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Abstract Worldwide, energy hubs (EHs) have been 

developed by integrating different technologies for power 

transformation, storage, and generation, as a critical key to  

overcoming resource insufficiency and environmental 

issues. Moreover, the energy center performs a major task 

by enhancing system flexibility, efficiency, and reliability. 

The attention to electric vehicles (EVs) and renewable 

energies has also increased. An EH consists of combined 

cooling, heating, and power (CCHP) units, wind turbines 

(WTs), photovoltaics (PVs), hydrogen electrolyzers, fuel 

cells (FCs), water desalination systems, auxiliary boilers 

(AB), plug-in electric vehicles (PEVs) and energy storage 

systems (ESSs); ice storage conditioners (ISCs), solar 

powered compressed air energy storage (SPCAES), thermal 

energy storage systems (TESSs), hydrogen storage (H2S). 

This paper employs a demand response program (DRP), for 

load curtailment, shifting, and flexible load modeling. In 

pursuit of reducing the total costs. Herein, four scheduling 

cases are evaluated using different charging modes of EVs 

and applying the DRP. The numerical results reveal that, by 

implementing the electrical DRP (EDRP), the final costs 

are successfully reduced. Compared to the base case, the 

total costs are reduced by 4.0% when the EDRP is applied. 

The total costs decreased by 4.8% when both electrical and 

thermal DRPs were employed. The results also demonstrate 

that by implementing both DRPs and coordinated mode 

EVs, total costs can be further decreased by 6.3%. 
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1. Introduction  

Due to population increase, rapid developments in the field 

of economics, technological progress, and technical 

development in recent decades, there has been a clear 

increase in global demand for energy [1, 2]. Owing to the 

increase in energy demand, traditional energy systems 

based on fossil fuels have also increased, and therefore 

there has been a significant increase in energy prices and 

emissions [3-5]. Moreover, separate management of energy 

resources and systems increases operating costs and 

emissions while reducing system efficiency [6]. Therefore, 

various aspects of the concept of sustainable energy have 

been studied so far. To get maximum profit from the 

existing energy resources, different power resources have 

been used and scheduled in the form of a multi-power 

network [7-9]. Therefore, EHs are energy systems that 

directly connect several energy carriers such as electricity, 

heat, gas, and hydrogen. The ability to store, transport, and 

convert various energy carriers acts as an interface between 

consumers and producers [9-12]. 

To highlight the advantages of energy hub (EH), 

combined heat and power (CHP) and combined cooling, 

heat and power (CCHP) modules are used [13]. One of the 

key characteristics of EHs is their ability to be implemented 

for different sizes of power systems. Therefore, it can be 

used for residential power centers [14, 15]. Moreover, the 

fundamental needs for zero-emission energy generation 

make renewable energy sources more significant than ever 

[16]. In addition, The use of renewable energy resources 

(RES) in EHs improves the environmental features of the 

power system and reduces the operating cost because its 
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operating and maintenance costs are not high [4]. Although 

it does not have deterministic outcomes due to the 

unpredictable nature of its primary sources. These 

uncertainties related to renewable energy systems, along 

with uncertainties related to energy demand, lead to more 

challenges facing the energy center. Looking at the worst-

case scenario is a solution that requires paying huge costs 

[17]. In addition, the appropriate alternative for increasing 

the efficiency of the system and overcoming uncertainties 

is the use of energy storage systems (ESS). Implementing 

RES such as photovoltaic (PV) modules, and wind turbines 

(WTs), in addition to the storage systems which include 

electrical storage systems (ESSs), thermal storage facilities, 

natural gas (NG) storage systems, and gas power plant is 

the proposed EH in ref [18]. In addition, the output power 

uncertainty of WT and PV units was considered using a 

genetic algorithm (GA). A new stochastic model for 

different uncertainties in EHs, such as REDRs, load, 

electricity price, and output power was studied in ref [19]. 

A Robust Mixed Integer Linear Programming (RMILP) 

approach was used to consider the uncertainty related to the 

RES, loads, the energy required for charging the (EVs) and 

electricity price [20]. 

Due to the increasing growth in energy demand in recent 

years, the use of demand response programs (DRPs) has 

become widely spread as a suitable alternative to fix load 

curves and increase system efficiency. For alleviating the 

EH drawbacks, the integration of DRP effectively 

contributes to improving the EH operation as in [21, 22] 

which presents a 13.78% improvement in the total costs of 

the EH system. In addition, DRP was integrated to improve 

both aspects of the operation and reliability of the EH in ref 

[23]. Ignoring the effects of uncertainty in [24, 25] the EH 

model in ref [25] is integrated with energy storage, DRP, 

and RESs such as WT and PV cells. To reduce operational 

and environmental costs under mixed integer linear 

programming (MILP) a scenario-based stochastic process 

for EH integrated with solar-powered compressed air 

energy storage (SPCAES) and ice storage conditioner (ISC) 

is illustrated in ref [26] which improves the total cost by 2.6% 

by combining the ISC and the SPCAES. Electric DRP was 

used to develop  energy management of EH in ref [27], 

Which improves the operating costs by 24% in the presence 

of ice storage though electric vehicles (EVs) have not been 

considered. For managing loads in different periods, real-

time DRP has been used while the main component of the 

EH was the CCHP. However, the uncertain nature of RESs 

and EVs was not taken into account in ref [28] and the cost 

reduction is up to 5.2% due to the employment of DRP. 

For managing large-scale resources and considering 

uncertainties related to EVs, market prices, and RES output 

power, a stochastic model was proposed in ref [29]. Various 

uncertainties of power systems in the presence of EVs were 

investigated, although the heating and cooling loads were 

not studied in ref [30]. Depending on load classifications, 

ref [31] has examined the integrated DRP. By integrating 

electrical and thermal DRP a robust optimization process 

for managing EHs was investigated in ref [32]. Owing to 

the widespread use of hydrogen as a clean fuel[33, 34], [35] 

a robust integrated DRP-based optimization method for 

EHs that incorporates the hydrogen system which includes 

fuel cells (FCs) and hydrogen storage (H2S) systems with 

a decrement in the operating costs up to 7.8%. Due to the 

scarcity of fresh water in many areas around the world, 

getting clean water has become an increasingly important 

problem [36]. As a consequence, 25% of the world’s 

population cannot obtain a sufficient amount of freshwater 

[37]. Therefore, to obtain fresh water, specifically in coastal 

regions seawater desalination (SWD) processes have been 

commonly integrated into energy centers (EHs) [38]. Due 

to the need to provide reliable sources of clean fresh water 

for various uses to human communities in areas facing the 

problem of water shortage, SWD's reverse osmosis (RO) 

technology draws attention due to its economic 

performance [39]. The use of CCHP and renewable 

generations in combination with grid-connected and 

islanded microgrids (MGs) based on EH with the SWDs 

regarding several studies were done [40, 41]. 

The literature review shows that there are two principal 

research gaps, namely considering the demand for pure 

water, hydrogen, and EVs, along with implementing 

electrical and thermal DRP for the robust optimization of 

EHs. This paper attempts to fill these research gaps. In the 

proposed robust optimization method, all the EH loads 

including electrical, thermal, cooling as well as hydrogen 

and pure water demand are taken into account, which is one 

of the main contributions of this study. Studying the effects 

of different hybrid ESSs, including SPCAES, thermal 

energy storage systems (TESS), ISC, and H2S, is another 

advantage of the proposed method. The integrated thermal 

and electrical DRPs were also studied. Moreover, the 

effects of uncoordinated and coordinated charging modes 

of EVs were characterized in this study.  
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Table 1. The summary of the literature review and the comparison of the proposed method with other works 

 
Loads Storages  DRP 

Ref 
Year Electrical Thermal Cooling Hydrogen Water ES HS CS H2S PV WT EVs EDRP HDRP 

[23] 
2014 √ √ ˗ ˗ ˗ √ √ ˗ ˗ ˗ √ ˗ √ ˗ 

[42] 
2015 √ √ ˗ ˗ ˗ ˗ √ ˗ ˗ √ √ ˗ ˗ ˗ 

[13] 
2017 √ √ √ ˗ ˗ ˗ ˗ ˗ ˗ √ √ ˗ ˗ ˗ 

[43] 
2017 √ √ √ ˗ ˗ √ √ √ ˗ √ √ ˗ √ ˗ 

[44] 
2018 √ ˗ ˗ ˗ ˗ ˗ ˗ ˗ ˗ √ √ √ ˗ ˗ 

[25] 
2019 √ √ √ ˗ ˗ √ √ ˗ ˗ ˗ ˗ ˗ ˗ ˗ 

[45] 
2019 √ √ √ ˗ ˗ √ √ √ ˗ ˗ ˗ √ √ ˗ 

[46] 
2019 √ √ √ ˗ ˗ √ √ √ ˗ √ √ ˗ √ √ 

[14] 
2020 √ √  ˗ ˗ √ √ ˗ ˗ ˗ √ ˗ √ √ 

[18] 
2020 √ √ √ ˗ ˗ √ √ √ ˗ √ √ ˗ ˗ ˗ 

[47] 
2020 √ √ ˗ ˗ ˗ ˗ √ ˗ ˗ √ √ √ √ √ 

[48] 
2021 √ √ √ ˗ ˗ √ √ √ ˗ √ ˗ ˗ √ √ 

[49] 
2021 √ √ √ ˗ ˗ √ √ ˗ ˗ ˗ √ ˗ √ √ 

[15] 
2021 √ √ ˗ ˗ ˗ ˗ √ ˗ ˗ √ ˗ √ ˗ ˗ 

[50] 
2022 √ √ √ √ √  √ √ √ √ √ √ ˗ ˗ 

[30] 
2022 √ √ √ ˗ ˗ √ ˗ ˗ ˗ √ √ √ √ ˗ 

[11] 
2023 √ √ √ √  √ √ √ √ √ √ √ √ √ 

Proposed method √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

 

The innovative characteristics and the main contributions 

of this study can be summarized as follows: 

 

• Due to the rapid spread of electric vehicles recently 

several references studied the optimal operation of EHs 

with considering EVs. However, there is a gap in 

studying the impacts of EVs and their charging modes 

on the optimal operation of EH. Therefore, studying 

the effects of EVs and their managed and unmanaged 

charging modes is one of the main contributions of this 

paper.  

