529 

 PC[3] 1.4951 1.2006 0.4789 1.8858 1.1712 0.4627 2.3372 0.7297 0.2572 

B PC[1] 1.4329 1.0764 0.4275 2.1395 0.7665 0.2977 2.3985 0.4077 0.1380 

 PC[2] 1.4035 1.1067 0.4386 2.0974 0.9135 0.3551 2.3967 0.5239 0.1855 

 PC[3] 1.3599 1.1204 0.4471 2.0962 0.9911 0.3849 2.3976 0.5338 0.1882 

C PC[1] 1.6360 0.9556 0.3795 1.7560 0.5697 0.2023 2.1551 0.2759 0.0670 

 PC[2] 1.5511 1.0299 0.4020 1.6127 0.6362 0.2279 2.0362 0.2838 0.0685 

 PC[3] 1.4311 1.0733 0.4268 1.5385 0.6835 0.2460 2.0297 0.2846 0.0736 

D PC[1] 1.3822 0.8138 0.3242 1.4544 0.4752 0.1701 1.9263 0.1752 0.0386 

 PC[2] 1.3472 0.8664 0.3456 1.3883 0.5268 0.1902 1.8576 0.2470 0.0658 

 PC[3] 1.3027 0.9129 0.3560 1.3432 0.5544 0.1971 1.8688 0.2601 0.0661 
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Table 4: Point estimation results of α. 
Test Scheme  MLE  MCMC   

Prior-1   Prior-2  

    (T1,T2) = (2.5,5.5)     

     

 

     

A PC[1] 4.5934 3.5755 0.7151 5.1628 2.4316 0.4682 5.2157 0.9748 0.2870 

 PC[2] 4.2236 2.9043 0.5807 5.0188 2.1449 0.4162 5.1777 0.8949 0.2819 

 PC[3] 1.4246 1.9861 0.3963 2.6589 1.3346 0.2482 4.1700 0.6064 0.1978 

B PC[1] 4.2357 1.6581 0.3305 5.1789 0.9399 0.1944 5.2930 0.5652 0.1612 

 PC[2] 4.0858 1.2195 0.2359 5.1167 0.9225 0.1898 5.2756 0.5299 0.1576 

 PC[3] 3.0186 1.1984 0.2349 4.2458 0.8563 0.1891 4.8356 0.5162 0.1410 

C PC[1] 4.1771 1.0611 0.2063 4.7088 0.6717 0.1851 5.1590 0.5151 0.1344 

 PC[2] 3.8205 0.9868 0.1893 4.4784 0.5386 0.1821 5.0698 0.5079 0.1271 

 PC[3] 2.0963 0.8943 0.1786 2.9192 0.5384 0.1652 4.1906 0.5072 0.1216 

D PC[1] 3.9684 0.8907 0.1723 4.2956 0.5190 0.1580 4.9908 0.4624 0.1179 

 PC[2] 3.8255 0.8581 0.1638 4.1942 0.5021 0.1544 4.9336 0.4396 0.0973 

 PC[3] 3.3477 0.7997 0.1571 3.7588 0.4780 0.1474 4.6813 0.3614 0.0923 
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Table 5: Point estimation results of δ. 
Test Scheme  MLE  MCMC   

Prior-1   Prior-2  

    (T1,T2) = (2.5,5.5)     

     

 

     

