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PELL POLYNOMIAL SOLUTION OF THE NONLINEAR

VARIABLE ORDER SPACE FRACTIONAL PDES

H. C. YASLAN

Abstract. In this paper, multi-term, space fractional variable order nonlin-

ear partial differential equations (VONPDEs) are considered. This type of the

equations covers the form of all space fractional VONPDEs containing the first-
order time derivative. Here fractional derivatives are defined in the Caputo

sense. The presented method is a combination of the Pell collocation method

and the finite difference method. Firstly, after discretization with respect to
the time variable, the finite difference method is applied to the multi-term,

space fractional VONPDE in time derivative. This leads to a space-fractional

variable order nonlinear ordinary differential equation. Then, the approximate
solution of the space fractional variable order nonlinear ordinary differential

equation is expressed in the form of truncated Pell series with unknown coef-
ficients. Finally, the Pell collocation method transform the fractional variable

order nonlinear ordinary differential equation into a system of nonlinear equa-

tions. Thus, the approximate solution of the nonlinear system is obtained
by using the Newton method and unknown coefficients of the truncated Pell

series are computed. The error and convergence analysis of the method is stud-

ied. In addition, the accuracy of the method is also supported by numerical
examples. The numerical results also confirm the convergence and computa-

tional efficiency of the presented method. All numerical results are obtained

by building fast algorithms using Matlab programming.

1. Introduction

As it is known, real-world phenomena change instantaneously according to time
and space. Therefore the best way to model these events is to use partial differential
equations of variable order, which makes variable order partial differential equations
(VOPDE) more popular among researchers [40, 4, 18, 27, 6, 13] in the recent years.
However, since the order of the partial differential equation (PDE) in the VOPDE
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depends on the time and space variables, the construction of methods to obtain
the solution of the problem becomes a little more difficult than integer or fractional
order problems. Moreover, when VOPDEs are nonlinear, it is often impossible
to obtain analytical solutions of such equations. This situation has encouraged
researchers to investigate various solution methods and it has become necessary to
develop numerical methods for solving such problems.

In general, time fractional VONPDEs attract more attention from researchers
[12, 10, 3, 6, 37, 13, 15, 5, 21, 36, 44, 17, 32, 30, 2, 25]. An optimization method
based on the generalized shifted Chebyshev polynomials, the homotopy perturba-
tion method and spectral tau method based on the shifted Gegenbauer polynomials
for solving time fractional VONPDEs have been presented in [12, 10, 3], respec-
tively. Time fractional variable order nonlinear (VON) advection-diffusion equa-
tion has been solved by using the two-grid method and the backward substitution
method in [6, 37], respectively. An optimization method related with the generalized
polynomials has been applied to the time fractional VON Klein-Gordon equation
in [13]. A hybrid method based on new generalized Bernoulli-Laguerre polynomi-
als has been introduced for solving a general class of coupled nonlinear systems
of variable-order fractional partial differential equations [15]. The solution of the
nonlinear two-dimensional variable-order fractional optimal control problems has
been obtained by using the generalized Bessel polynomials [5]. Two-dimensional
Legendre wavelets method have been applied to the time fractional VON Klein-
Gordon equation in [21]. The least squares scheme has been proposed for solving
time fractional VON two-dimensional diffusion-wave equation in [36]. A linearized
spectral Galerkin approach has been applied to the time fractional VON diffusion-
reaction equations in [44]. Time fractional VON coupled sine-Gordon equations
have been solved by a method based on the Chebyshev cardinal functions in [17].
A numerical scheme based on the Haar wavelets coupled with the nonstandard finite
difference scheme has been applied to the VO time-fractional generalized Burgers’
equation in [32]. An adaptive finite difference scheme for VO time-fractional subdif-
fusion equations has been studied in [30]. Spectral collocation method based on the
generalized shifted Jacobi polynomials has been developed for solving multi-term
VO time-fractional diffusion-wave equations in [2]. A numerical technique based on
the operational matrix of differentiation with fractional-order Lagrange polynomi-
als has been introduced to solve a class of VO time-fractional advection-diffusion
equations in [25].