• The effects and advantages of different storage systems 

including ISC, TESS, H2S, and SPCAES on the 

optimal EH performance during EVs' charging mode 

in different seasons are also included. 

• To provide fresh water for the regions facing the water 

inadequacy problem, SWD-RO should be heavily 

investigated. The hydrogen system is also included to 

provide clean fuel. Therefore, this study has focused on 

the hydrogen and freshwater demands, which did not 

receive the required attention in existing studies.  

• Most published studies don’t provide a detailed 

analysis of the effect of electrical/thermal/integrated 

electrical and thermal DRP on the EH optimal 

operation which is an essential contribution of this 

article compared to existing studies. 

 

The proposed energy management scheme takes into 

account electricity, heat, cooling, hydrogen, and purified 

water requirements simultaneously, along with integrated 

electrical and thermal DRP. Considering the different 

requirements and supplying them to EH through the use of 

different generating units and ESSs is one of the strengths 

of this article. Table 1 produces the summary of the 

literature review and the comparison of the proposed 

method with other works. 

Following are the sections of the study: Section 2 

introduces the EH configuration. Section 3 presents the 

proposed model for the optimal EH operation. The 

uncertainty modeling is described in Section 4. Part 5 

discusses the mathematical model and solution algorithm. 

Part 6 discusses simulation results and discussions. Finally, 

the conclusion is reported in Section 7. 
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2.  EH configuration 

The intermediate connection in the energy supply chain 

between primary resources and the ultimate customers are 

energy carriers, which include electricity and heat, besides 

other solid, liquid, and gaseous fuels. Moreover, an energy 

system that includes more than one energy carrier is 

represented as a multi-carrier energy system or energy 

center. Whereas, EH can be represented as a node through 

which different energy carriers such as heat, electricity, and 

cooling are transformed to each other by different energy 

converters. Furthermore, the EH also contains an energy 

storage, transmission, and distribution system. 

This section focuses on explaining and formulating the 

elements of EH. As shown in Fig. 1, the EH system consists 

of CCHP, WT, PV, SPCAES, AB, absorption chiller (AC), 

EVs, TESS, ISC, water desalination system-based RO 

technology, and hydrogen system. The CCHP consists of 

several components  such as a power generation unit (PGU), 

heat recovery unit (HRU), and AC. The PGU consumes NG 

for generating electricity, and excess heat is captured by the 

HRU to reduce waste. AB works alongside HRU as another 

heat generator, generating thermal energy through NG 

consumption. The heat from the thermal hub serves as an 

input for the AC for cool production. While ISC also 

contributes to providing cooling requirements [4] relieving 

pressure on the power supply and achieving a balance 

within the cooling hub between generation and demand. In 

addition, the integration of TESS enhances the overall 

reliability of the power system. Moreover, it is preferable to 

use SPCAES over traditional compressed air energy storage 

(CAES), as higher efficiency is obtained through it. Despite 

their obvious similarity, SPCAES collects the output of the 

solar collector along with the heat recuperator. 

As illustrated in Fig. 1, the inputs to the EH can be obtained 

from both electrical and NG networks, while the loads 

include electricity, heat, cooling, pure water, and hydrogen. 

Also, the electrical hub is supplied with electrical energy 

via the utility grid, PV, WT, FC, and the electrical energy 

generated by the CCHP. In addition, the SPCAES 

exchanges the electrical energy with the electrical hub. The 

electric hub must meet the requirements of the electric load, 
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Fig 1. The proposed EH architecture. 
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the energy consumed by the electrolyzer, the energy 

consumed by the water desalination system, and the 

charging load of EVs. It should be noted that EVs can be 

charged through a coordinated/uncoordinated charging 

system, which is studied in this paper, along with integrated 

thermal and electrical DRP systems. As for the cooling 

loads, they are provided through a cooling center through 

AC and ISC. Moreover, the heat requirement of the heating 

hub is provided by the AB and HRU; the heat storage can 

also be charged or discharged at required times. The  SWD 

system uses RO technology, through which water is 

generated using electrical energy to meet the demand for 

fresh water. To get the required balance between hydrogen 

production and utilization, the electrolyzers, a hydrogen 

tank, along with FC are implemented.  

3 The proposed model for optimal EH operation 

3.1. Objective function and energy balance constraints: 

3.1.1 Objective function: 

As discussed, the main purpose of this study is to reduce the 

total costs of the proposed model, which includes the 

operating costs and environmental costs, besides reducing 

the consumers’ discomfort cost related to integrating 

electrical and thermal DRP.  

 Eq. (1) details the total costs of EH. Firstly, operating costs 

are costs related to energy and gas purchased from the 

electricity and gas markets as formulated in Eqs. (2-3) 

respectively. 

 

𝐶𝑇𝑂𝑇 = min⁡(𝐶𝑒 + 𝐶𝑔 + 𝐶𝑐𝑒 + 𝐶𝐸𝐷𝑅𝑃 + 𝐶𝐻𝐷𝑅𝑃)⁡  (1) 

𝐶𝑒 =⁡∑ (𝜌𝑒(𝑡). 𝑃
𝐺𝑟𝑖𝑑 . ∆𝑡)

Nt
𝑡=1   (2) 

𝐶𝑔 =⁡∑ (𝜌𝑔(𝑡). [
𝑃𝑒
𝑃𝐺𝑈⁡(𝑡)

𝜂𝑒
𝑃𝐺𝑈 +

𝐻𝐻𝑅𝑈(𝑡)

𝜂ℎ
𝑃𝐺𝑈 +

𝐻𝐴𝐵(𝑡)

𝜂ℎ
𝐴𝐵 +

Nt
𝑡=1

𝑃𝑑
𝑆𝑃𝐶𝐴𝐸𝑆⁡(𝑡)

𝜂𝑑
𝑆𝑃𝐶𝐴𝐸𝑆 ]). ∆𝑡)  

(3) 

 

Where, 𝐶𝑇𝑂𝑇  is the total cost of EH, 𝐶𝑒⁡ is the net 

electricity purchasing cost, 𝐶𝑔  is the net gas purchasing 

cost, 𝐶𝑐𝑒  is the carbon emission cost, 𝐶𝐸𝐷𝑅𝑃  and 𝐶𝐻𝐷𝑅𝑃 

are the discomfort costs resulting from implementing 

electrical and thermal DRP respectively, 𝜌𝑒 is the Sell and 

purchase Electricity price, 𝑃𝐺𝑟𝑖𝑑  is the real power 

exchanged from the upstream grid, 𝜌𝑔 is the gas price, 𝛳 

is the carbon dioxide processing cost, Ф𝑒 is the equivalent 

emission coefficient for electricity, and Ф𝑔  is the 

equivalent emission coefficient for natural gas. 

 

As shown in (3), the amount of NG withdrawn from the NG 

network is consumed through the SPCAES during the 

generating mode, PGU and AB together. The cost of 

processing emissions resulting from supplying various 

loads with energy through non-renewable energy 

conversion methods, such as CCHP units and boilers, is 

calculated based on electricity purchased from the network 

and the amount of NG withdrawn from the NG network 

using (4). 

 

𝐶𝑐𝑒 =⁡∑ 𝛳 (⁡Ф𝑒. 𝑃
𝐺𝑟𝑖𝑑(𝑡) + Ф𝑔. [

𝑃𝑒
𝑃𝐺𝑈⁡(𝑡)

𝜂𝑒
𝑃𝐺𝑈 +

Nt
𝑡=1

𝐻𝐻𝑅𝑈(𝑡)

𝜂ℎ
𝑃𝐺𝑈 +

𝐻𝐴𝐵(𝑡)

𝜂ℎ
𝐴𝐵 +

𝑃𝑑
𝑆𝑃𝐶𝐴𝐸𝑆⁡(𝑡)

𝜂𝑑
𝑆𝑃𝐶𝐴𝐸𝑆 ]) . ∆𝑡⁡  

(4) 

 

Moreover, the cost of customers’ dissatisfaction resulting 

from integrated thermal and electrical DRPs is mainly 

because they have to change their energy consumption 

pattern versus their comfort standards while participating in 

DRP[51]. Therefore, the dissatisfaction costs arising from 

electrical and thermal DRPs should be defined by (5) and 

(6), respectively. 

