

Microbes and Infectious Diseases

Journal homepage: https://mid.journals.ekb.eg/

Original article

Leachate emanating from a municipal solid waste dumpsite is a hotspot of Extended Spectrum β-Lactamase (ESBL)-producing *Escherichia coli* harboring CTX-M β-lactamase

Abimbola Olumide Adekanmbi^{*1, 2, 3}, Akeem Ganiyu. Rabiu ⁴, Olabisi Comfort Akinlabi ⁵, Daniel Jesuwenu Ajose ^{6, 7}, Adedolapo Victoria Olaposi ^{1, 2}, Ayomikun Emmanuel Aderounmu ¹, Omowunmi Abosede Banjo ⁸, Temitope Ayinde Ajamu ^{1, 2}, Busayo Faith Tofio ^{1, 2}, Hassan Adeyemi Sanuth ⁹

- 1- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.
- 2- Molecular Biology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.
- 3- Swammerdam Institute of Life Sciences (SILS), University of Amsterdam, Netherlands.
- $\hbox{\it 4-Department of Microbiology, Federal University of Health Sciences, Ila-Orangun, Osun State, Nigeria.}$
- 5- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
- 6- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, Private Mail Bag X2046, Mmabatho, South Africa.
- 7- Food Security and Safety Focus Area, Faculty and Natural Agricultural Sciences, North-West University, South Africa.
- 8- Department of Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria.
- 9- Sanitation Services Department, Lagos State Ministry of the Environment and Water Resources, Lagos State, Nigeria.

ARTICLE INFO

Article history:
Received 13 July 2024
Received in revised form 15 November 2024
Accepted 22 November 2024

Keywords:

Lapite solid waste dumpsite ESBL-producing *Escherichia coli* ESBL genes Antibiotic resistance Multidrug resistance

ABSTRACT

Background: Antibiotic resistance constitutes a key challenge to global public health and is on an alarming rise. In Nigeria, this quagmire has been extensively studied in clinical settings but not in the environmental sector, particularly in landfill leachates. **Aim:** We aimed to assess the susceptibility profile of *Escherichia coli* from leachate obtained from Lapite dumpsite, to determine the potential of dumpsite leachate as a source of ESBL-producing E. coli. Methods: Cefotaxime-resistant E. coli was isolated on cefotaxime-enriched chromogenic medium and identified via PCR using the uidA gene. The confirmed isolates from the pool were assessed for susceptibility to antibiotics using the disc-diffusion method, while the phenotypic detection of ESBL production was done using the double disc synergy test. Detection of ESBL genes was done using primer-specific PCR. Results: Twenty-three ESBL-producing E. coli were obtained, and they showed 100% resistance to cefotaxime and cefpodoxime, with 60.87% resisting imipenem (a carbapenem). However, none of the isolates was resistant to amoxicillinclavulanate. The resistance to other antibiotics tested was: gentamicin (4.35%), ciprofloxacin (17.39%), nalidixic acid (26.09%), ceftazidime (26.09%) and chloramphenicol (30.43%). Seventy-four percent of the isolates had multiple antibiotic resistance index (MARI) greater than 0.3, with 30.4% (n=7/23) exhibiting multidrug resistance phenotypes. All the isolates carried blactx-m, but none harboured blashy or bla_{TEM}. Conclusion: Landfill leachates could contribute to the evolution of antibioticresistant ESBL-producing E. coli harbouring ESBL genes. There should be effective precautionary methods in place to prevent dumpsite leachates from flowing into adjoining environment to safeguard public and environmental health.

DOI: 10.21608/MID.2024.303867.2073

^{*} Corresponding author: Abimbola O Adekanmbi

Introduction

Our ability to treat clinical infections conventional antibiotics is using being progressively eroded by the increase in the abundance of antibiotic-resistant bacteria. With the current challenge of few antibiotics in the pipeline and the increasing adaptive capability of bacteria to withstand antibiotic insults, antibiotic resistance represents a significant public health. One way to manage and curtail antibiotic resistance will be to identify the major hotspots favouring their emergence. The role of hospitals and agricultural settings in the global rise of antibiotic resistance cases has been extensively studied, however, the contribution of the environment as a source of resistance development is gradually gathering momentum and increasingly being studied [1, 2]. This has necessitated the need to identify potential hotspots within the environment that may serve as 'cooking pots' for resistance emergence and as conduits for their dissemination [3]. One such site that is gaining notoriety and environmental relevance as a hotspot of antibiotic-resistant bacteria and their determinants is the municipal solid waste dumpsite and landfill.

