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Abstract. This work is devoted to the formulation and study of mathemat-

ical model of malaria transmission taking into account the seasonal evolution

of the vector populations.The aim is to examine the impact of the seasonal

variation of mosquitoes on the uctuation of malaria cases in Burkina Faso.

The human population is divide to susceptible (Sh), exposed (Eh), infected

(Ih) and recovered (Rh). The vector population is divided to susceptible (Sv)

and infected (Iv). The basic mathematical properties of the model such as

the boundedness and positivity of the solutions are established. The basic

reproduction number R0 of the model is determined. The global stability of

the endemic and disease free equilibrium point is proven. The impact of sea-

sonality and temperature on vector dynamics (the function f) is developed to

determine the intense period of mosquitoes. The sensitivity of the parameters

is studied to determine the most sensitive parameters in the evolution of the

malaria disease. We use the Python software for the numerical simulation of

the model. The real data on the number of malaria cases in Burkina Faso is

used in the simulation section to illustrate the mathematical analysis. This

study highlights that an increase in the mosquito population leads to a rise

in malaria cases, while their reduction results in a decrease in cases. It also

shows that the month with a high incidence of malaria in BURKINA Faso are

July, August, September and October, whereas the months with fewer cases

are July and February.
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1. Introduction

Malaria is an infectious disease transmitted by a mosquito called the female anophele.
It was rst discovered in India in the 15th century ([30]). The analysis of the body of
a patient died in Italy showed that the death was due to an infection called a malaria
infection (Italian language). Thereafter this disease is recognized by the name malaria.

It wreaked havoc in Europe during the 16th century, in America through the slave trade,
and nowadays hitting Africa. In year 730, the Spanish Francisco Lopez discovered the
curative tree called quinine already used by the Indians to treat fever. In 1820, the french
pharmacist Pelletier Caventou isolated the quinine for the rst time from quinine bark.
In 1880, the French doctor Alphonse Lavernat undertook observations with a microscope
for the rst time and discovered the malaria parasite called falciparum, hence the name
malaria. In 1897 the british Roland Ross made the discovery that the female anophele
mosquito spreads the disease of malaria. Until the 20th century quinine remained the
only medicine to treat malaria, then the other medicines were discovered later on in
1940. After spraying products (DDT) to kill anopheles in the surrounding environment
in 1956, the World Health Organization (WHO) launched a global malaria eradication
program. The malaria parasite ghts back and became increasingly resistant to treatment.
In 2001, the WHO advocated a new therapy, the action of combining the old artemisinin
molecules already used by the Chinese (since the 4th Century) with two other antimalarial.
Resistance to this new treatment is quickly established by the parasites ([30]). Malaria, the
main cause of more than 500000 deaths per year, is the rst parasitic disease in the world,
particularly in Africa ([30]). In 2013, more than 1980000 peoples were infected mainly
in poor countries. Malaria aects more than 100 countries in the world, particularly
in tropical areas. Africa who only concentrates more than 98% of malaria cases comes
rst before Asia and Middle Est. Nigeria and the Democratic Republic of Congo are the
most infected in Africa. Over the past 10 years, the mortality rate from malaria was
reduced by 50% thanks to the eorts of the WHO. Several factors explain the progress of
the treatment of malaria stubs prevention (mosquito net, mosquito spraying, prevention
treatment of pregnant women, children,...), the new combination of molecules with ACT.
In terms of number of infections, children are the most vulnerable victims. Every minute
a child under the age of 5 years dies from malaria worldwide. Access to care and screening
for the parasite remains a real challenge in the ght against malaria. In Africa more
than 70% of patients could be treated with ACT. Recently the cases of resistance of the
parasites to the ACT is observed in some countries (Myanmar, Camboge, Thailand,...).
The female anophele mosquito remains the vector of the parasite. Anopheles bites at
night to feed on blood. If the individual is already infected the anopheles sucks the
blood of the subject with many parasites develop in the stomach of the anophele female.
To the opportunity to sting a healthy person the parasites infect the blood of the new
victim. After infection the parasite enters a phase of new mutation. Sporozoites became
trophozoite then merozoites and nally gametocytes. All these metamorphoses allow to
escape the dam and remain in the area undetected by the immune system of new infected
people. The rst destination of the parasites is to reach the blood without being detected
by the system. There the parasite can develop quietly and infect the person cells to be
released massively into the blood causing the rst symptoms(fevers, headaches, lack of
appetite,...). The parasite then contaminates the red blood cells quickly and causes their
burst. This new generation of the case of falciparum could be sucked up again for a
anophele mosquito and the cycle is complete. In the case of falciparum malaria, it can
worsen and progress to other organs such as the brain. Young children whose immune
system is under construction and pregnant women whose immune system change during
pregnancy are most at risk of severe malaria and death. If left untreated within 24 hours
after infection, falciparum malaria can progress to sever infection (aect the brain) or
even fatal. The parasite is commonly resistant to single molecule treatment. The most
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active treatment of malaria is the combination of artemisinin (ACT). Since then, there
is appearance of case of malaria resistant to derivative products of ACT. This resistance
can be a serious threat in the case of endemic areas. Since the years 2011, the eective
way of preventing seasonal malaria for children under 5 years and pregnant women, has
been the use of nets, insecticide,... More than three billion people are exposed to malaria
throughout the world (see [30]). In 2015 WHO declared more than 3,2 billion new cases
of malaria per year ([30]). Among which 92% in Africa and 70% cases are children. The
most dangerous anopheles which are very resistant in Africa can be found in western
Africa. The pathogen which are parasites are protozoans type of genus plasmodium. The
resistance of the parasite to the dierent treatment leads to a endemic situation. This
deserves the attention of researches around the world especially mathematicians. The most
used means are the preventive ones. A number of recent mathematical studies of malaria
show the signicant direct role of climate such as temperature and rainfall, play on the
transmission dynamic of vectors ([1, 5, 8, 11, 13, 16, 18, 19, 20, 22, 24, 27, 31]). B. Traoré
et al. studied a mathematical model of malaria taking into account mosquito larvae and
transmission of malaria in a periodic environment([26]), considering a constant recruitment
of both humans and larvaes. Abba B. Gumel et al. studied a malaria model taking into
account the temperature and rainfall variation in the mode of malaria transmission ([16]),
considering a constant recruitment of humans. CN. Ngonghala et al. study modeling the
synergistic interplay between malaria dynamics and economic growth ([15]) by considering
a constant recruitment of both vectors and humans population. Our contribution consists
to take into account a non-constant recruitment of mosquitoes and humans in order to
better describe the reality. In this paper, we develop a mathematical model of malaria
that incorporates the dynamic recruitment of the human population as well as the seasonal
evolution of the vectors. Our model takes into account the seasonal evolution of mosquitoes
during the year to establish a link between the seasonal evolution of mosquitoes and the
number of malaria cases. We use a periodical function f of 12 months period to be able
to determine the period of abundance of mosquitoes in order to allow the government to
support the vulnerable population (distribution of mosquito nets, preventive medicine to
children under 5 years old, spraying of areas, ... ). Additionally, real data on the number of
malaria cases in Burkina Faso is used in the simulation section to illustrate the theoretical
results.