 

𝐶𝐸𝐷𝑅𝑃 =⁡∑ 𝑃𝑈𝑃(𝑡) × ∅𝐸,𝑈𝑃𝑡 + 𝑃𝐷𝑂(𝑡) × ∅𝐸,𝐷𝑂  (5) 

𝐶𝐻𝐷𝑅𝑃 =⁡∑ 𝐻𝑈𝑃(𝑡) × ∅𝐻,𝑈𝑃𝑡 + 𝐻𝐷𝑂(𝑡) × ∅𝐻,𝐷𝑂  (6) 

 

3.1.2 Energy balance constraints: 

The electrical hub power balance can be written as: 

 

𝑃𝐸(𝑡) + 𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) + 𝑃𝑒
𝑃𝐺𝑈(𝑡) +

𝑃𝑑
𝑆𝑃𝐶𝐴𝐸𝑆(𝑡) + 𝑃𝐹𝐶(𝑡) + 𝑃𝐷𝑂(𝑡) =

𝑃𝐿(𝑡) + 𝑃𝐸𝑉(𝑡) + 𝑃𝑐
𝐼𝑆𝐶(𝑡) +

𝑃𝑐
𝑆𝑃𝐶𝐴𝐸𝑆(𝑡) + 𝑃𝐸𝐿(𝑡) +

𝑃𝑅𝑂(𝑡)+𝑃𝑈𝑃(𝑡)  

(7) 

 

Furthermore, the thermal hub power balance is illustrated 

as: 

 

𝜂𝐻𝑅𝑈. 𝐻𝐻𝑅𝑈(𝑡) + 𝐻𝐴𝐵(𝑡) + 𝑃𝑑
𝑇𝐸𝑆𝑆(𝑡) + 𝐻𝐷𝑂(𝑡) =

𝐻𝐿(𝑡) + 𝐻𝐴𝐶 + 𝑃𝑐
𝑇𝐸𝑆𝑆(𝑡)+𝐻𝑈𝑃(𝑡)   

(8) 

 

Moreover, the cooling hub energy balance is expressed as 

follows: 

 

𝐶𝐴𝐶(𝑡) + 𝑃𝑑
𝐼𝑆𝐶(𝑡) = 𝐶𝐿(𝑡) (9) 

 

3.2 Modelling of equipment and constraints: 



24  Shaimaa A. M. Mousa et al.  

 

3.2.1 Modelling of hydrogen system: 

At a given time, based on the hydrogen demand (𝐷ℎ2) and 

FC hydrogen demand, the total hydrogen energy generated 

by the electrolyzer may or may not be sufficient to provide 

the total hydrogen energy demanded Therefore, H2S 

charges and discharges to reach the required balance 

between hydrogen generation and demand at each time 

segment as follows. 

 

𝑃𝐸𝐿(𝑡) × 𝜂𝐸𝐿 = 𝐷ℎ2(𝑡) + 𝑃𝑓𝑐(𝑡) + 𝐻2𝑖𝑚(𝑡) −

𝐻2𝑒𝑥(𝑡) ∀𝑡 ∈ 𝑇     
(10) 

 

Accordingly, the state of charge (SOC) of the H2S which 

represents the amount of hydrogen energy stored in H2S at 

each time segment can be calculated through the amount of 

hydrogen energy imported or exported from it, in addition 

to the amount of hydrogen stored in the H2S in the previous 

hour as the equations below. 

 

𝑆𝑂𝐶𝐻2𝑆(t) = 𝑆𝑂𝐶𝐻2𝑆(𝑡 − 1) +
𝐻2𝑖𝑚

𝐻𝐻𝑉𝐻2
−

𝐻2𝑒𝑥

𝐻𝐻𝑉𝐻2
⁡⁡⁡∀𝑡 > 1  

(11) 

𝑆𝑂𝐶𝐻2𝑆(𝑡) = 𝑆𝑂𝐶𝑖𝑛𝑖
𝐻2𝑆 +

𝐻2𝑖𝑚

𝐻𝐻𝑉𝐻2
−

𝐻2𝑒𝑥

𝐻𝐻𝑉𝐻2
⁡⁡⁡∃𝑡 =

1  

(12) 

 

The FC is used to supply the required electrical energy 

when the hydrogen energy is redundant  and  also when the 

electrical demand is at peak as in the following equation. 

 

𝑃𝐹𝐶 =⁡𝑃𝑓𝑐(𝑡) × 𝜂𝐹𝐶⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑡 ∈ 𝑇 (13) 

 

The restrictions related to the H2S are illustrated as: 

 

𝑈𝑐
𝐻2S(𝑡) + 𝑈𝑑

𝐻2S(𝑡) ≤ 1⁡⁡⁡∀𝑡 ∈ 𝑇 (14) 

𝐻2𝑖𝑚(𝑡) ≤ ⁡𝑈𝑐
𝐻2(𝑡) × 𝐾⁡⁡∀𝑡 ∈ 𝑇 (15) 

𝐻2𝑒𝑥(𝑡) ≤ ⁡𝑈𝑑
𝐻2(𝑡) × 𝐾⁡⁡⁡⁡∀𝑡 ∈ 𝑇 (16) 

𝑃𝐸𝐿(𝑡) ≤ 𝑃𝐸𝐿−𝑚𝑎𝑥 ⁡⁡⁡⁡⁡⁡⁡∀𝑡 ∈ 𝑇 (17) 

𝑆𝑂𝐶𝐻2S(𝑡) ≤ 𝑆𝑂𝐶𝐻2S−𝑚𝑎𝑥 ⁡⁡⁡⁡∀𝑡 ∈ 𝑇 (18) 

 

As specified in (14) the H2S can’t operate at the generating 

and load mode simultaneously. Eqs. (15-18) declares the 

corresponding limitations of the H2S and electrolyzer. 

  

3.2.2 Reverse osmosis desalination unit modeling: 

The interrelationships between freshwater generation and 

electricity consumption can be illustrated as follows: 

 

𝑃𝑅𝑂(t) = ⁡𝑊𝑅𝑂(𝑡) × 𝑆𝐸𝐶𝑅𝑂 (19) 

 

Eq. 20 shows the correlation between the hourly freshwater 

demand and the amount of freshwater generated by the 

SWD unit. As shown, the amount of pure water produced 

from SWD is equal to the amount of water required every 

hour due to the absence of a water storage tank (WST). 

 

𝑊𝑅𝑂(t) = ⁡𝑊𝑤𝑑(t) (20) 

 

3.2.3 Network modelling: 

Through the transformer, electrical energy is exchanged 

between the network and the electrical hub. If electricity is 

in excess, EH exchanges the excess electricity with the 

utility grid. Nevertheless, when electricity is inadequate, 

EH purchases electricity from the grid as specified. 

 

𝑃𝐸 = ⁡𝑃𝐺𝑟𝑖𝑑 × 𝜂𝑡 
(21) 

 

In addition, constraint (22) indicates the allowable range of 

the  electrical energy swapped between the EH and the grid. 

 

𝑃𝑚𝑖𝑛
𝐸 ≤ ⁡𝑃𝐸 ⁡≤ ⁡𝑃𝑚𝑎𝑥

𝐸  (22) 

 

3.2.4 CCHP unit modelling: 

The CCHP units are basic energy-saving- facilities, which 

are fed with NG to produce electricity, cool, and heat 

simultaneously. As shown in Fig. 1, NG energy is 

consumed by the PGU (𝑃𝑔
𝑃𝐺𝑈)  for producing electricity 

(𝑷𝒆
𝑷𝑮𝑼⁡) and co-product heat (𝑯𝑯𝑹𝑼) as illustrated by Eqs. 

(23) and (24).  

 

𝑃𝑒
𝑃𝐺𝑈 =⁡𝑃𝑔

𝑃𝐺𝑈 × 𝜂𝑒
𝑃𝐺𝑈 (23) 

𝐻𝐻𝑅𝑈 =⁡𝑃𝑔
𝑃𝐺𝑈 × 𝜂ℎ

𝑃𝐺𝑈  (24) 

 

The co-product heat produced by the PGU (𝐻𝐻𝑅𝑈)⁡acts as 

an input to the HRU and its output ⁡(𝐻𝐻𝑅𝑈 × 𝜂𝐻𝑅𝑈)   is 

injected into the thermal hub. Then the AC consumes part 

of the heat coming out of the thermal hub for generating 

cooling energy, which can be represented by the following 

equation: 

 

𝐶𝐴𝐶 =⁡𝐻𝐴𝐶 × 𝑘𝐴𝐶  (25) 
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The restrictions related to the minimum and maximum 

limits of the PGU, HRU, and AC are specified in Eqs 

(26)(27), and (28) respectively. 

 

𝑃𝑚𝑖𝑛
𝑃𝐺𝑈 ≤⁡𝑃𝑒

𝑃𝐺𝑈 ⁡≤ ⁡𝑃𝑚𝑎𝑥
𝑃𝐺𝑈 (26) 

𝐻𝑚𝑖𝑛
𝐻𝑅𝑈 ≤⁡𝐻𝐻𝑅𝑈 ⁡≤ ⁡𝐻𝑚𝑎𝑥

𝐻𝑅𝑈  
(27) 

 

𝐻𝑚𝑖𝑛
𝐴𝐶 ≤⁡𝐻𝐴𝐶 ⁡≤ ⁡𝐻𝑚𝑎𝑥

𝐴𝐶  (28) 

 

3.2.5 Storage modeling 

A) SPCAES modeling 

The SPCAES consumes NG during discharging periods, 

hence the SPCAES discharging equation is illustrated in Eq 

(29). In the case of charging, the SPCAES only consumes 

electrical energy working at the load mode. 

 

𝑃𝑑
𝑆𝑃𝐶𝐴𝐸𝑆 =⁡𝑃𝑔𝑎𝑠

𝑆𝑃𝐶𝐴𝐸𝑆 × 𝜂𝑑
𝑆𝑃𝐶𝐴𝐸𝑆 (29) 

 

B) ISC modelling 

The ISC is utilized in combination with the AC to get the 

required cooling energy in the EH. Therefore, the use of 

ISC offers many advantages, as it consumes electricity at 

off-peak times to produce cooling energy, hence shifting 

the electricity consumption from peak hours to off-peak 

hours, which reduces power supply tension, as formulated: 

 

𝑃𝑑
𝐼𝑆𝐶 =⁡𝑃𝐶

𝐼𝑆𝐶 × 𝑘𝐼𝑆𝐶 (30) 

 

C) TESS modelling 

TESS is ideally combined with other heating facilities, such 

as CCHP and AB units to meet the heating requirements of 

AC as well as the required heat loads. The TESS charges 

during off-peak times working at the load mode and 

discharges during on-peak times working in the generating 

mode. Thereby reducing the total cost. 

 

D) Storages constraints 

The SPCAES, TESS, and ISC constraints on the 

minimum/maximum charge/discharge energy and so on, 

are provided in a set of Eqs. (31) to (35).  