A PC[1] 0.4587 0.0962 0.1907 0.4212 0.0812 0.1382 0.4111 0.0590 0.1223 

 PC[2] 0.3801 0.1052 0.2233 0.3641 0.0982 0.2190 0.3924 0.0849 0.1796 

 PC[3] 0.3899 0.0997 0.2032 0.3702 0.0943 0.1970 0.3870 0.0753 0.1779 

B PC[1] 0.4198 0.0852 0.1631 0.3416 0.0756 0.1214 0.3438 0.0474 0.0894 

 PC[2] 0.3926 0.0885 0.1648 0.3159 0.0772 0.1279 0.3273 0.0507 0.0950 

 PC[3] 0.3888 0.0936 0.1735 0.3096 0.0794 0.1301 0.3267 0.0531 0.1138 

C PC[1] 0.4489 0.0791 0.1301 0.4436 0.0654 0.1013 0.3844 0.0385 0.0836 

 PC[2] 0.3983 0.0830 0.1566 0.3956 0.0739 0.1211 0.3542 0.0440 0.0885 

 PC[3] 0.4059 0.0819 0.1391 0.4063 0.0695 0.1097 0.3599 0.0414 0.0872 

D PC[1] 0.4175 0.0613 0.1194 0.4379 0.0582 0.0809 0.3535 0.0348 0.0667 

 PC[2] 0.4061 0.0709 0.1204 0.4331 0.0600 0.0850 0.3509 0.0368 0.0691 

 PC[3] 0.4031 0.0742 0.1223 0.4337 0.0619 0.0891 0.3461 0.0379 0.0815 
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Table 6: Interval estimation results of σ1. 

 

Test Scheme ACI-NA

 BCI ACI-NL

 HPD 

  Prior-1 Prior-2 

  (T1,T2) = (2.5,5.5)   

A PC[1] 1.334 0.904 0.770 0.926 0.763 0.928 

  1.706 0.895 0.738 0.928 0.727 0.931 

 PC[2] 1.384 0.899 0.877 0.918 0.870 0.920 

  1.775 0.890 0.863 0.920 0.850 0.923 

 PC[3] 1.350 0.902 0.782 0.924 0.776 0.926 

  1.732 0.893 0.762 0.926 0.750 0.929 

B PC[1] 1.100 0.912 0.637 0.932 0.631 0.934 

  1.422 0.905 0.621 0.934 0.612 0.937 

 PC[2] 1.234 0.909 0.659 0.931 0.653 0.933 

  1.589 0.901 0.638 0.933 0.629 0.936 

 PC[3] 1.251 0.907 0.679 0.929 0.674 0.931 

  1.609 0.898 0.662 0.931 0.652 0.934 

C PC[1] 0.959 0.916 0.572 0.935 0.567 0.937 

  1.248 0.912 0.568 0.938 0.559 0.941 

 PC[2] 1.084 0.913 0.625 0.932 0.619 0.934 

  1.374 0.908 0.613 0.934 0.604 0.937 

 PC[3] 1.029 0.914 0.618 0.933 0.613 0.935 

  1.275 0.911 0.608 0.935 0.599 0.938 

D PC[1] 0.751 0.921 0.481 0.941 0.477 0.943 

  0.905 0.918 0.475 0.943 0.468 0.946 

 PC[2] 0.811 0.919 0.497 0.940 0.493 0.942 
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  1.026 0.917 0.490 0.941 0.483 0.944 

 PC[3] 0.904 0.917 0.514 0.938 0.510 0.940 

  1.115 0.915 0.509 0.940 0.501 0.943 

  (T1,T2) = (9.5,7.5)   