The disposal of Municipal Solid Waste (MSW) directly at landfills or in open dump areas without segregation and treatment is an important environmental issue [4]. Municipal solid waste contains items such as personal care products; unused pharmaceuticals; biocides; heavy metals; sanitary tissue papers from households, clinics, and hospitals; waste from industrial, agricultural and faecal materials [5, 6]. The continuous discharge of antimicrobial agents and other chemicals into dumpsites can accumulate selective pressure on the resident bacterial population, leading to the selection of resistant strains. Degraded pharmaceutical agents and toxic wastes are washed down into leachates that drain and spill over to surrounding environments such as water bodies.

The presence of antimicrobial residues in leachates is an ugly scenario that portends a substantial threat to public health, as shown in the erstwhile study of **Chung et al.** [7], who reported that leachates from MSW dumpsites contained unacceptably high levels of human antibiotics. Chung and colleagues emphasised that ciprofloxacin, erythromycin, and trimethoprim were well above the "Predicted No Effects Concentration" (PNEC), a concentration high

enough to select and enrich antibiotic-resistant bacteria (ARB) in landfill leachates.

This situation is even more critical in Nigeria due to the indiscriminate use of antibiotics in personal care products, biocides and other household agents, and their disposal into MSW dumpsites. The cumulative effect of this practice is the long-term interaction between bacteria and residual chemical agents (such as biocides, metals, and residual antibiotics), which provides a thriving condition to drive the evolution and selection of bacteria with enhanced or high levels of resistance to conventional antibiotics. Residual antibiotics and resistant bacteria present in leachates are known to pollute surrounding environments (such as surface and groundwater bodies) due to runoff and leaching [6, 8-9], thereby exposing receiving water bodies that are heavily reliant on by the general populace to the dangers of antibiotic-resistant bacteria.

Ibadan, a city in Southwest Nigeria where this study was carried out, is characterized by the indiscriminate and illegal disposal of wastes from into dumpsites. Dumpsite several sources operations are not adequately monitored or regulated. The inappropriate siting of dumpsites close to residential areas exposes residents to potentially serious health problems. One major dumpsite that is worth investigating is the Lapite dumpsite. Lapite dumpsite falls within the category of dumpsites that are not being properly managed. Leachates from the site flow directly into the environment, gaining access to water bodies, subsequently leading to pollution challenges which could culminate in serious health challenges [10].

The role of MSW dumpsites and landfills in Nigeria as hotspots of antibiotic resistance and their determinants is currently less understood. We previously revealed in our study carried out at the Awotan MSW dumpsite in Southwest Nigeria that leachates could serve as important reservoirs and potential conduits of antibiotic-resistant Gramnegative enteric bacteria harbouring extended spectrum β-lactamase (ESBL) genes in Nigeria [11]. Piggybacking on the results of our previous study, we hypothesize that other dumpsites at different locations in Ibadan, such as Lapite, can harbour resistant bacteria carrying resistance genotypes, especially those harbouring ESBL genes. This study, which was carried out at Lapite dumpsites, is part of our ongoing investigation and

aimed to obtain a clearer picture of the public health risk posed by MSW dumpsites as reservoirs of antibiotic-resistant bacteria in Ibadan, Nigeria.