0 ≤ ⁡𝑃𝑐
𝐸𝑆𝑆(𝑡) ⁡≤ ⁡𝑃𝑐−𝑚𝑎𝑥

𝐸𝑆𝑆 × 𝑈𝐸𝑆𝑆(𝑡)  (31) 

0 ≤ ⁡𝑃𝑑
𝐸𝑆𝑆 ⁡(𝑡) ≤ ⁡𝑃𝑑−𝑚𝑎𝑥

𝐸𝑆𝑆 × (1 − 𝑈𝐸𝑆𝑆(𝑡))  (32) 

𝐸𝐸𝑆𝑆(𝑡) = 𝐸𝐸𝑆𝑆(𝑡 − 1) − 𝑃𝑑−𝑚𝑎𝑥
𝐸𝑆𝑆 (𝑡) × 𝜂𝑑

𝐸𝑆𝑆 +

(
𝑃𝑐−𝑚𝑎𝑥
𝐸𝑆𝑆 (𝑡)

𝜂𝑐
𝐸𝑆𝑆 )⁡⁡  

(33) 

𝐸𝑚𝑖𝑛
𝐸𝑆𝑆 ≤ ⁡𝐸𝐸𝑆𝑆(𝑡) ⁡≤ ⁡𝐸𝑚𝑎𝑥

𝐸𝑆𝑆  (34) 

𝐸𝐸𝑆𝑆(0) = 𝐸𝐸𝑆𝑆(24) 
(35) 

 

 

3.2.6 Auxiliary boiler model 

To serve heating customers, in addition to CCHP and 

TESS, AB is implemented as a common thermal product 

technology for producing thermal energy through the 

consumption of NG as follows: 

 

𝐻𝐴𝐵 =⁡𝑃𝑔
𝐴𝐵 × 𝜂ℎ

𝐴𝐵 (36) 

 

Moreover, the amount of thermal energy produced by the 

AB in each period must be within the minimum and 

maximum limits specified in Eq. (37). 

 

𝐻𝑚𝑖𝑛
𝐴𝐵 ≤ ⁡𝐻𝐴𝐵 ⁡≤ ⁡𝐻𝑚𝑎𝑥

𝐴𝐵  (37) 

 

3.2.7 EVs modeling 

EVs charging model: 

Because the behaviors of EV owners are random, for 

example, arrival time, departure time, and travel 

distance/tim   [8] . A suitable probability distribution function 

(PDF) must be used to model the analytical behaviors of EV 

owners. 

• EVs driving distance 

F𝐷(X) =
1

√2𝜋𝜎𝐷𝑋
exp⁡(

−(ln𝑋−𝜇𝐷)
2

2𝜎𝐷
2 )  (38) 

 

Eq. (38) declares the logarithmic distribution function of 

the daily EV driving distance. 

 

• EVs’ arrival and departure time 

Charging of EVs usually begins in the evening when car 

owners arrive home.  Through the normal distribution 

function, the arrival time of the electric vehicle is 

determined as formulated by Eq. (39). 
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F𝐴𝑅(t)

=

{
 
 

 
 

1

√2𝜋𝜎𝐴𝑅
exp(

−(𝑡 + 24 − 𝜇𝐴𝑅)
2

2𝜎𝐴𝑅
2

) ⁡0 ≤ 𝑡 ≤ 𝜇𝐴𝑅 − 12

1

√2𝜋𝜎𝐴𝑅
exp(

−(𝑡 − 𝜇𝐴𝑅)
2

2𝜎𝐴𝑅
2

)⁡⁡𝜇𝐴𝑅 − 12 ≤ 𝑡 ≤ 24

⁡⁡ 
(39) 

 

Moreover, the departure time also follows normal 

distribution, as presented in Eq (40). 

 

F𝐷𝑃(t)

=

{
 
 

 
 

1

√2𝜋𝜎𝐷𝑃
exp(

−(𝑡 − 𝜇𝐷𝑃)
2

2𝜎𝐷𝑃
2

) ⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑡 ≤ 𝜇𝐷𝑃 + 12

1

√2𝜋𝜎𝐷𝑃
exp(

−(𝑡 − 24 − 𝜇𝐷𝑃)
2

2𝜎𝐷𝑃
2

)⁡⁡⁡⁡𝜇𝐷𝑃 + 12 ≤ 𝑡 ≤ 24

 
(40) 

 

Furthermore, two popular EV charging modes affect EH 

operation significantly. 

A) Uncoordinated EV charging mode: 

The charging of the EVs in the uncoordinated mode 

depends on traveling distance, arrival time, departure time, 

and other EV characteristics. 

 

B)  Coordinated EV charging mode: 

In this mode, the EVs on the contrary charge at off-peak 

hours simultaneously.  

 

C) EVs constraints 

E𝑛,𝑡
𝐸𝑉 = E𝑛,𝑡−1

𝐸𝑉 + 𝜂𝑐ℎ,𝑛,𝑡
𝐸𝑉 × E𝑐ℎ,𝑛,𝑡

𝐸𝑉 × ∆𝑡

− (∆𝑡 × E𝑑𝑐ℎ,𝑛,𝑡
𝐸𝑉 )/𝜂𝑑𝑐ℎ,𝑛,𝑡

𝐸𝑉  
(41) 

E𝑚𝑖𝑛,𝑛
𝐸𝑉 ≤ E𝑛,𝑡

𝐸𝑉 ≤ E𝑚𝑎𝑥,𝑛
𝐸𝑉  (42) 

0 ≤ E𝑐ℎ,𝑛,𝑡
𝐸𝑉 ≤ E𝑐ℎ−𝑚𝑎𝑥,𝑛

𝐸𝑉 × 𝜀𝑐ℎ,𝑛,𝑡
𝐸𝑉  (43) 

0 ≤ E𝑑𝑐ℎ,𝑛,𝑡
𝐸𝑉 ≤ E𝑑𝑐ℎ−𝑚𝑎𝑥,𝑛

𝐸𝑉 × 𝜀𝑑𝑐ℎ,𝑛,𝑡
𝐸𝑉  (44) 

𝜀𝑐ℎ,𝑛,𝑡
𝐸𝑉 + 𝜀𝑑𝑐ℎ,𝑛,𝑡

𝐸𝑉 = 1, ∀𝑛⁡, 𝑡 ∈ [𝑡𝐴𝑅,𝑛, 𝑡𝐷𝑃,𝑛]  (45) 

𝜀𝑐ℎ,𝑛,𝑡
𝐸𝑉 + 𝜀𝑑𝑐ℎ,𝑛,𝑡

𝐸𝑉 = 0, ∀𝑛⁡, 𝑡⁡[𝑡𝐴𝑅,𝑛, 𝑡𝐷𝑃,𝑛]  (46) 

0 ≤∑E𝑐ℎ,𝑛,𝑡
𝐸𝑉

𝑛

≤⁡E𝑐ℎ−𝑚𝑎𝑥
𝐸𝑉  (47) 

0 ≤∑E𝑑𝑐ℎ,𝑛,𝑡
𝐸𝑉

𝑛

≤⁡E𝑑𝑐ℎ−𝑚𝑎𝑥
𝐸𝑉  (48) 

 

As reflected in Eq. (41), the amount of energy stored in 

electric vehicle batteries is determined depending on the 

stored energy available in the previous time interval and the 

last discharge/charge energy. As in Eq. (42), The stored 

energy must be limited to a certain range to protect the EVs’ 

batteries. The peak value of charging and discharging 

energy of EVs are restricted as in Eqs. (43) and (44). Eq. 

(45) declares that when the EVs are associated with the EH, 

they cannot be charged and discharged simultaneously. 

However, if the EVs are not linked with the EH, they cannot 

be charged or discharged, which is restricted by Eq. (46). 

When EVs are charging or discharging, the maximum 

power transferred between the EVs and the EH in both 

cases is limited by Eqs. (47) and (48) respectively. 

 

3.2.7 DRP model for Electrical and thermal loads 

There are two distinct models of DRPs; price-based DRPs 

[52] and incentive-based [53]. In this paper, price-based 

DRP is considered. Thus, the proposed optimization 

problem should be solved, taking into consideration the 

thermal and electrical DRP limitations. 

 

A. Electrical DRP limitations 

The constraints of the electrical demand response program 

(EDRP) are as follows: 

 

∑𝑃𝑈𝑃(𝑡)

𝑡

=∑𝑃𝐷𝑂(𝑡)

𝑡

 
(49) 

 

 

The total electrical power transferred upward must be equal 

to the electrical power transferred downward during each 

day of the study period (4 days) as in Eq. (49).  The 

maximum amount of electrical energy shifted up/down is 

limited by the Eqs. (50) and (51) appropriately. The EDRP 

can’t shift the electrical load up and down at the same time 

as illustrated by Eq. (52). 

 

0 ≤ 𝑃𝑈𝑃(𝑡) ≤ (𝑀𝑅𝐸,𝑈𝑃 ∙ 𝑃𝐿(𝑡) ∙ 𝜀𝐸,𝑈𝑃(𝑡)) (50) 

0 ≤ 𝑃𝐷𝑂(𝑡) ≤ (𝑀𝑅𝐸,𝐷𝑂 ∙ 𝑃𝐿(𝑡) ∙ 𝜀𝐸,𝐷𝑂(𝑡)) (51) 

0 ≤ 𝜀𝐸,𝑈𝑃(𝑡) + 𝜀𝐸,𝐷𝑂(𝑡) ≤ 1 (52) 

 

In the above equations, ⁡𝜀𝐸,𝑈𝑃(𝑡) and 𝜀𝐸,𝐷𝑂(𝑡) represents 

the logical variable of Shifting up/down of the electrical 

demand in period t. For example, the one value of 𝜀𝐸,𝑈𝑃(𝑡) 

represents that the electrical demand is shifted up at the t-th 

interval. Otherwise, the zero value represents no shifting-

up demand. 