A PC[1] 1.343 0.902 0.785 0.923 0.779 0.925 

  1.718 0.892 0.759 0.925 0.748 0.928 

 PC[2] 1.426 0.897 0.927 0.916 0.919 0.918 

  1.831 0.887 0.911 0.918 0.897 0.921 

 PC[3] 1.414 0.900 0.796 0.922 0.790 0.924 

  1.816 0.890 0.774 0.924 0.763 0.927 

B PC[1] 1.175 0.908 0.647 0.930 0.641 0.932 

  1.488 0.902 0.634 0.932 0.625 0.935 

 PC[2] 1.246 0.906 0.667 0.929 0.661 0.931 

  1.492 0.898 0.656 0.931 0.646 0.934 

 PC[3] 1.269 0.905 0.702 0.926 0.696 0.928 

  1.608 0.895 0.694 0.929 0.684 0.932 

C PC[1] 1.007 0.913 0.608 0.933 0.603 0.935 

  1.254 0.909 0.578 0.936 0.569 0.939 

 PC[2] 1.150 0.910 0.628 0.931 0.623 0.933 

  1.482 0.905 0.620 0.932 0.611 0.935 

 PC[3] 1.044 0.912 0.621 0.931 0.616 0.933 

  1.295 0.908 0.612 0.933 0.603 0.936 

D PC[1] 0.860 0.919 0.490 0.939 0.486 0.941 

  1.085 0.915 0.487 0.941 0.480 0.944 

 PC[2] 0.951 0.917 0.504 0.938 0.500 0.940 

  1.180 0.914 0.498 0.940 0.490 0.943 

 PC[3] 0.964 0.915 0.519 0.936 0.515 0.938 

  1.238 0.912 0.514 0.938 0.506 0.941 
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Table 7: Interval estimation results of σ2. 

 

Test Scheme ACI-NA

 BCI ACI-NL

 HPD 

  Prior-1 Prior-2 

  (T1,T2) = (2.5,5.5)   

A PC[1] 1.216 0.911 1.041 0.917 1.029 0.920 

  1.245 0.906 1.024 0.919 1.005 0.922 

 PC[2] 1.226 0.909 1.099 0.915 1.087 0.918 

  1.285 0.904 1.060 0.918 1.041 0.921 

 PC[3] 1.257 0.907 1.136 0.913 1.124 0.916 

  1.293 0.902 1.095 0.916 1.075 0.919 

B PC[1] 1.019 0.915 0.925 0.921 0.915 0.924 

  1.041 0.910 0.821 0.924 0.806 0.927 

 PC[2] 1.029 0.914 0.939 0.920 0.928 0.923 

  1.053 0.910 0.848 0.923 0.832 0.926 

 PC[3] 1.031 0.914 0.954 0.920 0.944 0.923 

  1.095 0.909 0.873 0.923 0.857 0.926 

C PC[1] 0.751 0.924 0.725 0.928 0.717 0.931 

  0.809 0.919 0.718 0.931 0.705 0.934 

 PC[2] 0.801 0.921 0.740 0.926 0.732 0.929 

  0.917 0.916 0.734 0.929 0.720 0.932 

 PC[3] 0.811 0.920 0.744 0.926 0.736 0.929 

  0.919 0.915 0.736 0.929 0.723 0.932 

D PC[1] 0.598 0.932 0.555 0.936 0.549 0.939 

  0.601 0.927 0.512 0.939 0.502 0.942 

 PC[2] 0.613 0.931 0.606 0.933 0.599 0.936 
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  0.657 0.925 0.595 0.936 0.584 0.939 

 PC[3] 0.656 0.928 0.628 0.931 0.621 0.934 

  0.685 0.923 0.610 0.934 0.599 0.937 

  (T1,T2) = (9.5,7.5)   