Methods

Description of the study area and collection of samples

This cross-sectional study was conducted at the Lapite MSW dumpsite (Latitude 7.376736, and Longitude 3.939786), which is situated within an area of 20 hectares in Moniya area of Ibadan. Ibadan is a densely populated city in the Southwestern part of Nigeria. Lapite MSW dumpsite was established in 1998 and receives close to 9,000 tonnes of solid waste annually. It is being managed by the Oyo State Government under the Oyo State Waste Management Authority (OYOWMA). Wastes from commercial, hospital, electrical, household, industrial, and other sources are commonly disposed into the dumpsite. The nearest settlement to the dumpsite is approximately two kilometres; thus, leachate may threaten the groundwater quality and the microbial diversity of the area. Leachates from the dumpsite pile up in pools at the base of the wastes and three designated points approximately one kilometre apart were selected for sample collection. Leachates from the three points were collected in sterilized, precleaned sample bottles for four months (November 2022 - February 2023) and transported to the laboratory on ice for subsequent analysis. A total of 36 leachate samples were collected over the fourmonth sampling period. There was no need for ethical approval, as no samples from human or animal subjects were collected. The location of the Lapite dumpsite in Southwest Nigeria is shown in Figure (1). An overview of the Lapite municipal solid waste dumpsite during one of the clearing processes by the Oyo State Waste Management (OYOWMA) is shown in Figure (2).

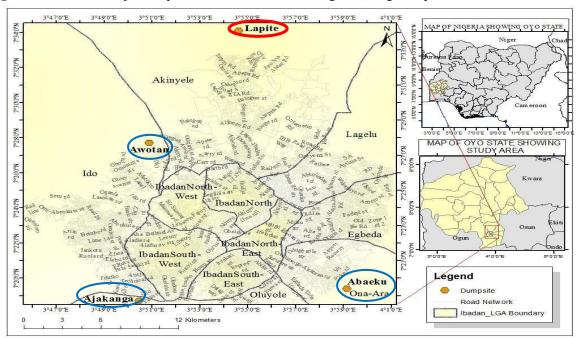
Isolation and identification of cefotaximeresistant Escherichia coli

Approximately 2 ml of the leachate sample was discharged into a test tube containing brain heart infusion broth (3 ml) containing cefotaxime (6 μg/ml). The set-up was incubated overnight at 35±2°C. A loopful of the culture was streaked onto already prepared CHROMagarTM *E. coli* (CHROMagar, France) and incubated. Colonies of *Escherichia coli* with a bluish

appearance on the chromogenic medium were picked, subcultured, and stored until pending further work. The presumptive organisms were characterized using conventional methods and by targeting a housekeeping gene (uidA), which is responsible for β -glucuronidase production in E. coli [12]. The confirmed isolates were selected for antibiotic susceptibility testing and ESBL phenotyping.

ESBL phenotyping and antibiotic susceptibility testing

The double disc synergy test (DDST) was used for the phenotypic detection of ESBL production in the confirmed isolates, while the susceptibility of the isolates to nine selected antibiotics was assessed by the Kirby-Bauer disc diffusion assay [13]. The tested antibiotics which were cefotaxime (30 μ g), tetracycline (30 μ g), nalidixic acid (30 μ g), ceftazidime (30 μ g), amoxicillin/clavulanate (30 μ g), imipenem (10 μ g), sulfamethoxazole/trimethoprim (1.25/23.75 μ g), gentamicin (10 μ g), azithromycin (15 μ g), and cefpodoxime (30 μ g) were purchased from Oxoid, United Kingdom. The choice of antibiotics and the interpretation of the data were done using the CLSI [13] guidelines.


Detection of ESBL genes (blactx-m, blatem, and blashy)

The blashy and blatem genes were amplified using a previously described PCR protocol [14, 15]. Briefly, the amplification conditions included an initial denaturation step at 94°C for 5 minutes, denaturation at 94°C for 30 seconds, primer annealing at 50°C for 30 seconds, extension at 72°C for 90 seconds (30 cycles), and a final extension at 72°C for 10 minutes. The amplification condition for *bla*_{CTX-M} is as follows: initial denaturation at 94°C for 5 min, denaturation at 94°C for 30 s, primer annealing at 56°C for 1 min, extension at 72°C for 60 s (30 cycles) and terminal extension at 72°C for 10 min. Amplicons were electrophoresed on a 1.5% agarose gel. A multidrug-resistant E. coli ALC08 carrying blactx-M, bla_{SHV} and bla_{TEM} reported by **Adekanmbi** et al. [16] was used as the positive control. The sequence of the oligonucleotide primers used in this study are given in Table (1).

Table 1. Oligonucleotide primers used in this study.