 

B) Thermal DRP limitations 

As in the EDRP, the thermal demand response program 

(HDRP) decreases and increases the thermal load at certain 
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times according to the following restrictions: 

 

∑ 𝐻𝑈𝑃(𝑡)𝑡 = ∑ 𝐻𝐷𝑂(𝑡)𝑡   (53) 

0 ≤ 𝐻𝑈𝑃(𝑡) ≤ (𝑀𝑅𝐻,𝑈𝑃 ∗ 𝐻𝐿(𝑡) ∗ 𝜀𝐻,𝑈𝑃(𝑡))  (54) 

0 ≤ 𝐻𝐷𝑂(𝑡) ≤ (𝑀𝑅𝐻,𝐷𝑂 ∗ 𝐻𝐿(𝑡) ∗ 𝜀𝐻,𝐷𝑂(𝑡))  (55) 

0 ≤ 𝜀𝐻,𝑈𝑃(𝑡) + 𝜀𝐻,𝐷𝑂(𝑡) ≤ 1  (56) 

 

Eq. (53) illustrates that the total thermal energy transformed 

up should be equal to the thermal energy transformed down 

during each day of the study period. In addition, there are 

additional constraints on HDRP, as shown in Eq. (54-56). 

 

4 Uncertainty modelling: 

4.1 Wind power model  

Because the energy generated from the wind system 

corresponds to the relevant wind speed. Therefore, WT 

power is calculated as in Eq. (57) implementing a Weibull 

PDF for modeling the uncertainty related to the stochastic 

performance of wind speed as indicated by Eq. (58)  

𝑝𝑤(𝑣) =

{
 
 

 
 

0⁡⁡0 ≤ 𝑣 ≤ 𝑣𝑐𝑖

𝑝𝑟𝑎𝑡𝑒𝑑⁡⁡ ×
(𝑣 − 𝑣𝑐𝑖)

(𝑣𝑟 − 𝑣𝑐𝑖)
⁡𝑣𝑐𝑖 ≤ 𝑣 ≤ 𝑣𝑟 ⁡

𝑝𝑟𝑎𝑡𝑒𝑑⁡⁡𝑣𝑟 ≤ 𝑣 ≤ 𝑣𝑐𝑜
0⁡⁡𝑣𝑐𝑜 ≤ 𝑣

⁡ (57) 

𝑓𝑤(𝑣) = 𝑏𝑎
−𝑏𝑣𝑏−1𝑒−(

𝑥
𝑎
)𝑏

 
(58) 

 

4.2 PV model  

For modeling the solar irradiation of PV panels, a Beta PDF 

is used. Hence, The PDF of solar radiation (PDF) at any 

given hour is usually justified by a bimodal distribution 

function that linearly combines the two monomodal 

distributions with the beta PDF. For each unimodal 

distribution, the Beta PDF is used indicated by Eqs (59-61). 

Both the PV panel’s output power and the power generated 

by the solar collector are a function of the efficiency of the 

PV modules, irradiance, and surface area which can be 

formulated by Eqs (62-63).  

𝑝𝑝𝑣(𝑠𝑖) = 𝜂
𝑝𝑣 × 𝑠𝑝𝑣 × 𝑠𝑖 (62) 

𝑝𝑠𝑜𝑙𝑎𝑟(𝑠𝑖) = 𝜂
𝑠𝑜𝑙 × 𝑠𝑠𝑜𝑙 × 𝑠𝑖 (63) 

4.3 Loads uncertainty modeling   

To model the uncertainty of all the requirements involved, 

which include hydrogen, cooling and heating, fresh water, 

and electricity, a normal PDF is used as shown. 

𝑓𝑑(𝑙) =
1

𝜎𝑑×√2𝜋
× 𝑒

−(1−µ𝑑)
2

2𝜎𝑑
2

  (64) 

𝑙 = 𝑧 × 𝜎𝑑 + µ𝑑  

 

5. Mathematical model and solution algorithm 

5.1. PSO algorithm: 

For continuous optimization problems, the standard particle 

swarm optimizer (PSO) algorithm is used as a kind of 

practical optimization method. PSO has many advantages 

such as low search rate and high convergence. Therefore, it  

is widely used to solve multi-objective problems in power 

systems. The swarm incorporates numerous particles. 

Every one of them presents a candidate solution, i.e. each 

of them is usually a scalar vector. As shown in the following 

equations, to achieve the required goals, the variables must 

be updated using search particles. 

 

𝑉𝑖
𝑘+1 = 𝜔 × 𝑉𝑖

𝑘 + 𝐶1 × 𝑟𝑎𝑛𝑑1(. ) × (𝑃𝑏𝑒𝑠𝑡,𝑖
𝑘 −

𝑋𝑖
𝑘) + 𝐶2 × 𝑟𝑎𝑛𝑑2(. ) × (𝐺𝑏𝑒𝑠𝑡,𝑖

𝑘 − 𝑋𝑖
𝑘)  

(65) 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 (66) 

 where 𝑉𝑖
𝑘+1  is the updated velocity vector of the 

𝑖𝑡ℎparticle; 𝑟𝑎𝑛𝑑1(. ) and⁡𝑟𝑎𝑛𝑑2(. ) are arbitrary numbers 

restricted by [0, 1] values; 𝑋𝑖
𝑘+1  illustrates the updated 

position of the 𝑖𝑡ℎ particle; ⁡𝜔 , ⁡𝐶1 , and 𝐶2 are weight 

movement factors and learning factors, consequently.  

5.2. The mathematical model: 

In the proposed mathematical model for optimal operation, 

the variables are binary and continuous. The continuous 

variables such as the electrical energy swapped with the 

upstream network, the electrical power generated by the 

CCHP, the electrical power consumed by the electrolyzer, 

input electrical power to the SWD operation, the electrical 

power exchanged with the SPCAES, the electrical power 

transformed up/down, the output thermal power of AB, 

input thermal power to the AC, the thermal power swapped 

between the TESS and the thermal hub, the input electrical 

power to the ISC, the thermal power transferred up/down, 

at each hour.  The binary variables are implemented to stop 

the consuming and generating modes of the storage from 

running at the same time. It should be noted that the Normal 

PDF is used for electrical, thermal, hydrogen, freshwater, 

and cooling demands, Beta PDF for PV, and Weibull PDF 

for WT which are considered in the model. The vector of 

decision variables is as shown. 
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𝑓𝑏(𝑠𝑖) = {
𝛤(𝛼𝑠+𝛽𝑠)

𝛤(𝛼𝑠)𝛤(𝛽𝑠)
× 𝑠𝑖(𝛼𝑠−1) × (1 − 𝑠𝑖)(𝛽𝑠−1)⁡0 ≤ 𝑠𝑖 ≤ 1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛼𝑠 ≥ 0, 𝛽𝑠 ≥ 1⁡

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (59) 

𝛽𝑠 = (1 − µ𝑠) × (
µ𝑠 × (1 + µ𝑠)

𝜎𝑠
2

− 1) (60) 

𝛼𝑠 =
µ𝑠 × 𝛽𝑠
(1 − µ𝑠)

 (61) 

 

6. Case study  

6.1. test system settings and information 

The scheduling horizon in this subsection is specified 

to be 96 hours. The total time horizon is then divided into 4 

days by setting one hour as the calculation period. Fig. 2 

depicts the electrical and thermal loads per hour[26]. The 

electricity demand is high during the middle of the day 

during all seasons, but its maximum value is in the summer, 

while the demand for thermal energy during all seasons is 

at its maximum at the beginning and end of the day, and the 

maximum value it reaches between all seasons is in the 

winter. 400 EVs are supposed to be in this energy center. 

The charging energy of an electric vehicle is equal to its 

daily energy consumption. The uncoordinated charge load 

of EVs over the 96 hrs in addition to the hydrogen energy 

and cooling demands are demonstrated in Fig. 3.  As 

indicated the demand for cooling energy is high during the 

summer, while the winter does not witness any cooling 

loads. As for hydrogen loads and EV charging, they are 

equal over the four seasons. Water loads are also equal over 

the four seasons for a one-year time horizon [8]  as 

displayed in Fig. 4. The forecasted electricity and gas prices 

for all seasons [26] are shown in Fig. 5.  As demonstrated, 

the electricity market for each season changes hourly so that 

the market witnesses low prices in the first half of the day. 

However, prices rise to reach the peak in the second half of 

the day and after that, the general trend is downward. While 

the gas market includes one tariff for each season of the 

year. Fig. 6 presents the characteristics of the PV and WT 

output power[26, 54]. The parameters of the EH component 

and other useful data are tabulated in Table 2.

 

Ɣ(𝑡) = [
𝑃𝐺𝑟𝑖𝑑(𝑡), 𝑃𝑒

𝑃𝐺𝑈⁡(𝑡), 𝐻𝐴𝐵(𝑡), 𝑃𝑐,𝑑
𝐶𝐴𝐸𝑆⁡(𝑡),

𝑃𝑐,𝑑
𝑇𝐸𝑆𝑆(𝑡), 𝑃𝑐,𝑑

𝐼𝑆𝐶(𝑡), 𝑃𝐸𝐿(𝑡), 𝑃𝑅𝑂(𝑡), 𝑃𝑈𝑃/𝐷𝑂(𝑡), 𝐻𝑈𝑃/𝐷𝑂(𝑡)
]      ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(67)

 

 

 

 

 

Table 2. Parameters of the EH components [8, 26]. 