A PC[1] 1.209 0.909 1.063 0.915 1.051 0.918 

  1.237 0.905 1.028 0.918 1.009 0.921 

 PC[2] 1.237 0.907 1.105 0.913 1.093 0.916 

  1.265 0.903 1.066 0.917 1.047 0.920 

 PC[3] 1.284 0.905 1.139 0.911 1.126 0.914 

  1.308 0.901 1.099 0.915 1.079 0.918 

B PC[1] 1.016 0.913 0.905 0.919 0.895 0.922 

  1.038 0.909 0.829 0.923 0.814 0.926 

 PC[2] 1.026 0.912 0.926 0.918 0.916 0.921 

  1.050 0.908 0.852 0.922 0.836 0.925 

 PC[3] 1.028 0.912 0.962 0.917 0.952 0.920 

  1.075 0.908 0.881 0.921 0.865 0.924 

C PC[1] 0.727 0.922 0.722 0.926 0.714 0.929 

  0.774 0.918 0.715 0.930 0.702 0.933 

 PC[2] 0.808 0.919 0.738 0.924 0.729 0.927 

  0.913 0.915 0.731 0.928 0.718 0.931 

 PC[3] 0.819 0.917 0.775 0.922 0.767 0.925 

  0.940 0.914 0.733 0.927 0.720 0.930 

D PC[1] 0.606 0.930 0.585 0.933 0.578 0.936 

  0.603 0.925 0.529 0.938 0.520 0.941 

 PC[2] 0.625 0.928 0.611 0.932 0.604 0.935 

  0.684 0.923 0.608 0.935 0.597 0.938 

 PC[3] 0.677 0.926 0.649 0.929 0.642 0.932 

  0.707 0.921 0.611 0.933 0.600 0.936 
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Table 8: Interval estimation results of α. 

 

Test Scheme ACI-NA

 BCI ACI-NL

 HPD 

  Prior-1 Prior-2 

  (T1,T2) = (2.5,5.5)   

A PC[1] 2.256 0.868 1.725 0.886 1.711 0.890 

  2.282 0.864 1.497 0.889 1.482 0.894 

 PC[2] 2.145 0.872 1.639 0.890 1.626 0.894 

  2.171 0.868 1.418 0.893 1.404 0.898 

 PC[3] 1.752 0.878 1.576 0.894 1.563 0.898 

  1.786 0.874 1.337 0.897 1.324 0.902 

B PC[1] 1.712 0.880 1.558 0.896 1.546 0.900 

  1.726 0.876 1.313 0.899 1.300 0.904 

 PC[2] 1.505 0.883 1.485 0.900 1.474 0.905 

  1.514 0.879 1.295 0.903 1.282 0.908 

 PC[3] 1.498 0.884 1.441 0.903 1.430 0.908 

  1.510 0.880 1.261 0.906 1.248 0.911 

C PC[1] 1.424 0.886 1.404 0.906 1.393 0.911 

  1.433 0.882 1.254 0.909 1.241 0.914 

 PC[2] 1.275 0.890 1.217 0.910 1.207 0.915 

  1.361 0.886 1.200 0.912 1.188 0.917 

 PC[3] 1.214 0.892 1.187 0.912 1.177 0.917 

  1.357 0.888 1.158 0.915 1.147 0.920 

D PC[1] 1.102 0.896 1.040 0.913 1.032 0.918 

  1.317 0.892 1.036 0.917 1.026 0.922 

 PC[2] 1.074 0.898 0.893 0.916 0.886 0.921 

  1.288 0.894 0.887 0.919 0.878 0.924 
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 PC[3] 0.936 0.901 0.884 0.918 0.877 0.923 

  1.084 0.896 0.871 0.921 0.862 0.926 

  (T1,T2) = (9.5,7.5)   

A PC[1] 2.369 0.865 1.797 0.883 1.783 0.888 

  2.395 0.861 1.711 0.886 1.694 0.891 

 PC[2] 2.242 0.869 1.747 0.887 1.733 0.892 

  2.269 0.865 1.516 0.890 1.501 0.895 

 PC[3] 1.815 0.875 1.655 0.891 1.642 0.896 

  1.829 0.871 1.431 0.894 1.416 0.899 

B PC[1] 1.771 0.877 1.640 0.893 1.627 0.898 

  1.785 0.873 1.410 0.896 1.396 0.901 

 PC[2] 1.552 0.880 1.544 0.897 1.531 0.902 

  1.563 0.876 1.380 0.899 1.366 0.904 

 PC[3] 1.468 0.881 1.459 0.900 1.448 0.905 

  1.562 0.877 1.360 0.903 1.346 0.908 

C PC[1] 1.370 0.883 1.359 0.903 1.348 0.908 

  1.561 0.879 1.301 0.907 1.288 0.912 

 PC[2] 1.235 0.887 1.211 0.907 1.201 0.912 

  1.543 0.883 1.292 0.909 1.279 0.914 

 PC[3] 1.214 0.889 1.199 0.909 1.190 0.914 

  1.220 0.885 1.105 0.912 1.094 0.917 

D PC[1] 1.179 0.894 1.171 0.910 1.162 0.915 

  1.207 0.889 1.059 0.914 1.049 0.919 

 PC[2] 1.086 0.895 1.076 0.913 1.068 0.918 

  1.171 0.891 0.990 0.916 0.980 0.921 

 PC[3] 1.064 0.898 1.057 0.915 1.049 0.920 

  1.162 0.894 0.958 0.918 0.948 0.923 
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Table 9: Interval estimation results of δ. 