Target Gene	Primer sequence	Expected Amplicon size (bp)	Reference
uidA	AAAACGGCAAGAAAAAGCAG ACGCGTGGTTACAGTCTTGCG	147	[12]
bla _{CTX-M}	TTTGCGATGTGCAGTACCAGTAA CGATATCGTTGGTGGTGCCATA	543	[14]
bla _{TEM}	GAGTATTCAACATTTTCGT ACCAATGCTTAATCAGTGA	857	[15]
$bla_{ m SHV}$	TCGCCTGTGTATTATCTCCC CGCAGATAAATCACCACAATG	768	[15]

Figure 1. Location of major dumpsites in Ibadan, Southwest Nigeria (Google Map).

(Note: The Lapite dumpsite where this study was carried out is in the **RED** ring. The other municipal solid waste dumpsites in Ibadan, Oyo state are highlighted in the **BLUE** rings).

Figure 2. Overview of the Lapite municipal solid waste dumpsite during one of the clearing operations (Source: Oyo State Waste Management Authority).

Results

Isolation of *Escherichia coli* strains with the ESBL phenotype

Here, 23 confirmed and non-repetitive ESBL-producing *E. coli* strains were obtained from the pool of cefotaxime-resistant bacteria isolated from dumpsite leachates over a four-month sampling period. Eight ESBL-producing *Escherichia coli* were obtained from sampling points A and B, while seven ESBL producers were recovered from sampling point C, as shown in **Table (2).**

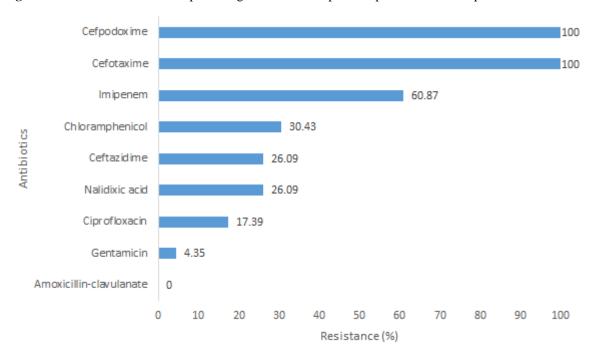
Susceptibility to the selected panel of antibiotics

The ESBL-producing *E. coli* isolates showed complete resistance to cefotaxime and cefpodoxime, while 60.87% and 30.43% of the isolates were resistant to imipenem and

chloramphenicol respectively. The resistance of the isolates to the other antibiotics was: ceftazidime (26.09%), nalidixic acid (26.09%), ciprofloxacin (17.39%) and gentamicin (4.35%). None of the ESBL-producing isolates was resistant to amoxicillin-clavulanate, as shown in **Figure (3)**.

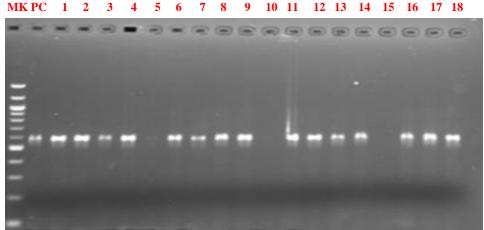
Detection of ESBL genes

All the ESBL-producing E. coli carried $bla_{\text{CTX-M}}$ (cefotaximase) and devoid of bla_{TEM} and bla_{SHV} . A representative gel picture showing the detection of $bla_{\text{CTX-M}}$ in the isolates is shown in **Figure (4). Table 3** shows the multiple antibiotic resistance index (MARI) and possession of ESBL genes by isolates recovered from the Lapite dumpsite leachate.


Table 2. Frequency of occurrence of ESBL-producing *E. coli* in the Lapite dumpsite leachates.