Parameters of Grid and ESSs 

Parameter Value Parameter Value Parameter Value 

𝐏𝐦𝐢𝐧
𝐄 (𝒌𝑾) 0.0 𝐏𝐦𝐚𝐱⁡ _𝐜

𝐄𝐒𝐒 (𝒌𝑾) 470 𝛈𝐝
𝐄𝐒𝐒 0.95 

𝐏𝐦𝐚𝐱
𝐄 (𝒌𝑾) 3500 𝐏𝐦𝐚𝐱⁡ _𝐝

𝐄𝐒𝐒 (𝒌𝑾) 180 𝐊𝐈𝐒𝐂 0.90 

𝛈𝐓𝐑 0.99 𝛈𝐜
𝐄𝐒𝐒 0.9 Ø𝐻,𝑈𝑃(cent/kWh) 0.1 

Ø𝐻,𝐷𝑂(cent/kWh) 0.1 Ø𝐸,𝑈𝑃(cent/kWh) 0.1 Ø𝐸,𝑈𝑃(cent/kWh) 0.1 

MR𝐸,𝑈𝑃 0.5 MR𝐸,𝐷𝑂 0.2 MR𝐻,𝑈𝑃 0.5 

MR𝐻,𝐷𝑂 0.2  

Hydrogen devices and SWD parameters 

Parameter Value Parameter Value Parameter Value 

𝐒𝐎𝐂𝐦𝐚𝐱
𝐖𝐒𝐓(𝒎𝟑) 700 𝛈𝐄𝐋 0.75 𝐒𝐎𝐂𝐦𝐚𝐱

𝐇𝟐𝐒(𝒌𝑾) 40 

𝐏𝐦𝐚𝐱
𝐄𝐋 (𝒌𝑾) 400 𝛈𝐅𝐂 0.5 

 
𝐇𝐇𝐕𝐡𝟐 39.7 𝐒𝐎𝐂𝟎

𝐇𝟐𝐒 4 

Emission coefficients AC and HRU EVs 

Parameter Value Parameter Value Parameter Value 

𝐁𝐞⁡(𝐤𝐠/𝐤𝐖𝐡) 0.972 𝛈𝐇𝐑𝐔 0.82 𝐄𝐕𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲 (kWh) 40 

𝐁𝐠⁡(𝐤𝐠/𝐤𝐖𝐡) 0.23 𝐊𝐀𝐂 0.9 𝐄𝐕𝐢𝐧𝐢𝐭𝐢𝐚𝐥⁡ _𝐒𝐎𝐂 20% 

PGU GB 𝐄𝐕𝐦𝐚𝐱⁡ _𝐒𝐎𝐂 80% 

𝛈𝐞
𝐏𝐆𝐔 0.42 Parameter Value Ε((¥/kg) 0.031 

𝛈𝐡
𝐏𝐆𝐔 0.48 𝐇𝐦𝐢𝐧

𝐀𝐁 (𝒌𝑾) 0 𝐩−𝐜𝐡⁡(𝐤𝐖𝐡) 8 

𝐏𝐦𝐢𝐧
𝐏𝐆𝐔(𝒌𝑾) 140 𝐇𝐦𝐚𝐱

𝐀𝐁 (𝒌𝑾) 2300 
 

𝐏𝐦𝐚𝐱
𝐏𝐆𝐔(𝒌𝑾) 1050 𝛈𝐡

𝐀𝐁 0.9 
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Fig 2. The electrical and thermal loads per hour. 

 
Fig 3. The EVs, hydrogen, and cooling demands per hour. 

 
Fig 4. The water demand for a one-year time horizon. 

 
Fig 5. The forecasted electricity and gas prices for all seasons. 

 
Fig 6. The characteristics of the PV and WT output power. 

 

 

6.2. Results and discussions: 

The results of implementing electrical plus thermal DRP 

and EVs are discussed in this section. Four cases were 

considered for evaluating the effect of EV’s coordinated 

charge mode and DRP considering water and hydrogen 

system on the overall system cost as follows: 

• Case 1: a basic case is taken into account with 

no DRP and uncoordinated EV charge mode. 

• Case 2: electrical DRP and uncoordinated EV 

charge mode are considered in this case. 

• Case 3: electrical and thermal DRP and 

uncoordinated EV charge mode are considered 

in this case. 

• Case 4 (proposed): electrical and thermal DRP 

with coordinated EVs mode are considered. 

1. The base case results: 

The electrical power dispatch of the studied components 

of the EH, i.e. the CCHP unit, SPCAES, EVs, hydrogen 

system, and water system is provided in Fig. 7. As can be 

seen, the CCHP unit was operated during the winter and 

fall seasons since the thermal load is highest in the winter 

and fall seasons so the CCHP works to supply thermal 

energy in addition to the electrical energy. The SPCAES 

also assists the EH by charging during off-peak energy 

market hours, for example in the winter season, charging 

at times such as t = 1–8, 13–19, and 23, and discharging 

during peak hours such as 9–12, 20–22, and 24. The 

scheduling of EVs depends on their arrival and departure 

times, and the energy market does not influence EVs 

significantly. The energy market does not affect the water 

system because the amount of electrical energy 

withdrawn from the EH to produce water depends on the 

amount of water required per hour. As for the hydrogen 
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Fig 7. The electrical power balance of the studied EH 

components during the base case. 

 

 
Fig 8. The thermal power dispatch under the base case. 

 

0 24 48 72 96
-3500

-2000

-500

1000

2500

4000

5000

Time (h)

E
le

c
tr

ic
a

l 
p

o
w

e
r
 (

k
W

)

 

 
GRD

PGU

WT

PV

P
R

O

demand

EL

ISC

EV

SPCAESch

FC

SPCAESdch

Winter Spring Summer Fall

0 24 48 72 96
-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Time (h)

T
h

e
r
m

a
l 

p
o

w
e
r
 (

k
W

)

 

 
HRU

AB

TESS

AC

demand

Spring SummerWinter Fall



30  Shaimaa A. M. Mousa et al.. 

  

 

system, H2S discharges during high electricity price 

hours to reduce the electrical energy drawn by the 

electrolyzer at these times to meet the hydrogen loads. 

The results of thermal energy distribution under the base 

case are shown in Fig. 8. Since CCHP produces electricity 

and thermal energy concurrently, it is obvious from the 

figure that it also produces thermal energy at peak times 

and the boiler produces thermal energy at high thermal 

load times to reach the required balance. The heat storage 

unit collaborates in getting the required balance under 

case 1; the redundant thermal energy produced by the  

thermal hub is used to charge the TESS during times of 

low thermal energy tariff as shown. Other than that, the 

TESS is unloading. 

As Fig. 9 shows, when there is a cooling load, both the 

AC and the ISC supply the cooling loads with the required 

energy. The ISC charges electricity during low electricity 

costs and discharges cooling energy during high electrical 

power prices. 

 
Fig 9. Dispatched cooling power during the base case. 

 
Fig 10. The amount of electrical energy transferred up/ down 

compared to the base case. 

 

 
Fig 11. The change in electrical load with implementing EDRP 

compared to the basic case. 

 
Fig 12. The electrical power balance with implementing 

EDRP. 

 
Fig 13. The thermal power balance during case 2. 

 
Fig 14. The optimal cooling power dispatch in case 2. 

 
Fig 15. The effect of applying EDRP on the total cost of the 

EH. 

 

2. Results of case 2: 

Figs. 10 and 11 illustrate the effects of the EDRP on the 

electrical loads. To decrease the total costs of the EH, the 

customers reduce their load during peak hours in the 

energy market and shift it to off-peak hours for 

participating in the EDRP. For example, in Fig. 10 in the 

winter season, loads are shifted from hours t = 6, 8–13, 

17-18,20-23, in which energy prices are high, to other 

hours in which energy prices are low. 

Fig. 12 shows the balance in electrical energy  between 

production and consumption per hour in the case of 

applying EDRP. As shown in the figure, the electrical 
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load differs from the base case  as a consequence of 

shifting the electrical load from peak hours to off-peak. 

Therefore,  the electrical energy produced by the PGU 

increases during times of low electricity price hours 

compared to the base case due to the increased load 

during these times. For instance, the power produced by 

the PGU increases during times 25-28, 37, 47-48 and 

decreases during the rest of the day. As for the SPCAES, 

due to the increased load  during off-peak hours, the 

charge of the SPCAES decreases during times of off-peak 

compared to the base case. For example, in the spring 

season, at the following times: 25-28 30-32 37 40-41 48 

the charge of the SPCAES decreases. Likewise, for ISC, 

the value of the electrical energy consumed for charging 

it during times of off-peak is lower in the second case than 

in the first case. For instance, in the spring season, at 

times 31-32,38-43, and 47, the value of the ISC charging 

power decreases in the second case compared to the first 

case. 

As we mentioned in the previous paragraph, the 

production of CCHP from electrical energy decreases in 

times of high electricity prices. Therefore, the production 

of CCHP from thermal energy also decreases at these 

times. For example, in the winter season, the thermal 

production of the HRU decreases in periods 9-12 and 20-

21, which are peak hours, and increases in the following 

times 4-7 13 19 22-23 which are off peak hours. As a 

result, the production of thermal energy by the AB 

increases during the periods 9-12 and 20-21 to reach the 

required thermal balance, as well as for the rest of the 

seasons. As shown in Fig. 13.  

The optimal cooling power dispatch in case 2 is 

represented in Fig. 14. As indicated as a result of the 

decrease in electrical energy consumed to charge the ISC, 

the cooling energy discharged is correspondingly 

reduced  Therefore, the cooling energy produced by AC 

increases to reach the required balance  in cooling energy. 

Fig. 15. shows the effect of applying EDRP on the total 

cost of the EH. The results show that the EDRP reduces 

the total costs by 4.0% compared to the basic case with 

total electrical power transferred up for each day equals 

the total electrical power transferred down for the same 

period. 

 
Fig 16. The electrical demand of case 3 compared to the base 

case. 

 
Fig 17. The thermal power transferred up/ down with 

implementing HDRP. 

 
Fig 18. the final form of the thermal load in the third case 

compared to the base case. 

 

 
Fig 19. The electrical power balance in case 3. 

 
Fig 20. The thermal power balance in case 3. 
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Fig 21. The cooling power balance in case 3. 

 
Fig 22. The effect of applying EDRP and HDRP on the total 

cost of the EH. 