 

Test Scheme ACI-NA

 BCI ACI-NL

 HPD 

  Prior-1 Prior-2 

  (T1,T2) = (2.5,5.5)   

A PC[1] 0.248 0.933 0.240 0.936 0.237 0.937 

  0.244 0.935 0.209 0.940 0.205 0.941 

 PC[2] 0.252 0.932 0.242 0.935 0.239 0.936 

  0.246 0.934 0.212 0.939 0.208 0.940 

 PC[3] 0.267 0.930 0.250 0.933 0.247 0.934 

  0.255 0.932 0.220 0.937 0.216 0.938 

B PC[1] 0.232 0.936 0.223 0.939 0.220 0.940 

  0.225 0.938 0.198 0.943 0.195 0.944 

 PC[2] 0.237 0.934 0.227 0.937 0.224 0.938 

  0.232 0.936 0.202 0.941 0.199 0.942 

 PC[3] 0.244 0.933 0.239 0.936 0.236 0.937 

  0.242 0.935 0.206 0.940 0.202 0.941 

C PC[1] 0.193 0.941 0.171 0.944 0.169 0.945 

  0.172 0.943 0.166 0.948 0.163 0.949 

 PC[2] 0.223 0.939 0.179 0.942 0.177 0.943 

  0.183 0.941 0.174 0.946 0.171 0.947 

 PC[3] 0.228 0.938 0.191 0.941 0.189 0.942 

  0.199 0.940 0.186 0.945 0.183 0.946 

D PC[1] 0.166 0.944 0.158 0.946 0.156 0.947 

  0.164 0.945 0.141 0.950 0.139 0.951 

 PC[2] 0.175 0.943 0.161 0.945 0.159 0.946 
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  0.166 0.944 0.145 0.949 0.142 0.950 

 PC[3] 0.181 0.942 0.167 0.945 0.165 0.946 

  0.170 0.943 0.148 0.948 0.145 0.949 

  (T1,T2) = (9.5,7.5)   

A PC[1] 0.254 0.931 0.240 0.934 0.238 0.935 

  0.245 0.933 0.217 0.938 0.213 0.939 

 PC[2] 0.257 0.930 0.243 0.933 0.240 0.934 

  0.248 0.932 0.223 0.937 0.219 0.938 

 PC[3] 0.269 0.928 0.256 0.931 0.253 0.932 

  0.261 0.930 0.230 0.935 0.226 0.936 

B PC[1] 0.236 0.934 0.226 0.937 0.223 0.938 

  0.229 0.935 0.202 0.941 0.198 0.943 

 PC[2] 0.237 0.934 0.233 0.935 0.230 0.936 

  0.236 0.934 0.207 0.939 0.204 0.940 

 PC[3] 0.245 0.932 0.239 0.934 0.236 0.935 

  0.243 0.933 0.210 0.938 0.206 0.939 

C PC[1] 0.208 0.939 0.173 0.941 0.171 0.942 

  0.175 0.941 0.167 0.946 0.164 0.948 

 PC[2] 0.225 0.937 0.179 0.940 0.177 0.941 

  0.187 0.939 0.175 0.944 0.172 0.946 

 PC[3] 0.231 0.935 0.192 0.939 0.189 0.940 

  0.202 0.938 0.186 0.943 0.183 0.945 

D PC[1] 0.169 0.942 0.150 0.945 0.148 0.946 

  0.162 0.943 0.143 0.948 0.140 0.950 

 PC[2] 0.179 0.941 0.165 0.943 0.163 0.944 

  0.168 0.942 0.149 0.947 0.147 0.949 

 PC[3] 0.183 0.940 0.169 0.943 0.167 0.945 

  0.171 0.941 0.152 0.946 0.150 0.948 
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7 Light-Emitting Diode Data Analysis 