Sampling point	Frequency of ESBL-producing E. coli	% ESBL-producing E. coli
	obtained	obtained (%)
A	8	34.8
В	8	34.8
С	7	30.4

Table 3. MARI and Occurrence of ESBL genes by cefotaxime-resistant *E. coli* found in Lapite dumpsite leachate


Isolate	MARI	bla _{CTX-M}	bla_{TEM}	$bla_{ m SHV}$
E. coli L1a	0.22	+	-	-
E. coli L1b	0.22	+	-	-
E. coli L1c	0.22	+	-	-
E. coli L1d	0.33	+	-	-
E. coli L1e	0.33	+	-	-
E. coli L1f	0.44	+	-	=
E. coli L1g	0.33	+	-	=
E. coli L1h	0.44	+	-	-
E. coli L2a	0.33	+	-	-
E. coli L2b	0.44	+	-	-
E. coli L2e	0.88	+	-	-
E. coli L2f	0.22	+	-	-
E. coli L2g	0.55	+	-	-
E. coli L2h	0.22	+	-	-
E. coli L2i	0.33	+	-	-
E. coli L2j	0.33	+	-	-
E. coli L3d	0.33	+	-	-
E. coli L3e	0.33	+	-	-
E. coli L3f	0.44	+	-	-
E. coli L3g	0.77	+	-	-
E. coli L3h	0.22	+	-	-
E. coli L3i	0.77	+	-	-
E. coli L3k	0.77	+	-	-

KEY: +: Present: +; -: Absent

. Figure 3. Resistance of the ESBL-producing E. coli from Lapite dumpsite leachate to a panel of antibiotics.

Figure 4. Representative gel picture showing the detection of $bla_{\text{CTX-M}}$ in some of the ESBL-producing $E.\ coli.$

KEY: MK: DNA ladder (100bp), PC: Positive control, Note that Lanes 5, 10 and 15 are empty.

Discussion

In Nigeria, domestic, industrial, and pharmaceutical wastes are usually collected and deposited on landfill dumpsites. The interaction between the various components of the waste could lead to the generation of leachates containing deleterious chemicals, biocidal agents, and toxic substances, which could exert pressure on the leachate microflora. Different bacterial genera carrying resistance genotypes have been isolated from leachates [17-19].

We purposively sampled leachates oozing out of Lapite municipal solid waste dumpsite (one of the notorious dumpsites in the Ibadan metropolis), for the isolation of ESBL-producing enteric bacteria, with particular emphasis on *E. coli*. ESBL genes have been described in different matrices, including humans, animals, and even the environment, but how dumpsite leachates contribute to the possible emergence and dissemination of these genes has been investigated by a few studies [11, 20]. We prioritized ESBL-producing *E. coli* to highlight the role of dumpsite

leachates as reservoirs of antibiotic resistance determinants. CHROMagarTM *E. coli* was used for the isolation of the bacterium because the chromogenic medium has high selective and discriminatory power [21]. *Escherichia coli* (n=23) isolated from the leachates were preselected using cefotaxime (a third-generation cephalosporin) as a strategy to determine whether they were ESBL producers because the emergence and spread of ESBL-producing bacteria is one of the foremost public health issues [22, 23].

The assessment of antibiotic resistance phenotypes in the identified organisms from the dumpsite leachate revealed a high degree of antibiotic resistance. Seventy-four (n=17/23) exhibited MARI above 0.3, indicating a high level of multidrug resistance in the E. coli emanating from the leachate. The resistance of more than twenty percent of the isolates (n=5/23) to three or more classes of antibiotics suggests that the leachate is a breeding reservoir of antibioticresistant bugs as suggested by Athanasakopoulou et al. [24]. This current observation agrees with our previous reports on leachates from the Awotan dumpsite in Ibadan, where MDR E. coli were also obtained [11]. It should be noted that the Awotan dumpsite is located in the same city and geographical location as in the present study. The level of resistance to antibiotics by the isolates could be attributed to the abuse and improper disposal of antibiotics, which could have made the dumpsite an enrichment reservoir for antibioticresistant bacterial strains. The deposition of antibiotic-embedded materials and heavy metals in dumpsites is capable of exposing bacteria to selective pressure and results in horizontal transfer of resistance, turning dumpsites into reservoirs for the proliferation and spread of antibiotic resistance determinants [17, 25].