Some methods have been constructed for solving space-time fractional VON-
PDEs in [6, 22, 16, 19, 14]. The discrete finite difference implicit method and
Kansa’s method have been proposed for the space-time fractional VON advection-
diffusion equation in [6, 22], respectively. In [22], advection-diffusion equation has
nonlinear coefficients and nonlinear source term. The collocation method based on
the Chebyshev cardinal functions has been constructed for the space-time fractional
VON diffusion-wave equation [16]. The space-time fractional VON KdV-Burgers-
Kuramoto equation has been solved by using the method based on the discrete
Legendre polynomials and the collocation scheme [19]. The VO space-time frac-
tional telegraph equation has been solved by using the approximation method based
on the optimization techniques and the transcendental Bernstein series [14].
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In the recent years, the Pell polynomials have been used to obtain the solution
of the fractional differential equations such as the time-fractional convection equa-
tion [28], the time-fractional Black-Scholes equation [38], nonlinear time-fractional
Burgers equations [39], nonlinear fractal-fractional optimal control problems [33].
However, to our knowledge there is no work based on the Pell polynomial for solv-
ing multi-term NVOPDEs. In this paper, we consider the general form of the space
fractional VONPDE of the form:

∂u(x, t)

∂t
= F (u,Dα1(x,t)

x u(x, t), Dα2(x,t)
x u(x, t), ..., Dαr(x,t)

x u(x, t)), (1)

0 < x < R, (R ≥ 1), 0 < t ≤ T,

with the initial condition

u(x, 0) = f(x), 0 < x < R, (R ≥ 1), (2)

and the boundary conditions for 0 < t ≤ T

u(bj , t) = dj(t), b0 = 0 < b1 < ... < bnr−2 < bnr−1 = R, j = 0, 1, ..., nr − 1, (3)

where x is a space variable, t is a time variable; the continuous function αk(x, t), k =
1, ..., r, denotes to the order of variable-order fractional derivative in the Caputo
sense with respect to the space variable. 0 < α1(x, t) < ... < αr(x, t), ni − 1 <
αi(x, t) ≤ ni, ni ∈ N, i = 1, 2, ..., r, f(x) and dj(t), j = 0, 1, ..., nr − 1 are known
continuous functions. F is known and Lipschitz continuous function with respect

to u, D
α1(x,t)
x u(x, t) ,...,D

αr(x,t)
x u(x, t).

Our aim is to find the approximate solution of the problem (1)-(3) in the form of
the truncated Pell polynomial series with unknown coefficients. Note that Eq. (1)
is the most general form of the important physical PDE such as space fractional
Kaup-Kupershmidt, Fisher’s, KdV-Burgers-Kuramoto equations. Therefore, these
kind of equations can be also solved by using the presented method. Note that
space fractional VONPDEs have been solved by using the Laguerre collocation
method and finite difference method in [43]. Here, VONPDE has only nonlinear
source term. In this paper, we use the same procedure, but we consider the more
general form of the VONPDEs. Furthermore, we investigate convergence and error
analysis.

The paper is organized as follows: In Section 2, we introduce the fundamental
concepts of the variable-order Caputo fractional derivative and Pell polynomials.
In Section 3, a collocation scheme based on the finite difference method and Pell
polynomial is presented. The convergence analysis of the proposed method is dis-
cussed in Section 4. Applications of the method is presented in Section 5. Finally,
conclusion is given in Section 6.

2. Preliminaries and notations

2.1. The variable-order Caputo Fractional Derivative.
Definition 2.1. The variable order fractional derivative of order α(x, t) of the
function u(x, t) with respect to the variable x in the Caputo type is defined by (see,
for example, [35],[7])

Dα(x,t)
x u(x, t) =

1

Γ(n− α(x, t))

x∫
0

(x− τ)n−α(x,t)−1 ∂
nu(τ, t)

∂τn
dτ.
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where n− 1 < α(x, t) < n and Γ(.) is a Gamma function.
Remark 1. Based on the definition of the variable-order fractional derivative in
the Caputo sense, the fractional derivative of a polynomial xm,m ∈ N, can be
obtained as follows:

Dα(x,t)
x xm =

{
Γ(m+1)

Γ(m−α(x,t)+1)x
m−α(x,t), m ≥ n

0, m < n.
(4)

2.2. Some properties of the Pell Polynomials. The recurrence form of the
Pell polynomials is given by the following relation [20]:

Pj+1(x) = 2xPj+1(x) + Pj(x), P0(x) = 0, P1(x) = 1.

The Pell polynomials Pj(x) can be defined in terms of xk [1]

Pj+1(x) =

j∑
k=0

2kηj+k

( j+k
2
j−k

2

)
xk, (5)

where

ηr =
{ 1, r even

0, r odd
. (6)

The analytic form of Pj(x) can be written alternatively as [20]

Pj(x) =

b(j−1)/2c∑
m=0

(
j −m− 1

m

)
2j−2m−1xj−2m−1, (7)

where bjc is the largest integer less than or equal to j.
Remark 2. If m is a nonnegative integer, then the following inversion formula
holds [1]:

xm = 21−m
m∑

r = 0
(r +m)even

(−1)(m−r)/2(r + 1)m!