The structure of the paper is as follows. We present the mathematical model in Sec-
tion 2. We give the mathematical analysis of model in Section 3. We study the global
stability of disease free equilibrium (DFE) point in Section 4. In Section 5, we study the
global stability of endemic equilibrium point. In Section 6, we study the sensitivity of the
parameters. We give a numerical simulation in Section 7. We conclude in Section 8.

2. The formulation of mathematical model

In this model, the human population is divided into four classes: the susceptible Sh,
the exposed Eh, the infected Ih and cured Rh The vector population (mosquitoes) is
subdivided into two classes: susceptible vector Sv and infected Iv βh1 is the infection
probability from exposed person (Eh) to mosquito, βh1 is the infection probability from
infected person (Ih) to mosquito, βv represents the infection probability from mosquito
to human and b1 is the average number of bites per mosquito per day. β = b1βv is
the rate of infection from mosquitoes to humans. αEh = b1βh1 represents the infection
rate from exposed person to mosquitoes. αIh = b1βh2 represents the infection rate from
infected person to mosquitoes. µhNh is the dynamic recruitment of the human population.
γ1Sh, γ1Eh, γ1Ih and γ1Rh are the number of susceptible, exposed, infected and cured

individuals respectively that naturally mortality.
βIvSh

Nh
is the proportion of susceptible

humans that come infected per bite infected anopheles (Iv).
αEhEhSv

Nv
and

αIhIhSv

Nv
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are respectively the proportion of anopheles that bite exposed (Eh) and infected humans
(Ih) than can infect them. γEh is the total exposed population that manifests malaria
disease at time t (exposed individuals who pass into the Ih class). θIh is the set of sick
humans who recover from malaria (humans who enter the Rh class). µvNv(1 + f(t)) is
the recruitment of mosquitoes according to the periodic time of the year. µSv and µIv
are the mosquitoes that die naturally respectively in class Sv and Iv. In our work, the
recruitment is dynamic so that any individual cured of malaria disease can recontact it.

Sh Eh Ih Rh

SvIv

µhNh

µvNv(1 + f(t))

γ1 γ1 γ1 γ1

µµ

γEh θIh

α
E
h
E

h
S
v

N
v

α
I h

I h
S
v

N
v

β
I v
S
h

N
h

Figure 1. Transfer diagram: the black dashed arrows indicate
the direction of the infection, the solid arrows represent the tran-
sition from one class to another.
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According to diagram (1) and by inspired to the model of [32], we have the mathematical
model: 




Ṡh = µhNh − β
IvSh

Nh
− γ1Sh,

Ėh = β
IvSh

Nh
− γEh − γ1Eh,

İh = γEh − θIh − (γ1 + γ2)Ih,

Ṙh = θIh − γ1Rh,

Ṡv = µvNv


1 + f(t)


− αEh

EhSv

Nv
− αIh

IhSv

Nv
− µSv,

İv = αEh

EhSv

Nv
+ αIh

IhSv

Nv
− µIv,

(1)

with the initial conditions:

Sh(0) > 0, Sv(0) > 0, Eh(0) > 0, Ih(0) > 0, Iv(0) > 0, Rh(0) > 0

Table 1. The parameters description of model (1)

Symbols Description

µh Recruitment rate of humans.
γ1 Natural mortality rate of humans.
µ Natural mortality rate of mosquitoes.
µv Recruitment rate of mosquitoes.
θ Transition rate from states Ih to Rh.
αIh Contact rate of susceptible mosquitoes with humans

infected by malaria.
αEh contact rate of susceptible mosquitoes with humans

exposed to malaria.
f(t) Periodic function.
β Contact rate of infected mosquitoes with susceptible

humans.
γ2 Disease mortality rate.
γ Transition rate from Eh to Ih.

Total human populations and number of vectors are described by the equations
(2) and (3).

Ṅh = µhNh(t)− γ1Nh(t)− γ2Ih(t) (2)

and

Ṅv = (1 + f(t))µvNv(t)− µNv(t) (3)

The ω−periodic (ω = 12 months) function f is continuous and bounded on R. It
describes the variation of mosquitoes during the 12 months of the year. It represents the
rate of change of mosquitoes over the 12 months of the year. The rainfall and temperature
are important factors in mosquitoes development. Since the increase in mosquitoes leads
to an increase in contact between mosquitoes and humans, we assist to an increase of
malaria cases during these periods. The variation of temperature plays an important
role in the variation of rainfall, which favors mosquito breeding and proliferation. The
function f determines the rate of increase of mosquitoes during these periods. After the
rainy season the mosquito nits disappear which leads to a decrease of mosquitoes. The
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determination of the periods of abundance of mosquitoes allows the government to take
measures against malaria by spraying mosquitoes in public space, distributing mosquito
nets and distributing preventive drugs to children under ve years. Now we can dene the
function f as follow

f(t) = a cos


k


πt

6
+ b


+ c; t ≥ 0, a, b, k, c ∈ R, (4)

where a, b, c and k are constants chosen such that 1 + f(t) is positive.

Remark 1. In our model, mosquitoes do not recover from malaria. Each person cured of
malaria is brought back into the susceptible population and since recruitment is dynamic
then it takes into account that each individual cured of malaria disease becomes susceptible
again. To avoid extinction of dierent population, we assume in the following that µh > γ1
and µv > µ.

Estimation of the total vector population at time t. Let’s consider equation (3),

Ṅv = (1 + f(t))µvNv(t)− µNv(t) ⇔ Ṅv = ((1 + f(t))µv − µ)Nv(t),

⇔ lnNv(t) =


f(t)dt+ µvt− µt+ λ; λ ∈ R

The vectors total population is estimated at time t by

Nv(t) = λ exp


f(t)dt+ µvt− µt


; λ ∈ R, t ≥ 0 (5)

For a=1, k=1, b = −π and c=0, the relation (5) gives :

Nv(t) = Nv(0) exp


6

π
sin


πt

6
− π


+ µvt− µt


; t ≥ 0 (6)

The function f(t) can be seen in the Figure 2.
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Figure 2. The seasonal evolution of mosquitoes during the
twelve months of the year with a=1, k=1, b = π/2 and c=0.

We observe the seasonal evolution of mosquitoes during the twelve months of the year.
The lowest number of mosquitoes in the year occurs in February and the period with
the highest number of mosquitoes in the year is August. The decrease of mosquitoes
during January and February can be explained by the absence of rainfall and the change
of temperature. The most favorable period for the proliferation of mosquitoes is May
and Jun, reaching their maximum numbers in August. In west Africa, rainfall is more
abundant in the open season, which means that mosquito needs are much greater, favoring
the proliferation of mosquitoes. After August, the mosquitoes decrease due to heavy
rains that destroy their nets. Prevention eorts in the ght against malaria should be
concentrated in August and the subvention of care in September and October.

Remark. When an infectious mosquito bites a susceptible person, the parasite enters in
the body of the person with rate β and this person moves to the exposed class Eh Some
times after, he moves from class Eh to the infectious class Ih with constant rate γ. The
infectious person heals and enters to class Rh at rate θ after treatment. In the same way,
when an susceptible mosquito (Sv) becomes infected (Iv) by biting an infectious persons
(Ih, Eh). This mosquito (Iv) can now infect other people (Sh). Each infected mosquito
no longer recovers but remains infected until its death.

3. Mathematical analysis

We are now interested in the mathematical analysis of the model (1). Firstly we prove
the positivity and the boundedness of the solutions and secondly the estimation of the
basic reproduction number of system (1).
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3.1. Positivity and boundedness of solutions. In this part, we prove the positivity
and boundedness of solutions of system (1).

Proposition 1. The unique solution of system (1) is positively invariant in

Ω =

(Sh(t), Eh(t), Ih(t), Sv(t), Iv(t)) ∈ R6; (Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Iv(0)) ≥ 0




Proof. For uniqueness of solution, we consider the same techniques in [26]. Let us
dene the following function.