Moreover, the convergence of MDR and ESBL phenotypes in isolated organisms can amplify their risk of infection and associated treatment costs. It is more worrisome that the isolates were resistant to the third-generation cephalosporins (cefotaxime and cefpodoxime) tested in this study because these agents are largely affordable to patients in developing countries and are thus widely used in clinical practice. Moreover, 60.87% of the ESBL-producing *E. coli* (n=14) were resistant to imipenem, which is among the last-resort antibiotics for the treatment of infections

caused by ESBL- or AmpC-producing bacteria, as well as patients with records of multidrug-resistant bacterial infections [26]. Efflux modifications in the cell outer membrane configuration AmpC-type β-lactamase and overexpression have been linked to imipenem resistance [27, 28]. The detection of imipenemresistant, MDR and ESBL-producing E. coli in dumpsite leachates constitutes a clear threat to public health and calls for immediate action.

The increased resistance to cefotaxime and cefpodoxime in this study could be attributed to the carriage of bla_{CTX-M} gene by the isolates. The detection of blactx-m is consistent with the predominance of the gene, especially bla_{CTX-M-15}, in E. coli isolates of human origin as reported in different geographical regions [29]. The presence of blactx-m in this study is in agreement with most studies that have reported the wide occurrence of the gene and its dominance globally [30-32]. Several factors have been responsible for the rapid emergence and increasing prevalence of bla_{CTX-M} globally, including plasmid dissemination and the clonal spread of bacteria carrying the gene. In addition, the selective pressure posed by the misuse and excessive use of extended spectrum cephalosporins have also played a major part in the epidemiological success of the $bla_{\text{CTX-M}}$ [32-34].

Conclusions

Leachates from dumpsites are a budding hub of ESBL-producing E. coli with multidrug resistance phenotypes, and carrying a high burden of bla_{CTX-M}. Put together, our findings strongly suggest that policymakers should prioritize the health and well-being of the governed by ensuring that dumpsites are located far from residential areas and that waste materials from homes, agricultural farms, healthcare centres, and other wastegenerating institutions are properly disposed of. We recommend continuous examination of leachates and their stoppage from entering groundwater to prevent outbreaks of disease in the regions where dumpsites are located. We also suggest that leachates from dumpsites should be treated by siting an appropriate leachate treatment plant close to the vicinity of dumpsites.

List of abbreviations

ESBL: Extended Spectrum β-Lactamase

MSW: Municipal Solid Waste ARB: Antibiotic-Resistant Bacteria MDR: Multidrug Resistant

PNEC: Predicted No Effects Concentration CLSI: Clinical and Laboratory Standard Institute IITA: International Institute of Tropical

Agriculture

OYOWMA: Oyo State Waste Management

Authority

NPC: National Population Commission

Declarations

Ethics approval and consent to participate:

Not applicable.

Consent for publication:

Not applicable.

Availability of data and materials

My manuscript has no associated data.

Competing interest

There is no competing interest as regard this study.

Funding

The study was funded by the authors.

Authors' contributions

"AOA developed the original idea and the protocol with HAS. AOA and AGR wrote the preliminary draft. AOA, OCA and AVO analysed the data. AOA, AGR, OCA, DJA, AVO, OAB, TAA, BFT and HAS performed the laboratory experiments and were involved in the collection of the data. All the authors read and approved the final manuscript."

Acknowledgements

The authors wish to thank the Oyo State Waste Management Authority (OYOWMA) for granting us permission for the collection of samples. This piece is dedicated to the memory of Deaconess Elizabeth Olufemi Adekanmbi, the mother of the first and corresponding author, who transited during the preparation of this manuscript. You will forever remain in our memories.

References

1-Finley RL, Collignon P, Larsson DJ, McEwen SA, Li XZ, Gaze WH, et al. The scourge of antibiotic resistance: the important role of the environment. Clinical infectious diseases 2013; 57(5): 704-710.