(m+ r + 2)(m+r
2 )!(m−r2 )!

Pr+1(x). (8)

Remark 3. The following inequality holds for Pell polynomials [1]:

| Pk+1(x) |≤
√

4R2 + 2, k ≥ 0, ∀x ∈ [0, R]. (9)

Theorem 2.1. If f(x) is an infinitely differentiable function, then it can be ex-
pressed in the form of the Pell polynomials [28]

f(x) =

∞∑
k=1

∞∑
r=0

(−1)rk(2r + k − 1)!u2r+k−1

22r+k−1r!(r + k)!
Pk(x) (10)

where uj = f (j)(0)/j!.

Lemma 2.1. The following equality holds for Pell polynomials for n−1 < α(x, t) <
n, x ∈ (0, R], t ∈ [0, T ]

Dα(x,t)Pj+1(x) = x−α(x,t)

j∑
m=0

Θ(j,m)Pm+1(x), (11)
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where

Θ(j,m) =

j∑
n=m(n+m even)

bjndnm,

bjn =
2ηj+n

n+j
2 !n!

j−n
2 !Γ(n+ 1− α(x, t))

, dnm =
(m+ 1)(−1)

n−m
2

n+m
2 !n−m2 !(n+m+ 2)

.

Proof. The proof can be seen from Eq.(4), Eq.(5) and Eq.(8). �

Lemma 2.2. Assume that there exists positive constants M0,k, ...,Mj,k, Ck such

that | Θ(j,m) |≤ Mm,k(m = 0, 1, ..., j) and | x−αk(x,t) |≤ Ck for every (x, t) ∈
(0, R] × [0, T ], nk − 1 < αk(x, t) < nk, k = 1, ..., r, then the following inequality
holds for the Pell polynomials

| Dαk(x,t)Pj+1(x) |≤Mk(2R
√

2)j+1, (12)

where Mk = Ck.max{M0,k, ...,Mj,k}(j ≥ 0).

Proof. From Remark 3, we can write

| Pj(x) |≤ (2R
√

2)j−1, j ≥ 1, ∀x ∈ (0, R]. (13)

From Lemma 2.2, we have

| Dαk(x,t)Pj+1(x) | ≤ Ck(M0,k +M1,k2R
√

2 +M2(2R
√

2)2 + ....+Mj,k(2R
√

2)j)

≤ Mk(1 + 2R
√

2 + (2R
√

2)2 + ....+ (2R
√

2)j)

≤ Mk
(2R
√

2)j+1 − 1

2R
√

2− 1

≤ Mk(2R
√

2)j+1.

�

Let us discretize the interval [0, T ] such that for positive integer N , h = T
N

denotes the step size of the time variable and ti = ih(i = 0, 1, ..., N).

Theorem 2.2. Let u(x, ti) be an infinitely differentiable function and u(x, ti) =
∞∑
k=1

ck(ti).Pk(x) .If there exits positive constant λi, i ≥ 0, such that |d
ju
dxj (0, ti)| ≤ λji

for j ≥ 0, then the series is absolutely convergent and

| ck(ti) |≤
λk−1
i

2k−1(k − 1)!
cosh(λi). (14)

Proof. The proof of the inequality (14) can be seen from [28]. From (13) and (14),
we can write

|
∞∑
k=1

ck(ti).Pk(x) |≤ coshλi
∞∑
k=1

(λiR
√

2)k−1

(k − 1)!
= coshλie

λiR
√

2. (15)

�
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3. Numerical scheme

In this section, we apply the Pell collocation method to the problem (1)-(3).
Firstly, applying the finite difference method to Eq.(1), Eq.(1) is reduced to a ordi-
nary differential equation with fractional derivative. Then, the obtained fractional
differential equation is solved by using the Pell collocation method.

Let the interval [0, T ] be partitioned by points ti = i.h (i = 0, 1, 2, ..., N), where
h = T/N is the step size. Using the forward difference formula for the derivative
with respect to t in the Eq.(1), the discrete version of Eq.(1) can be written as

ui+1(x)− ui(x)

h
= F (ui+1(x), u

α1,i+1(x)
i+1 , ..., u

αr,i+1(x)
i+1 ) (16)

or

ui+1(x)− ui(x) = hF (ui+1(x), u
α1,i+1(x)
i+1 , ..., u

αr,i+1(x)
i+1 ), (17)

where ui(x) = u(x, ti), u
αk,i(x)
i = D

αk(x,ti)
x u(x, ti), k = 1, 2, .., r.