To illustrate how the proposed methodologies can be used in practical 

situations, this section presents an analysis of an actual dataset from the 

engineering field representing the lifetime (in hours) of the M00071 white 

organic light emitting diodes (WOLEDs) mixed with different colors called 

red, green, and blue under two stress levels, namely: 9.64 and 17.09mA. This 

data set was originally given by Jianping et al. [12] and rediscussed by Nassar 

et al. [24] and Nassar et al. [23]. 

In Table 10, each data point has been divided by a thousand for 

computational purposes. In this table, we assume the data set at 9.64mA by X 

(with r = 10) and Y (with k = 10). To check if the IW distribution is adequate 

for the WOLED data sets, the MLEs (with their standard errors (SEs)) of IW 

parameters σ and α are obtained first to build the Kolmogorov-Smirnov (K– S) 

statistic with its P-value; see Table 10. It shows that the calculated P-value is 

far from the significance percentage (5%), therefore, the proposed IW 

distribution fits the WOLED data sets effectively. 

Table 10: Two WOLED data sets. 

 

 

 

Data Lifetimes MLE(SE) K–S( P - Value ) 
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The estimated/empirical reliability, probability-probability (PP) (known as 

a visual tool showing the relationship between observed cumulative 

probability (OCP) and expected cumulative probability (ECP)), and scaled–

TTT transform plots based on the WOLED data sets are shown in Figure 1. It 

shows that the IW model offers an adequate fit for the WOLED data sets. It 

also points out that the WOLED data sets provide an increasing failure rate. 

Additionally, Figure 2 shows that the classical estimated values of σ and α 

developed from Data-X (or Data-Y ) exist and are unique. From now on, we 

suggest utilizing the acquired maximum likelihood estimates of σ and α 

(reported in Table 10) as starting points to run any additional computations. 

 

(a) Data-X 
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(b) Data-Y 

Figure 1: The fitted reliability (left), PP (center), and scaled TTT-transform 

(right) from WOLED data sets. 

 

 (a) Data-X (b) Data-Y 

Figure 2: The profile log-likelihood curves of σ (top) and α (bottom) from WOLED 

data sets. 
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Now, from the entire WOLED data sets reported in Table 10, several TII-

PHC samples (with r = m5) based on different choices of Ti, i = 1,2, and 

progressive designs R and S are created; see Table 11. Since there is no 

available prior information, the hyper-parameters ai and bi for i = 1,2,3, of α 

and σi, i = 1,2, are set to be 0.001, although the prior densities for all 

parameters are considered proper. This setting implies that the prior densities 

are almost non-informative. Employing the MCMC procedure, we repeated 

the M-H sampler 50,000 times and then ignored the first 10,000 times as burn-

in. As a result, Table 12 lists the point estimates (with their SEs) as well as the 

interval estimates (with their interval lengths (ILs)) of σ1, σ2, α, and δ 

developed by the maximum likelihood and Bayes procedures. As anticipated 

from Table 12, the point estimates for all unknown parameters appear to be 

close to each other. Identical performance is also noted in the case of interval 

estimates. It is also shown that, in terms of the smallest values of SE and IL, 

the Bayesian point (or interval) estimates outperform those obtained from 

likelihood estimates. 

Table 11: Three artificial TII-PHC samples from WOLED data sets. 