Ẏ (t) = h(t, Y (t)), (7)

where

Y (t) =




Sh(t)
Eh(t)
Ih(t)
Rh(t)
Sv(t)
Iv(t)




; Y (0) > 0

and

h : R+ × R6 −→ R6, (8)

such as

h(t, Y (t)) =




µhNh − β
IvSh

Nh
− γ1Sh

β
IvSh

Nh
− γEh − γ1Eh

γEh − θIh − (γ1 + γ2)Ih

θIh − γ1Rh

µvNv


1 + f(t)


− αEh

EhSv

Nv
− αIh

IhSv

Nv
− µSv

αEh

EhSv

Nv
+ αIh

IhSv

Nv
− µIv






For any Y ∈ Ω, h(t, Y (t)) is continuous in (t, Y (t)) and Lipschitzian in Y . By application
of theorem 2.2.1 and theorem 2.2.3 of Hale and Verduyn Lunel ([7]), the system (1) has a
unique solution in Ω.
By considering the rst equation of system (1), we have

Ṡh(t) = µhNh − βIv

IvSh

Nh
− γ1Sh(t),

Ṡh ≥ −Sh(t) (βIv(t) + γ1) ,

Sh(t) ≥ Sh(0) exp (− (βIv∞ + γ1) t) > 0,

Sh(t) ≥ 0, ∀t ∈ R+

We use the second equation of system (1) to obtain

Ėh(t) = β
IvSh

Nh
− γEh − γ1Eh,

Ėh(t) ≥ − (γ + γ1)Eh(t),

Eh(t) ≥ Eh(0) exp (− (γ + γ1) t) ≥ 0,

Eh(t) ≥ 0, ∀t ∈ R+
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By considering the third equation of system (1), we have

İh = γEh(t)− θIh(t)− (γ1 + γ2)Ih(t),

İh ≥ (θ + γ1 + γ2) Ih(t),

Ih(t) ≥ Ih(0) exp (− (θ + γ1 + γ2) t) ,

Ih(t) ≥ 0, ∀t ∈ R+

Using the fourth equation of system (1), we get

Ṙh(t) = θIh − γ1Rh,

Ṙh(t) ≥ −γ1Rh(t),

Rh(t) ≥ Rh(0) exp (−γ1t) ,

Rh(t) ≥ 0, ∀ t ∈ R+

After that, the fth equation of system (1) gives

Ṡv = µvNv


1 + f(t)


− αEh

EhSv

Nv
− αIh

IhSv

Nv
− µSv, this gives ,

Ṡv ≥ −

αEh

Eh

Nh
+ αIh

Ih
Nh

+ µ


Sv(t),

Ṡv ≥ −

αEh

Eh∞
Nh

+ αIh

Ih∞
Nh

+ µ


Sv(t),

Sv ≥ Sv(0) exp


−

αEh

Eh∞
Nh

+ αIh

Ih∞
Nh

+ µ


t


≥ 0,

Sv(t) ≥ 0, ∀ t ∈ R+

Then, using the sixth equation of system (1), we have

İv = αEh

EhSv

Nv
+ αIh

IhSv

Nv
− µIv,

≥ −µIv,

Iv(t) ≥ Iv(0) exp(−µt) ≥ 0,

Iv(t) ≥ 0, ∀ t ∈ R+

The system (1) is mathematically well dened, now we are interested by the biological
denition. In this part, we prove the boundedness of solution of system (1). The world
human population is nite let’s note the Nh(0) as well as that of mosquitoes and let’s note
Nv(0). Let,

Γ = (Sh, Eh, Ih, Rh, Sv, Iv) ; Sh + Eh + Ih +Rh ≤ Nh(0); Sv + Iv ≤ Nv(0) 

Proposition 2. The compact set Γ is a positively invariant set, which attracts all positive
orbits in R6

+. Moreover we have, all solutions of system (1) are bounded in Γ.

Proof. Consider the total population of humans at time t

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t) (9)

and vectors population

Nv(t) = Sv(t) + Iv(t) (10)

The equations (9) and (10) give

Ṅh(t) = Ṡh(t) + Ėh(t) + İh(t) + Ṙh(t),

Ṅh(t) = µhNh(t)− γ1Nh(t)− γ2Ih(t)
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and

Ṅv(t) = Ṡv(t) + İv(t),

Ṅv(t) = µv(1 + f(t))Nv(t)− µNv(t)

Considering the system (1), we obtain

Ṅh(t) = Ṡh(t) + Ėh(t) + İh(t) + Ṙh(t),

Ṅh(t) = µhNh(t)− γ1Nh(t),

Nh(t) = Nh(0) exp((µ− γ1)t) ≤ Nh(0)

and

Ṅv(t) = Ṡv(t) + İv(t),

Ṅv(t) = µv(1 + f(t))Nv(t)− µNv(t) ≤ Nv(0)

Therefore, any solution of (1) is bounded by zero and Nmax where

Nmax = max Nv(0), Nh(0).

3.2. Determination of basic reproduction number R0. R0 is the number of hu-
mans infected by an infectious individual initially introduced into a totally susceptible
population through female anopheles. The R0 of our malaria model is given by the fol-
lowing proposition. The function f is continuous on [0;12], so we can dene f0 as follows,
f0 = mint∈[0;12] f(t).