 

3. Results of case 3: 

Fig. 16. Declares the electrical demand by applying 

electrical and thermal DRP compared to the base case. As 

mentioned in the second case about the effect of adding 

EDRP on the electrical load, the same thing happens to 

the electrical load in the third case.  As for the shape of the 

heat load with the addition of HDRP, Fig. 17. Shows the 

times when there is an increase or decrease in thermal 

energy. As shown, during times of high thermal load, the 

HDRP reduces the loads and adds these loads at non-peak 

times.  For example, in the fall season, the heat load 

decreases at times 73-80, 87-88, and 90-92, which are 

peak times, and increases during the rest of the times 

during non-peak times.  Fig. 18. Shows the final form of 

the thermal load in the third case and also explains the 

difference between it and the basic case. 

Regarding electrical balance, it is exactly as mentioned in 

the previous case, as shown in Fig. 19. As for the thermal 

balance illustrated in Fig. 20. Due to the decrease in 

thermal loads at peak times, the thermal energy produced 

by the AB decreases at the same times. For example, the 

thermal energy produced by the AB decreases at the 

following times 1-8 and 22, which are considered peak 

times during a winter day. Therefore, the energy 

consumed through the AC increases during peak times.  

Due to the increase in the thermal energy consumed by 

AC, the cooling energy generated from it increases 

accordingly, and this helps in reaching the required 

balance in cooling energy as a result of the decrease in the 

charging and discharging energy of the ISC which is due 

to implementing EDRP as shown in Fig. 21.  Which 

shows the optimal dispatch of cooling energy in case 3. 

As a result, the total cost in the third case is significantly 

lower than the first case by 4.8%, as observed in Fig. 22. 

 
Fig 23. the difference in the EVs  load pattern between 

coordinated and uncoordinated modes. 

 
Fig 24. The electrical demand of the proposed method 

compared to the base case. 

 

 
Fig 25. The thermal demand of the proposed method compared 

to the base case. 

 

 
 

Fig 26. The electrical power balance through the proposed 

method. 
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Fig 27. The thermal power balance through the proposed 

method. 

 
Fig 28. The cooling power balance through the proposed 

method. 

 
Fig 29. The total cost of the proposed method compared to the 

base case. 

 

4. Results of case 4: 

In this case, the EVs are charged in a coordinated mode, 

which is a price-based mode for charging the EVs the 

difference in the EVs  load pattern between coordinated 

and uncoordinated modes is declared in Fig. 23. As for 

the electrical and thermal demand, as mentioned in Cases 

2 and 3 about the effect of the EDRP on the shape of the 

electrical demand, it changes in the same way in Case 4. 

Likewise, the thermal load in the fourth case changes in 

the same manner as was mentioned in the third case, as 

shown in Figs. 24 and 25. 

Fig. 26. Represents the optimal dispatch of electrical 

power by applying EDRP, HDRP, and coordinated EVs. 

As shown, the EVs charging power in this case decreases 

during times of high electricity price hours and increases 

during times of low electricity price hours. Therefore, the 

charge of ISC decreases accordingly, and the amount of 

electrical energy produced by the PGU during times of 

peak also decreases.  It is clear from Fig. 27, which shows 

the shape of the thermal balance in case 4, that changing 

the charging mode of the EVs does not have a noticeable 

effect on the shape of the thermal balance in the third case. 

Due to the decrease in the charging energy of the ISC, 

consequently, the discharging energy of the ISC also 

decreases. To maintain the balance in cooling energy 

between generation and consumption, the cooling energy 

generated by the AC increases as represented in Fig. 28. 

The total cost and the difference in the total cost between 

the basic case and the proposed case  per hour are 

illustrated in Fig. 29. The results show that with applying 

electrical and thermal DRP with coordinated charge mode 

of EVs the total costs are reduced by 6.3% compared to 

the basic case with total electrical, thermal power 

transferred up for the 24 hours equal the total electrical, 

and thermal power transferred down for the same period. 

The total EVs load throughout the day is also equal to the 

uncoordinated state. The comparison of the costs of 

different cases is represented in Table 3. Fig. 30 

Illustrates the difference between the total cost for the 

four cases and the cost reduction percentage for the four 

cases as well. 

Table 3. The comparison of the costs of different cases. 

 Electrical cost Gas cost Emission cost Discomfort Cost Total cost 
Cost reduction 

(%) 

Case 1 11537.2 35144.7 1961.2 -- 48643.1 -- 

Case 2 11355.2 33476.6 1931.4 20.2 46783.5 4.0% 

Case 3 11424.9 32983.5 1932.6 67.4 46408.3 4.8% 

Case 4 11334.7 32412.4 1921.6 77.6 45746.3 6.3% 
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Fig 30. The total cost and the cost reduction percentage for the four cases. 

 

5. Comparison with an existing work 

To illustrate the superiority of the proposed work 

implemented in this paper, it is compared with other 

similar research on the same point such as [4]. Therefore, 

by comparing the results of implementing electrical and 

thermal DRP with managed EV charging mode for both 

papers, it is concluded that by implementing electrical and 

thermal DRP with EVs managed charging mode, the total 

cost of this system for one day is reduced by 9.1% while 

in the existing work, the total cost is reduced by 5.33%. 

As for the operation cost, it improved by approximately 

9.56% while in the previous research, it was reduced 

by .35%. Taking into account that this research paper 

includes SWD operation, which represents an additional 

electrical load that has not been taken into account in 

existing work. This paper also includes a hydrogen 

system which is not considered in existing work. 

7 Conclusion 

At present, EH is one of the traditional and effective 

complementary systems through which the increasing 

energy demand is met by integrating different energy 

sources, especially renewable energy sources, due to their 

advantages of reducing carbon emissions in addition to 

other benefits gained from implementing RES. In this 

paper, the optimal operation of a comprehensive EH 

system including a CCHP unit, auxiliary boiler, SPCAES, 

ISC, TESS, hydrogen system, SWD system, PV arrays, 

and WT. The EVs are also considered to study the 

demand for EV charging loads under coordinated and 

uncoordinated charging modes which formulates a 

fundamental contribution of this study, taking into 

account the behaviors and interactions of EV owners. 

Considering the  undeniable role of demand response 

programs (DRPs) as a suitable alternative to fix load 

curves and increase system efficiency. Therefore 

Developing prosperous optimal transactions of EHs by 

applying thermal and electrical DRP under different EV 

charging procedures is the main purpose of this study as 

this optimization aims to deal with both economic and 

environmental issues. For assessing the behavior of the 

system considered, four cases were evaluated, including 

unmanaged/managed EV charging, with and without DR 

methods. Numerical results show that applying EDRP on 

the studied system with unmanaged EV charging mode 

can reduce the operational costs by 4.08%, achieving a 

1.54% reduction in emission cost as well. These results 

revealed that the minimization of operation and emission 

costs in Case 2 has led to a decrease in overall costs by 

approximately 4% compared to the basic case without any 

DRP. The results also showed that by applying thermal 

and electrical DRPs on the basic model with 

uncoordinated EV charging mode, the total cost can be 

decreased by 4.8% with a 5% reduction in operational 

costs and a 1.48% reduction in emission costs. Notably, 

Case 4, which encompassed both electrical and thermal 

DRP and coordinated EV charging mode, presented the 

most auspicious outcomes. It achieved a 6.3 % reduction 

in total cost.  Achieving a 6.51 % reduction in 

operational costs, furthermore, a 2.06 % reduction in 

emission costs is achieved.  From this, it was concluded 

that  better economic and environmental conditions of EH 

can be achieved by applying thermal and electrical DRP 

with a managed EV charging mode.  
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Appendix

Index 𝑈𝑅𝑂 1 if RO is on at time t; otherwise 0. 

T Set of hours in the operation period. 𝑣𝑐𝑖 Cut-in wind speed (m/s). 

Parameters 𝑣𝑐𝑜 Cut-out wind speed (m/s). 

𝐶𝐴𝐶(𝑡) The cooling power generated from the AC at time t (kW). 𝑣𝑟 Rated wind speed (m/s). 

𝐶𝑐𝑒(𝑡) Carbon emission cost at hour t  )$( .   𝑊𝑅𝑂(𝑡) The water generated by the SWD-RO at time t (𝑚3). 

𝑪𝒆(𝒕) The net electricity purchasing cost at time t ($). 𝑊𝑅𝑂−𝑚𝑎𝑥 `The limit of the power generated by the SWD unit. 

𝐶𝐸𝐷𝑅𝑃 Discomfort cost resulting from implementing the EDRP 𝑊𝑤𝑑(t) The water demand of the EH at time t (𝑚3). 

𝐶𝐻𝐷𝑅𝑃 Discomfort cost resulting from implementing the HDRP 𝜌𝑒(𝑡) Sell and purchase Electricity price at time t ($/kWh). 

𝐶𝑔(𝑡) The net gas purchasing cost at time t ($). 𝜂𝑑
𝑆𝑃𝐶𝐴𝐸𝑆 The discharging efficiency of the SPCAES. 

𝐶𝐿(𝑡) The cooling demand of the EH at time t (kW). 𝜂𝑐ℎ,𝑖 The charging efficiency of the EV i. 

𝐷ℎ2(𝑡) The hydrogen demand of the EH at time t (kW) 𝜂𝑑,𝑖 The discharging efficiency of the EV i. 

𝐸𝐸𝑆𝑆(𝑡) Energy remaining in the ESS at hour t (kWh). 𝜂𝑐
𝐸𝑆𝑆 The charging efficiency of the ESS.  

𝐸𝑚𝑖𝑛
𝐸𝑆𝑆  Minimum energy in ESS (kWh). 𝜂𝑑

𝐸𝑆𝑆 The discharging efficiency of the ESS. 

𝐸𝑚𝑎𝑥
𝐸𝑆𝑆  Maximum energy in ESS (kWh). 𝜂𝐸𝐿 The electrolyser efficiency. 

𝐻𝐴𝐶(𝑡) Heating power consumed by AC at hour t (kW). 𝜂𝐹𝐶 The fuel cell efficiency. 

𝐻𝑚𝑖𝑛
𝐴𝐶  

Minimum heating power consumed by AC at hour t 

(kW). 
𝜂ℎ
𝐺𝐵 The heat generation efficiency of the AB. 