The function u(x, ti) can be expanded in terms of the Pell polynomials

ui+1(x) =

∞∑
n=1

cn(ti+1)Pn(x).

Assume that the approximate solution of the problem (1)-(3) at the point ti+1

can be written as follows

umi+1(x) =

m+1∑
n=1

cn(ti+1)Pn(x). (18)

Substituting Eq.(18) into Eq.(17), collocating the obtained equation at points
xp(p = 1, ...,m− nr + 1), we have the following system

(P.Y i+1 − PY i)p = h.F ((P.Y i+1)p, (B1Y
i+1)p, ..., (BrY

i+1)p), (19)

where

Y i+1 = [c1(ti+1), c2(ti+1), ..., cm+1(ti+1)]∗,

P =


P1(x1) P2(x1) ... Pm+1(x1)
P1(x2) P2(x2) ... Pm+1(x2)

. . ... .
P1(xm−nr+1) P2(xm−nr+1) ... Pm+1(xm−nr+1)

 ,

Bk =


Dαk(x1,ti+1)P1(x1) ... Dαk(x1,ti+1)Pm+1(x1)
Dαk(x2,ti+1)P1(x2) ... Dαk(x2,ti+1)Pm+1(x2)

. ... .
Dαk(xm−nr+1,ti+1)P1(xm−nr+1) ... Dαk(xm−nr+1,ti+1)Pm+1(xm−nr+1)

 ,
∗ denotes the sign of the transposition. ()p shows the pth component of the vector.

Dαk(x,t)Pj(x) can be computed from Eq.(4) and Eq.(7) as follows

Dαk(x,t)Pj(x) =

b(j−1)/2c∑
m=0

2j−2m−1(j −m− 1)!

m!Γ(j − 2m− α(x, t))
xj−2m−1−αk(x,t), (j − 2m− 1 ≥ nk).

Substituting Eq.(18) into the boundary conditions (3), we have the following
matrix representation

C.V i+1 = Di+1, (20)
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Di+1 = [d0(ti+1), d1(ti+1), ..., dnr−1(ti+1)]∗,

C =


P1(b0) P2(b0) ... Pm+1(b0)
P1(b1) P2(b1) ... Pm+1(b1)
. . ... .

P1(bnr−1) P2(bnr−1) ... Pm+1(bnr−1)

 .
Combining Eq. (19) and Eq. (20), we have a system of non-linear equations as
follows

U(Y i+1, Y i) = 0m+1, i = 0, 1, ...N − 1, (21)

where

U(Y i+1, Y i) =
[
P
C

]
.Y i+1 −

[
P

0nr

]
.Y i

−


h.F ((P.Y i+1)1, (B1V

i+1)1, ..., (BrV
i+1)1)

...
h.F ((P.Y i+1)m−nr+1, (B1V

i+1)m−nr+1, ..., (BrV
i+1)m−nr+1)

Di+1

 ,
0k is the zero vector with k components.

Let us consider the initial condition (2). Substituting Eq.(18) into the initial
condition (3), and collocating the resulting equation at m+ 1 points we obtain the
vector Y 0 = [c1(0), c2(0), ..., cm+1(0)]∗.

For the non-linear system (21) with unknown Y j (j = 1, ..., N), the following
iteration formula can be written by using Newton iteration method

Y j,k+1 = Y q,k − J−1(Y q,k).U(Y j,k, Y j−1),

Y j,0 = Y j−1, j = 1, ..., N, k = 0, 1, ... (22)

where J−1(Y j,k) is the inverse of the Jacobian matrix, Y j,k is approximate solution
of Y j . Using the iteration formula (22), approximate solution of the problem (1)-(3)
is obtained.

4. Error Analysis

In this section, we investigate the convergence of the presented method.
From the Taylor series expansion for a continuously differentiable function f(x),

we have

f ′(x) =
f(x+ h)− f(x)

h
+O(h). (23)

From Eq.(23), Eq.(17) can be written as

ui+1(x)− ui(x) = hF (ui+1(x), u
α1,i+1(x)
i+1 , ..., u

αr,i+1(x)
i+1 ) +O(h2). (24)

Note that if the exact solution of Eq.(1) is u(x, t), then u(x, ti+1) is the exact
solution of Eq.(24). Let umi+1(x) be the approximate solution of Eq.(24). Then
umi+1(x) satisfy the following equation

umi+1(x)− umi (x) = hF (umi+1(x), (umi+1)α1,i+1(x), ..., (umi+1)αr,i+1(x)) +O(h2) +Rm(x),
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where Rm(x) is the residual function. Subtracting Eq.(17) from the last relation,
we have the following relation