Proposition 3. Considering model (1) we have the basic reproduction number

R0 =


µhµv(1 + f0)β

γ1µ2(γ + γ1)


αEh +

αIhγ

θ + γ1 + γ2


 (11)

Proof. The transition vector ([28]) V is

V =




(γ + γ1)Eh

−γEh + (θ + γ1 + γ2)Ih
µIv




and the contact vector is dened by

F =




βIvSh

Nh

0

αEh

EhSv

Nv
+ αIhIh

Sv

Nv


 

Then we get the matrix V by

V =




γ + γ1 0 0

−γ γ1 + γ2 + θ 0

0 0 µ




⇔ V −1 =




1

γ + γ1
0 0

γ

(β + γ1)(γ + γ1)

1

θ + γ1
0

0 0
1

µ




(12)
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and the matrix F by

F =




0 0 β
S0
h

N0
h

0 0 0

αEh

S0
v

N0
v

αIh

S0
v

N0
v

0




 (13)

Which gives

FV −1 =




0 0 β
S0
h

µN0
h

0 0 0

αEh

S0
v

(γ + γ1)N0
v

+ αIh

γS0
v

(θ + γ1 + γ2)(γ + γ1)N0
v

0 0




,

where S0
v =

µv(1 + f0)N0
v

µ
represents the susceptible vector population in DFE and

S0
h =

µhN
0
h

γ1
represents the susceptible human population in DFE. The terms N0

h and

N0
v represent the total population of humans and mosquitoes respectively at DFE. There-

fore, the basic reproduction number R0 of system (1) is given by the spectral radius of
the matrix −FV −1 ([28]),

R0 = ρ(−FV −1) ⇔ R0 =


µhµv(1 + f0)β

γ1µ2(γ + γ1)


αEh +

αIhγ

θ + γ1 + γ2


 (14)

We dene Re called the eective infection number as the average number of secondary
infections caused by an infectious individual initially introduced into a totally susceptible
population via female anopheles at time t This secondary infection number Re is given
by ([17])

Re(t) =


βµhµv(1 + f(t))

µ(γ + γ1)γ1µ


αEh +

αIhγ

θ + γ1




The evolution of the eective basic reproduction number (Re) is given by the graph of
Figure 3.
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Figure 3. Evolution of the eective basic reproduction number
Re.

We notice that the infection rate progressively decreases from February to March due to
the reduction in the number of infected individuals during this period. After the month
of March, the infection rate (Re(t)) increases and reaches its maximum in September

due to the intensive presence of mosquitoes in that month, then decreases until
December. That aligns with the data from Burkina Faso.

4. Stability of disease free equilibrium (DFE)

In this section, we prove the global stability of the DFE (Disease-Free Equilibrium
point). In the DFE, we have

Eh = 0, Ih = 0, Iv = 0, S0
h =

µhN
0
h

γ1
and S0

v =
µv(1 + f0)N0

v

µ
.

Theorem 4.1. The DFE E0 = (S0
h, 0, 0, 0, S

0
v , 0) of system (1) is globally asymptotically

stable when R0 < 1

Proof. Let consider the infected class Ih, Iv, Eh. The equations corresponding to
these states, we have:





Ėh = β
IvSh

Nh
− γEh − γ1Eh,

İh = γEh − θIh − (γ1 + γ2)Ih,

İv = αEh

EhSv

Nv
+ αIh

IhSv

Nv
− µIv

(15)
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The matrix linearised M associated to the system (15) at X0 is given by :

M =




γ + γ1 0 β

−γ γ1 + γ2 + θ 0

αEh αIh µ






M = F + V where F is given in (13) and V is given in (12). Moreover F > 0 and V −1

given in (12) is dened positive. Thus R0 = ρ(FV −1) < 1 and from the Varga theorem
[29], the matrix M is asymptotically stable when R0 < 1. The eigenvalues of M has
negative real part, by standard comparison theorem [9, 23] when t −→ +∞ we have
(Eh, Ih, Iv) −→ (0, 0, 0). For system (1), substituting Eh = 0, Ih = 0, Iv = 0, we get

Sv −→ µv(1 + f0)N0
v

µ
and Sh −→ µhN

0
h

γ1
as t −→ +∞. Thus (Sh, Eh, Ih, Sv, Iv) −→


µhN

0
h

γ1
, 0, 0, 0,

µv(1 + f0)N0
v

µ
, 0


as t −→ +∞ for system (1), R0 < 1 Therefore the

DFE E0 is globally asymptotically stable when R0 < 1

5. The endemic equilibrium point

In this section we determine and study the global stability of the endemic equilibrium
point. In this part, we assume that f is constant (f∗) representing the maximum mosquito
production in the endemic case, f∗ = maxt∈[0;12] f(t). The terms N∗

h = S∗
h+E∗

h+ I∗h +R∗
h

and N∗
v = S∗

v + I∗v represent the total population of humans and mosquitoes respectively
at endemic equilibrium.