- **2-Gaze WH, Krone SM, Larsson DJ, Li XZ, Robinson JA, Simonet P, et al.** Influence of humans on evolution and mobilization of environmental antibiotic resistome. Emerging infectious diseases 2013; 19(7).
- **3-Kunhikannan S, Thomas CJ, Franks AE, Mahadevaiah S, Kumar S, Petrovski S.**Environmental hotspots for antibiotic resistance genes. Microbiology Open 2021; 10(3): e1197.
- **4-Zhang R, Yang S, An Y, Wang Y, Lei Y, and Song L.** Antibiotics and antibiotic resistance genes in landfills: A review. The Science of the total environment 2022; 806(Pt2): 150647. https://doi.org/10.1016/j.scitotenv.2021.150647.
- 5-Gao P, Munir M, and Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant, Science of The Total Environment 2012; 421–422: 173-183.
- 6-Threedeach S, Chiemchaisri W, Watanabe T, Chiemchaisri C, Honda R, Yamamoto K. Antibiotic resistance of Escherichia coli in leachates from municipal solid waste landfills: comparison between semiaerobic and anaerobic operations. Bioresource Technology 2012; 113: 253–258.
- **7-Chung SS, Zheng JS, Burket SR, Brooks BW.** Select antibiotics in leachate from closed and active landfills exceed thresholds for antibiotic resistance development. Environment International 2018; 115: 89–96.
- 8-Graham D, Olivares-Rieumont S, Knapp C, Lima L, Werner D, Bowen E. Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near

- Havana, Cuba. Environmental Science and Technology 2011; 45: 418–424.
- 9-Peng X, Ou W, Wang C, Wang Z, Huang Q, Jin J, Tan J. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Science of The Total Environment 2014; 490: 889–898.

https://doi.org/10.1016/j.scitotenv.2014.05.068

- **10-Moruff M.** Space, population, and waste management in Ibadan. He. Journal of Pan African Studies 2014; 7: 175–194.
- 11-Adekanmbi AO, Oluwaseyi TA, Oyelade AA. Dumpsite leachate as a hotspot of multidrug-resistant Enterobacteriaceae harboring extended-spectrum and AmpC β-lactamase genes; a case study of Awotan municipal solid waste dumpsite in Southwest Nigeria. Meta Gene 2021; 28: 100853.
- 12-Janezic KJ, Ferry B, Hendricks EW, Janiga BA, Johnson T, Murphy S, et al. Phenotypic and Genotypic Characterization of Escherichia coli Isolated from Untreated Surface Waters. Open Microbiol Journal 2013; 7: 9-19. doi: 10.2174/1874285801307010009.
- 13-Clinical and Laboratory Standards
 Institute (CLSI). Performance Standards for
 Antimicrobial Susceptibility Testing, 6th
 edition. CLSI supplement M100. Wayne:
 2023.
- 14-Mendonça N, Leitão J, Manageiro V,
 Ferreira E. The Antimicrobial Resistance
 Surveillance Program in Portugal, Manuela
 Caniça. Spread of Extended-Spectrum β Lactamase CTX-M-Producing Escherichia
 coli Clinical Isolates in Community and
 Nosocomial Environments in Portugal.

- Antimicrobial Agents and Chemotherapy 2007; 51(6): 1946–1955
- 15-Maynard C, Bekal S, Sanschagrin F, Levesque RC, Brousseau R, Masson L, et al. Heterogeneity among virulence and antimicrobial resistance gene profiles of extra-intestinal Escherichia coli isolates of animal and human origin. Journal of Clinical Microbiology 2004; 42(12): 5444-52.
- **A. C.** Leachate Generated from a Public Abattoir in Nigeria is a Repository of Escherichia coli carrying a High Burden of Extended Spectrum β-Lactamase (ESBL) Genes. Acta Microbiologica Bulgarica 2022: 38(2): 98-106.
- 17-Liu H, Li H, Qiu L, Chen B, Wang H, Fang C, et al. The Panorama of Antibiotics and the Related Antibiotic Resistance Genes (ARGs) in Landfill Leachate. Waste Management 2022; 144: 19–28.
- **18-Su Y Zhang Z, Zhu J, Shi J, Wei H, Xie B, et al.** Microplastics act as vectors for antibiotic resistance genes in landfill leachate: the enhanced roles of the long-term aging process. Environmental Pollution 2021.
- 19-Wang Y Wang Y, Zhang R, Lei Y, Song L et al. Antibiotic resistance genes in landfill leachates from seven municipal solid waste landfills: seasonal variations, hosts, and risk assessment. Science of The Total Environment 2022.
- 20-Mondragón-Quiguanas A, Villaquirán-Muriel MÁ, Rivera SP, Rosero-García D, Aranaga C, Correa A, et al. Beta-Lactam-Resistant Enterobacterales Isolated from Landfill Leachates. Pathogens 2022; 11: 1077.

https://doi.org/10.3390/pathogens11101077.