𝐻𝑚𝑎𝑥
𝐴𝐶  

Maximum heating power consumed by AC at hour t 
(kW). 

𝜂𝑒
𝑃𝐺𝑈 The electrical generation efficiency of the PGU.  

𝐻𝐴𝐵(𝑡) Heating power generated by AB at hour t (kW). 𝜂ℎ
𝑃𝐺𝑈 The heat generation efficiency of the PGU. 

𝐻𝑚𝑖𝑛
𝐴𝐵  Minimum heating power generated by AB at hour t (kW). 𝜂𝐻𝑅𝑈 The HRU efficiency. 

𝐻𝑚𝑎𝑥
𝐴𝐵  

Maximum heating power generated by AB at hour t 

(kW). 
𝜂𝑝𝑣 The efficiency of the PV module. 

𝐻𝐻𝑅𝑈⁡⁡(𝑡) The co-product heat generated by PGU at hour t (kW). 𝜂𝑠𝑜𝑙 The efficiency of the PV module. 

𝐻𝑚𝑖𝑛
𝐻𝑅𝑈 

Minimum heating power generated by HRU at hour t 

(kW). 
𝜂𝑡 Transformer efficiency. 

𝐻𝑚𝑎𝑥
𝐻𝑅𝑈 

Maximum heating power generated by HRU at time t 

(kW). 
𝑓𝑏(𝑠𝑖) Beta PDF of si. 

𝐻𝑈𝑃(𝑡)
/𝐻𝐷𝑂(𝑡) 

thermal power transferred up and down by the DR 

program at time t 
∅𝐸,𝑈𝑃/∅𝐸,𝐷𝑂 

Costs of Increasing and decreasing the electrical load 

by implementing the DRP. 

𝐻𝐿(𝑡) Heating demand at time t (kW). ∅𝐻,𝑈𝑃/∅𝐻,𝐷𝑂 
Costs of Increment and decrement the thermal load by 

implementing the DRP. 

𝐻2𝑖𝑚⁡⁡(𝑡) 
The imported hydrogen power to hydrogen storage at 

time t (kW). 
𝛳 Carbon dioxide processing cost ($/kg). 

𝐻2𝑒𝑥⁡⁡(𝑡) 
The exported hydrogen power from hydrogen storage at 
time t (kW). 

Ф𝑒 
Equivalent emission coefficients for electricity 
(kg/kWh). 

𝐾𝐴𝐶  Performance coefficient of AC. Ф𝑔 Equivalent emission coefficients for gas (kg/kWh). 

𝐾𝐼𝑆𝐶  Performance coefficient of ISC. 𝜌𝑔(𝑡) Gas price at time t ($/kWh). 

𝑀𝑅𝐸,𝑈𝑃

/𝑀𝑅𝐸,𝐷𝑂 

Maximum increment and decrement ratio for the 

electrical requirements. 
µ𝑑 Mean of forecasted demands (kW/m2). 

𝑀𝑅𝐻,𝑈𝑃

/𝑀𝑅𝐻,𝐷𝑂 
Maximum increment and decrement ratio for the thermal 
requirements. 

µ𝑠 Mean of forecasted solar irradiance (kW/m2). 

𝑁𝑂𝑡 The number of EVS connected to the grid at the time (t). 𝑓𝑑(𝑙) Normal PDF of l. 

𝑃𝐸𝐿(𝑡) 
The electrical power consumed by the electrolyzer at 
time t (kW). 

𝛼𝑠 Parameter of the Beta PDF. 

𝑃𝐸𝐿−𝑚𝑎𝑥 
Maximum imported power limit by the electrolyzer at 

time t (kW). 
𝛽𝑠 Parameter of the Beta PDF. 

𝑃𝐹𝐶(𝑡) 
The electrical power generated from the fuel cell at time 

t (kW). 
𝜎𝑑 Standard deviation of forecasted demands (kW/m2). 

𝑃𝑓𝑐(𝑡) 
The hydrogen power consumed by the fuel cell at time t 
(kW). 

𝜎𝑑 Standard deviation of forecasted demands (kW/m2). 

𝑃𝐶
𝐼𝑆𝐶(𝑡) The charging power of the ISC at time t (kW). σs 

Standard deviation of forecasted solar irradiance 

(kW/m2). 

𝑃𝑑
𝐼𝑆𝐶⁡(𝑡) The discharged power of the ISC at time t (kW). ∆t Time interval (one hour). 

𝑃𝑅𝑂(𝑡) The electrical power consumed by the SWD-RO at time fw(v) Weibull PDF of v. 
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t (kW) 

𝑃𝑐
𝑆𝑃𝐶𝐴𝐸𝑆(𝑡) The charging power of the SPCAES at time t (kW). Abbreviations  

𝑃𝑑
𝑆𝑃𝐶𝐴𝐸𝑆⁡(𝑡) The discharged power of the SPCAES at time t (kW). AB Auxiliary boiler. 

𝑃𝑔
𝑆𝑃𝐶𝐴𝐸𝑆 The value of gas entering the SPCAES (kW). AC Absorption chiller. 

𝑃𝑈𝑃(𝑡)
/𝑃𝐷𝑂(𝑡) 

electric power transferred up and down by the DR 

program at time t 
CAES Compressed air energy storage. 

𝑃𝑐ℎ,𝑖,𝑡(𝑡) The charging power of EVS at time t (kW). CHP Combined heating and power unit. 

𝑃𝑐ℎ,,𝑚𝑎𝑥(t) The charging capacity of each EV at time t (kW). CCHP Combined cooling, heat, and power. 

𝑃𝑑,𝑖,𝑡(𝑡) The discharging power of EVS at time t (kW). DRP Demand response program. 

𝑃𝐸(𝑡) 
Real power exchanged from the upstream grid after 
transformer at time t (kW) 

EDRP Electrical demand response program. 

𝑃𝑚𝑖𝑛
𝐸  

Minimum Real power exchanged from the upstream grid 

after transformer at time t (kW) 
EH Energy-hub. 

𝑃𝑚𝑎𝑥
𝐸  

Maximum Real power exchanged from the upstream grid 

after transformer at time t (kW) 
ESS Energy storage systems. 

𝑃𝑐
𝐸𝑆𝑆(𝑡) The charging power of ESS at time t (kW). EVs Electric vehicles. 

𝑃𝑑
𝐸𝑆𝑆(𝑡) The discharged power of ESS at time t (kW). FC Fuel cell. 

𝑃𝑐−𝑚𝑎𝑥
𝐸𝑆𝑆  The maximum charged power of ESS at time t (kW). GA Genetic algorithm. 

𝑃𝑑−𝑚𝑎𝑥
𝐸𝑆𝑆  The maximum discharged power of ESS at time t (kW). HDRP Heat demand response program. 

𝑃𝐸𝑉(𝑡) The power of the EVs at time t (kW). HRU Heat recovery unit. 

𝑃𝑔
𝐴𝐵 The value of gas entering the AB (kW). H2S Hydrogen storage. 

𝑃𝑔
𝑃𝐺𝑈 The value of gas entering the PGU (kW). ISC Ice storage conditioner. 

𝑃𝑒
𝑃𝐺𝑈(𝑡) 

The electrical power generated from the PGU at time t 
(kW). 

MG Microgrid. 

𝑃𝑚𝑖𝑛
𝑃𝐺𝑈 

The minimum electrical power generated from PGU at 

time t (kW). 
MILP Mixed integer linear programming. 

𝑃𝑚𝑎𝑥
𝑃𝐺𝑈 

The maximum electrical power generated from PGU at 

time t (kW). 
NG Natural gas. 

𝑃𝐺𝑟𝑖𝑑(𝑡) 
The real power exchanged with the upstream grid at time 
t (kW). 

PDF Probability distribution function. 

𝑃𝑔𝑎𝑠 The value of the net gas entering the EH (kW). PEVs Plug-in EVs. 

𝑃𝑐
𝑇𝐸𝑆𝑆(𝑡) The charged power of the TESS at time t (kW). PGU Power generation unit. 

𝑃𝑑
𝑇𝐸𝑆𝑆(𝑡) The discharged power of the TESS at time t (kW). PSO Particle swarm optimizer. 

𝑃𝐿(𝑡) The electrical demand of the EH at time t (kW). PV Solar photovoltaic. 

𝑃𝑃𝑉(𝑡) The output power of the PV modules at time t (kW). RES Renewable energy resources. 

𝑝𝑟𝑎𝑡𝑒𝑑⁡⁡⁡⁡ The rated power generated from the WT at time t (kW). RMILP Robust mixed integer linear programming. 

𝑃𝑊𝑇(𝑡) The output power of the WT at time t (kW). RO Reverse osmosis technology. 

𝑆𝐸𝐶𝑅𝑂 The SWD performance coefficient (kW/𝑚3) SOC State of charge. 

𝑠𝑖 Solar irradiance (kW/𝑚2) SPCAES Solar-powered compressed air energy storage. 

𝑆𝑂𝐶𝑖,𝑡 State of charge of the EV i at time t. SWD Sea water desalination. 

𝑆𝑂𝐶𝐻2𝑆(t) State of charge of the HS at time t (kg)  TESS Thermal energy storage system. 

𝑆𝑂𝐶𝐻2𝑆−𝑚𝑎𝑥 The maximum SOC of the HS. WST Water storage tank. 

𝑠𝑝𝑣 Area of PV module (m2). WT Wind turbine. 

𝑠𝑠𝑜𝑙 Area of PV module (m2).   

𝑢 
Charging status of EVs at hour t (1 for charging mode; 

otherwise, 0). 
  

𝑈𝐸𝑆𝑆(𝑡) 
Charging status of ESS at hour t (1 for charging mode; 
otherwise, 0). 

  

𝑈𝐶
𝐻2𝑆 Charging status of HS at hour t (1 for charging mode; 

otherwise 0). 
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