µhN
∗
h − β

I∗vS
∗
h

N∗
h

− γ1S
∗
h = 0,

β
I∗vS

∗
h

N∗
h

− γE∗
h − γ1E

∗
h = 0,

γE∗
h − θI∗h − (γ1 + γ2)I

∗
h = 0,

θI∗h − γ1R
∗
h = 0,

µvNv


1 + f∗− αEh

E∗
hS

∗
v

N∗
v

− αIh

I∗hS
∗
v

N∗
v

− µS∗
v = 0,

αEh

E∗
hS

∗
v

N∗
v

+ αIh

I∗hS
∗
v

N∗
v

− µI∗v = 0

This gives

S∗
h =

µN∗
v

βI∗v
N∗

v

+ γ1

, E∗
h =

µβI∗vN
∗
h

(γ + γ1)(βI∗v + γ1N∗
h)

,

I∗h =
γµβI∗vN

∗
h

(θ + γ1 + γ2)(γ + γ1)(βI∗v + γ1N∗
h)

, S∗
v =

µN∗2
h (1 + f∗)

αEhE
∗
h + αIhI

∗
h + µN∗

h

,

R∗
h =

θ

γ1

γµβI∗vN
∗
h

(θ + γ1)(γ + γ1)(βI∗v + γ1N∗
h)

,

where
N∗

h = S∗
h + E∗

h + I∗h +R∗
h and N∗

v = S∗
v + I∗v .
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Theorem 5.2. If R0 > 1, then the endemic equilibrium X∗ = (S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
v , I

∗
v ) is

globally asymptotically stable in

Γ∗ = X ∈ Γ; X∗ −X ≥ 0 

Proof. Consider the following Lyapunov candidate function

V = N∗
h −Nh +N∗

v −Nv

The function V is derivable. We have V = 0 at X = X∗ and positive in Γ∗.

V̇ = −Ṅh − Ṅv,

= −(Ṡh + Ėh + İh + Ṙh)− (Ṡv + İv),

= −(µhNh − γ1Nh)− γ2Ih − [µv(1 + f(t))Nv − µNv],

= (γ1 − µh)Nh − γ2Ih − (µv + µvf(t)− µ)Nv,

≤ 0

Therefore V̇ ≤ 0, then V is a Lyapunov function in Γ∗. Hence, LaSalle’s invariant
principle ([10]) implies that X∗ is globally asymptotically stable.

6. Global sensitivity analysis for R0

Sensitivity analysis helps us to identify the parameters that have a big impact on
the disease transmission. Such an information is important not only for experimental
design but also for data assimilation and reduction to complex nonlinear models ([21]).
Normally, in the epidemiological model, the analysis is used to discover parameters that
have greatest inuence on the basic reproduction number R0 and should be targeted by
the control strategies.

Denition 6.1. ([3]) The normalized forward sensitivity index of reproduction number
R0, which depends dierentiably on a parameter p, this is dened by

∂pR0 =
∂R0

∂p
× p

R0
 (16)

Recall that the value of R0 for the system (1) is given by (14).
This gives the table 2.

Table 2. Parameter description and elasticity value

Symbols Elasticity index

γ -0.47
γ1 -0.46
γ2 -0.014
µ 0.55
θ -0.0086
µh -0.55
µv -0.45
αIh 0.3
β 0.5

This gives the Figure 4.
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Figure 4. Parameters sensitivity of model (1)

The index values for the parameters in the model (1) are represented in a Table 2.
Parameters with a positive sensitivity index indicate an increase in the transmission of
malaria in the population for an increase in these values. On the other hand, parameters
with a negative sensitivity index mean that an increase in these values leads to a decrease
in the transmission of malaria in the population. The sensitivity index of µ in R0 is -0.5.
This implies that an increase 1% in the value of µ leads to a decrease 0.5% in the value of
R0 The sensitivity index of β in R0 is 0.5. This implies that an increase 1% in the value of
β leads to an increase 0.5% in the value of R0 In the same way, the elasticity of γ1 in R0 is
-0.34 means that the increase of 1% in the value of γ1 implies the decrease of 0.34% in R0
The sensitivity index of αEh and β are the same, that shows that these parameters have
the same impact on the secondary infection rate R0 The fact that ∂γR0 = −0143 means
that 1% increase in value of γ will produce 0.143% decrease in R0. Also The fact that
∂θR0 = −000112 means that 1% increase in value of θ will produce 0.00112% decrease in
R0. The fact that ∂αIh

R0 = 000111 means that 1% increase in αIh will produce 0.00111%

increase in R0.