Sample {T1(D1),T2(D2)} {R,S} (RD∗1,SD∗2) {x,y} 

S1 

{2.5(3),0.7(2)} {(5,0∗4),(5,0∗4)} (0,0) {(1.6915, 2.1003, 

2.4215, 2.5860, 

2.6805), 

(0.6015, 0.6973, 

0.7855, 0.8545, 

1.1157)} 

S2 {2.5(4),0.8(3)} {(0∗2,5,0∗2),(0∗2,5,0∗2)} (0,0) {(1.6915, 2.0847, 

2.1003, 2.4215, 

2.8680), 

(0.6015, 0.6897, 

0.6973, 0.8545, 
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1.1313)} 

S3 {2.6(5),0.8(5)} {(0∗4,5),(0∗4,5)} (5,5) {(1.6915, 2.0847, 

2.1003, 2.3745, 

2.4215), 

(0.6015, 0.6897, 

0.6973, 0.7165, 

0.7855)} 

Table 12: The point and 95% interval estimates of σ1, σ2, α, and δ from 

WOLED data sets. 

Sample Par. MLE MCMC  ACI-

NA 

  BCI  

  

Est. SE Est. SE 

 ACI-

NL 

  HPD  

Low. Upp. IL Low. Upp. IL 

 

 

Figure 3 confirms the existence and uniqueness of the acquired MLEs of 

ˆσ1, ˆσ2, and ˆα of σ1, σ2, and α, respectively, calculated based on Si for i = 
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1,2,3. Moreover, Figure 3 shows that all estimates of σ1, σ2, or α support all 

classical point estimation results listed in Table 12. 

 

 (a) Sample S1 (b) Sample S2 (c) Sample S3 

Figure 3: The log-likelihoods of σ1 (left), σ2 (middle), and α (right) from 

WOLED data sets. 
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To highlight the convergence of the offered MCMC iterations (after burn-

in) of σ1, σ2, α, and δ from WOLED data sets, density (along with Gaussian 

curve) and trace plots are depicted in Figure 4. In each trace plot, for 

specification, the sample mean and the two HPD credible interval bounds of 

each unknown parameter are defined by soled (–) and dashed (- - -) lines, 

respectively. Additionally, the sample mean in each density plot is represented 

by a soled (–) line. Figure 4 indicates that the MCMC draws yielded from the 

suggested conditional posterior distributions of σ1, σ2, α, or δ converge 

satisfactorily. It also shows that the burn-in sample has a suitable size to 

discard the influence of the initial guess points. It also verifies that the 

densities of all unknown parameters generated by the M-H sampler are fairly-

symmetrical. 

 

(a) σ1 

 

(b) σ2 
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(c) α 

 

(d) δ 

Figure 4: Density (left) and trace (right) of σ1, σ2, α, and δ using S1 (left), S2 

(middle), and S3 (right) from WOLED data sets. 

Again, based on the staying 40,000 MCMC iterations of all unknown 

parameters, in Table 13, several statistics such as mean, median, mode, 1st 

quartile (Q1), 3rd quartile (Q3), standard deviation (St.D), and skewness 

(Skew.) of σ1, σ2, α, and δ are presented. All results provided in Table 13 

support the same findings shown in Table 12. 
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Table 13: Several statistics of σ1, σ2, α, and δ from WOLED data sets. 

 

 

 

8 CONCLUSION 

In this paper, under the TII-PHC scheme, when the stress and strength follow 

two independent IWDs, Different methods for estimating the stress–strength 

parameter are applied. When the common parameter is unknown, it is observed 

that the MLEs of the three unknown parameters can be obtained by solving one 

nonlinear equation. Also, the asymptotic distribution of δ was found which was 

used to compute the asymptotic confidence intervals. The Bayes estimate of δ by 

using the MCMC method, We achieve the highest posterior density ( HPD) 

credible intervals. In general, it is clear from the simulation results that the 

proposed point estimations from the Bayes method behave better compared to 

those created from the maximum likelihood method and the simulation results 

that the proposed interval estimations by the BCI (or HPD) method outperformed 

those created by the ACI-NA (or ACI-NL) method. Lastly, the Metropolis-

Hastings algorithm is recommended to estimate the unknown parameters when 

the stress and strength follow two independent IW populations when the sample 

is gathered from the proposed TII-PHC strategy. A real data example to Light-

Emitting Diodes is also discussed for illustration purposes. 
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