- 21-Finney M, Smullen J, Foster HA, Brokx S, Storey DM. Evaluation of Chromocult Coliform Agar for the Detection and Enumeration of Enterobacteriaceae from Faecal Samples from Healthy Subjects. Journal of Microbiology Methods 2003; 54: 353–358.
- **22-Centers for Disease Control and Prevention (CDC).** Antibiotic Resistance
 Threats in the US. US Department of Health
 and Human Services, Washington, DC, USA,
 p. 2019.
- 23-Livermore DM, Day M, Cleary P, Hopkins KL, Toleman MA, Wareham DW, et al. OXA-1 β-lactamase and nonsusceptibility to penicillin/β-lactamase inhibitor combinations among ESBL-producing Escherichia coli. Journal of Antimicrobial Chemotherapy 2019; 74: 326–333.
- 24-Athanasakopoulou Z, Reinicke M, Diezel C, Sofia M, Chatzopoulos DC, Braun SD, et al. Antimicrobial resistance genes in ESBL-producing Escherichia coli isolates from animals in Greece. Antibiotics 2021; 10: 389.
- 25-Noor ZZ, Rabiu Z, Sani MHM, Samad AFA, Kamaroddin MFA, Perez MF, et al. A Review of Bacterial Antibiotic Resistance Genes and Their Removal Strategies from Wastewater. Current Pollution Reports 2021; 7: 494–509.
- **26-Martíneza MJF, García MIG, Sáncheza EG, Sánchez JEG.** Los Carbapenems
 Disponibles: Propiedadesy Diferencias.
 Enfermedades Infecciosas y Microbiologia
 Clinica 2010; 28: 53–64.
- 27-Gomi R, Matsuda T, Yamamoto M, Chou PH, Tanaka M, Ichiyama S, et al. Characteristics of Carbapenemase-Producing Enterobacteriaceae in Wastewater Revealed

- by Genomic Analysis. Antimicrobial Agents and Chemotherapy 2018; 62: e02501-17.
- 28-Shin S, Jeong SH, Lee H, Hong JS, Park MJ, Song W. Emergence of Multidrug-Resistant Providencia rettgeri Isolates Co-Producing NDM-1 Carbapenemase and PER-1 Extended-Spectrum -Lactamase causing a First Outbreak in Korea. Annals of Clinical Microbiology and Antimicrobials 2018; 17: 20.
- **29-Poirel L, Naas T, Nordmann P.** Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrobial Agents and Chemotherapy 2010; 54: 24–38.
- **30-Zhao WH, Hu ZQ.** Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in gram-negative bacteria. Critical Reviews in Microbiology 2013; 39(1): 79–101.
- **31-Canton R, Coque TM.** The CTX-M beta-lactamase pandemic. Current Opinion in Microbiology 2006; 9(5): 466–75.
- **32-Rossolini GM, D'Andrea MM, Mugnaioli C.** The spread of CTX-M-type extended-spectrum beta-lactamases. Clinical Microbiology and Infection 2008; 14(Suppl 1): 33–41.
- 33-Lahlaoui H, Khalifa ABH, Moussa MB.

 Epidemiology of Enterobacteriaceae
 producing CTX-M type extended-spectrum βlactamase (ESBL). Medecine et Maladies
 Infectieuses 2014; 44(9): 400–4.
- 34-Gelband H, Miller-Petrie M, Pant S, Gandra S, Levinson J, Barter D, et al. State of the World's Antibiotics. Center for Disease Dynamics, Economics & Policy 2015. https://www.cddep.org/wpcontent/uploads/20 17/06/swa_ edits_9.16.pdf. Accessed 20 Feb 2018.

Adekanmbi A, Rabiu A, Akinlabi O, Ajose D, Olaposi A, Aderounmu A, Banjo O, Ajamu T, Tofio B, Sanuth H. Leachate emanating from a municipal solid waste dumpsite is a hotspot of Extended Spectrum β-Lactamase (ESBL)-producing *Escherichia coli* harboring CTX-M β-lactamase. Microbes Infect Dis 2025; 6(4): 6558-6567.