7. Numerical simulation

In this section, we simulate the model (1) to illustrate our mathematical results. we
use the same technique for [2]. To better understand the seasonal periodicity of mosquito
evolution, we conducted numerical simulation in this section. Specically, we applied sys-
tem (1) to Burkina Faso. The literature [14] emphasizes that all mosquito traits relevant
to transmission-biting, egg-to-adult survival and development, faculty-strongly respond
to temperature and peak between 23oC and 34oC. This literature also shows that trans-
mission of malaria by anopheles peaked at 26.4oC and declined to zero below 16.2oC and
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above 31.6oC. Based on these information, we can assume that the proliferation rate (f(t))
and transmission probability (αEh ,αIh , β) are signicantly aected by temperature and
rainfall. Additionally, we can also note that the mosquito-biting depends on their evolu-
tion (f(t)). The more mosquitoes we have, the higher the biting rate and the probability
of malaria transmission. In view of this we have decided to track the periodic evolution
of mosquitoes through function f . Other authors steadied the tracking the periodic bites
(see [26, 33]). The Table 3 shows the evolution of the malaria cases based on rainfall
and temperature according to data from Burkina Faso. In this model, we are using data
from Burkina Faso for the year 2020. This function f models how the mosquito popula-
tion varies based on environmental and seasonal conditions that either facilitate or hinder
their reproduction. Based on this information, we can dene the 12-periodic function f
as follows :

f(t) = 5− 3 cos(πt6) (17)

The INSD (Institute of National Statistics and Development) data on temperatures and
precipitation for Burkina Faso ([4]) are given in Table 3.

Table 3. Evolution of the number of malaria cases in the Burk-
ina Faso, based on monthly average temperature (oC) and rainfall
(mm)

Months Temperatures(oC) Rainfall(mm) Malaria cases

January 258 0 5980

February 2877 7 57910

March 3111 32 47400

April 3075 80 43489

May 2954 140 38096

June 275 147 38441

July 2595 210 56587

August 2504 264 85014

September 2557 224 100628

October 2731 100 132447

November 2833 25 108336

December 2536 5 73839

The parameters value for model (1) are recorded in Table 4.

Table 4. The values of the parameters for the sismulation of model

Symbol values source

αEh 0.48 [3]

γ1 0.008 [6]

γ2 0.01 [12]

γ 0.304 [12]

µ 0.03 [25]

µh 0.4 [6]

µv 0.34 [25]

θ 0.083 [12]

β 0.48 [3]

αIh 0.22 [3]
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In this part, the function f is not constant. The function f is 12 months periodic. The
periodic function f allows us to track the annual seasonal evolution of mosquitoes. This
seasonal tracking of mosquitoes enables us to identify the period of maximum mosquito
production during the year, which in turn helps determine the period of maximum malaria
infection in the human population. If this period is known, the government could imple-
ment preventive measures such as raising public awareness, destroying mosquito breeding
sites, distributing mosquito nets to vulnerable populations, and administering preventive
medications. Consider model (1) with the periodic function f and the Table (3).

Figure 5. Evolution of infected individuals (Ih) from the model
and the infected individuals (Ih) from data of Burkina Faso.

In Figure 5, the red curve represents the evolution of infections (Ih) with the actual data
of Burkina Faso and the blue curve indicates the evolution of infections (Ih) according to
the model. Allows for the observation of the malaria trend in Burkina Faso over a period
of 12 months.
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Figure 6. The seasonal evolution of the total number of
mosquitoes (Nv).

Depending on the temperature and rainfall, the total number of mosquitoes (Nv) follows
a seasonal pattern over 12 months and exhibits a peak in the month of July. The
mosquito population decreases after the months of July due to a lack of rain and

unexpected temperature uctuations.

Figure 7. Seasonal evolution of susceptible (Sh) and exposed
(Eh) persons with R0 > 1.

In Figure 7, with these parameter values, we observe the seasonal evolution of the
susceptible human population (Sh) and the exposed human population (Eh) in twelve
months. The susceptible individuals curve shows growth and reaches its peak in March.
The decrease in susceptible after the month of Mars is due to the increase in infected
(Ih) and exposed (Eh) individuals. The minimum of the exposed population occurs in
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February. This can be explained by the decrease in temperature and lack of rainfall.
The peak of exposed individuals occurs in June and July, which can be attributed to
the presence of rainfall and the stabilization of temperatures. The detection of periods
of intense malaria exposed may depend on the data from the concerned regions. In this
paper, we used data from Burkina Faso, but the model developed here can be applied in
any other region if need be.

Figure 8. Seasonal evolution of infected (Ih) and recovered (Rh)
persons with R0 > 1.

In Figure 8, with these parameter values, we observe the evolution of the infected human
population (Ih) and the recovered human population (Rh) on twelve (12) months. The
graph of infected (Ih) cases in Figure 8 shows that in February, the number of malaria
cases (Ih) is lower. This trend can be explained by the absence of infected mosquitoes
(Iv) due to the drop in temperatures and lack of rainfall. Conversely, the number of
malaria cases (Ih) signicantly increases in September, which can be attributed to the
massive presence of mosquitoes (Iv) that month due to rainfall. Therefore, we observe a

minimum number of recoveries (Rh) in February and in September. The signicant
factors inuencing this evolution are rainfall and temperature variations.

Figure 9. Seasonal evolution of susceptible and infected vectors
with, R0 > 1.

In Figure 9, with these parameter values, we observe the evolution of the susceptible
vector population (Sv) and the infected vector population (Iv) for twelve months. Sus-
ceptible mosquitoes (Sv) decrease during the month of January, reaching their minimum
number in February meanwhile, the number of infected vector (Iv) remains almost con-
stant due to the transfer of (Sv) to (Iv). Moreover, every (Sv) that enters (Iv) stays in
(Iv) until its death. In other words, no infected mosquito heals from the infection; in-
stead, it remains infected until it dies. Following February, the population of susceptible
mosquitoes increases and peaks in May. The peak of mosquitoes in May can be attributed
to the presence of rainfall and favorable ambient temperatures for mosquito reproduc-
tion. This results in an increase in infected mosquitoes (Ih), reaching their maximum in
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September due to the presence of malaria patients (Ih) and a wave of mosquitoes, the
transition from (Sv) to (Iv) occurs massively in September. September and October are
months during which the population should exercise caution and take measures to pro-
tect themselves from mosquito contact. The signicant factors inuencing this evolution
of mosquitoes are rainfall and temperature variations. Therefore, malaria is a seasonal
phenomenon. This determination of intense period of vector populations can assist the
government in making decisions in the ght against malaria. The detection of periods of
intense vector populations can depend on the data from the regions that is used for the
study. In this paper, we use data from Burkina Faso.

8. Conclusion

In this paper, we have developed a SEIRS malaria model with dynamic recruitment
and seasonal evolution of mosquitoes. The function f allowed us to determined the period
of the high frequency of mosquitoes in order to allow the government to support the
vulnerable population (distributing mosquito nets, spraying public areas and distributing
preventive pharmaceutical products to children under the age of ve years). We then
showed the positivity and the boundedness of the periodic solutions. We have also shown
the local and global stability of the equilibrium points of the model. In this study we have
calculated the basic reproduction number R0. The variation of the mosquitoes is measured
by a periodic function f . In this study, we investigated the eect of the seasonal evolution
of mosquitoes on the dynamics of malaria cases in Burkina Faso. According to data
from Burkina Faso, the number of malaria cases intensies from September to November,
reaching its peak in October. In February, the number of malaria cases is lower, implying
that the government should exert less eort during this month but concentrate more eorts
during the months of September, October and November. The DFE stability shows that
with great eorts we can expect equilibrium without malaria disease. Then the stability
of this point is proven but relies on the commitment of the government to ght against
malaria. The study of sensitivity of parameters shows that the most sensitive parameters
of the model (1) are the mortality rate of mosquitoes (µ), the cure rate of malaria patients
(θ) and the exposed rate of individuals (γ). The population’s θ exposure rate decreases
then the malaria cases decreases considerably until it stabilizes at zero cases. But if the
cure rate γ decreases on γ ∈ [0, 03[ and the exposure rate (θ) increases on [0.5, 1] then the
malaria case increases. Moreover, the disease may stabilize in the population. In order to
ght against malaria, it is necessary to develop several strategies:

• Subsidize the access of malaria case in hospitals or take care of all malaria patients
or take care of 90% of malaria patients. Otherwise, through the infected people
who do not treat malaria, many anopheles became infected and then spread the
malaria disease.

• To reduce the population’s exposure to malaria through awareness raising, free
distribution of impregnated mosquito nets, access to preventive care for children
under ve years of age, free access to anti-malarial treatment, malaria testing, etc.
We can also in the framework of the ght against malaria take into account the
mortality rate of mosquitoes, that is to say increase the mortality of mosquitoes
by killing contaminated anopheles around the population (by using insecticides
or other means).
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model of malaria transmission with stage-structured mosquito population dynamics. Nonau-

tonomous Dynamical Systems, 8(1):267–296, 2021.

[26] S. B. Traore Bakary and T. Sado. A mathematical model of malaria transmission in a periodic

environment. Journal of Biological Dynamics, 2018.

[27] N. K. Vaidya, X. Li, and F.-B. Wang. Impact of spatially heterogeneous temperature on the

dynamics of dengue epidemics. Discrete and Continuous Dynamical Systems-B, 24(1):321,

2019.

[28] P. Van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic

equilibria for compartmental models of disease transmission.Mathematical biosciences, 180(1-

2):29–48, 2002.

[29] R. S. Varga. Matrix iterative analysis. prentice hall, englewood clis. New Jersey, 1962.

[30] WHO. Global malaria programme: world malaria report. https://www.who.int/

mediacentre/news/releases/2015/sage/fr/, 2015. Consulted August 11, 2023.

[31] H. Yang, M. Macoris, K. Galvani, M. Andrighetti, and D. Wanderley. Assessing the eects

of temperature on dengue transmission. Epidemiology & Infection, 137(8):1179–1187, 2009.

[32] Y. Yoda, H. Ouedraogo, D. Ouedraogo, and A. Guiro. Mathematical analysis and opti-

mal control of dengue fever epidemic model. Advances in Continuous and Discrete Models,

2024(1):11, 2024.

[33] M. Zhu, T. Feng, Y. Xu, and J. Cao. Global dynamics of a dengue fever model incorporating

transmission seasonality. Nonlinear Analysis: Modelling and Control, 28:1–24, 2023.

Lassina Ouattara
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Email address: oumar.diop@unchk.edu.sn

Aboudramane Guiro
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