Rm(x) = emi+1(x)− emi (x)− h
[
F (umi+1(x), umi+1(x)α1,i+1(x), ..., umi+1(x)αr,i+1(x))

− F (ui+1(x), ui+1(x)α1,i+1(x), ..., ui+1(x)αr,i+1(x))
]

+O(h2).

where emi (x) = umi (x)− ui(x). Then we have

| Rm(x) | ≤ | emi (x) | + | emi+1(x) | +h | F (umi+1(x), umi+1(x)α1,i+1(x), ..., umi+1(x)αr,i+1(x))

− F (ui+1(x), ui+1(x)α1,i+1(x), ..., ui+1(x)αr,i+1(x)) | +O(h2). (25)

From (13) and (14), we can obtain the following inequality

| emi (x) | ≤
∞∑

k=m+2

| ck(ti).Pk(x) |≤ coshλi
∞∑

k=m+2

(λiR
√

2)k−1

(k − 1)!

≤ coshλi[e
λiR
√

2 −
m+1∑
k=1

(λiR
√

2)k−1

(k − 1)!
]

≤ coshλie
λiR
√

2 Γ(m+ 1)− Γ(m+ 1, λiR
√

2)

Γ(m+ 1)

≤ coshλie
λiR
√

2 (λiR
√

2)m+1

(m+ 1)!
, (26)

where Γ(., .) is the incomplete gamma function [28].
Similarly for k = 1, 2, ..., r using Lemma 2.3 we have

| emi (x)αk,i(x) | ≤
∞∑

j=m+2

| cj(ti).Dαk,i(x)Pj(x) |

≤ coshλi.2L
√

2Mk

∞∑
j=m+2

(λiR
√

2)j−1

(j − 1)!

≤ coshλi.2R
√

2Mke
λiR
√

2 (λiR
√

2)m+1

(m+ 1)!
. (27)

Since the function F satisfies the Lipschitz condition with respect to u, uα1,ti+1 ,...,uαr,ti+1 ,
thus we have

| F (umi+1(x), umi+1(x)α1,i+1(x), ..., umi+1(x)αr,i+1(x))

− F (ui+1(x), ui+1(x)α1,i+1(x), ..., ui+1(x)αr,i+1(x)) |≤ L0 | emi+1(x) | +L1 | emi+1(x)α1,i+1(x) |
+...+ Lr | emi+1(x)αr,i+1(x) |

≤ coshλi+1.e
λi+1R

√
2 (λi+1R

√
2)m+1

(m+ 1)!
C, (28)

where L0, ..., Lr are positive constants and C = L0 + L1R2
√

2M1 + LrL2
√

2Mr.
Substituting inequalities (26), (27) and (28) into (25), we have

| Rm(x) |≤| coshλi+1.e
λi+1R

√
2 (λi+1R

√
2)m+1

(m+ 1)!
(1 + C)

+ coshλi.e
λiR
√

2 (λiR
√

2)m+1

(m+ 1)!
+O(h2).
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5. Applications

Example 1. Consider the following space fractional VONPDE with initial and
boundary conditions

ut(x, t) = x2α(x,t)(Dα(x,t)
x u(x, t))2u(x, t)− x3θ(x,t)(Dθ(x,t)

x u(x, t))3(u(x, t))2

− xtu2(x, t) + t5x3e2x(E1,2−θ)
2 − t3x4ex(E1,3−α)2 + ex + xt3e2x

, 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = 0, 0 < x < 1, u(0, t) = t, u(1, t) = et, 0 < t ≤ 1,

where (E1,3−α) and (E1,2−θ) are the Mittag-Leffler functions (see, for example,

[31]), α(x, t) = 5+sin(x+t)
4 , β(x, t) = 1+sin(x+t)

4 . The exact solution is ue(x, t) = ext.
By using the iteration formula (22), the absolute errors for the approximate

solution um(x, t),m = 4, 6, 7, 9, 11, are computed. Table 1 shows the absolute
errors for m = 4, 6, 7, 9, 11;N = 104 at t = 0.2; 0.8. From Table 1, it is observed
that as the values m increase, the approximate solution approaches to the exact
solution.

Example 2.Let us consider

ut(x, t) = −x2α(x,t)(Γ(6− α(x, t)))2(Dα(x,t)
x u(x, t))2 + (Dθ(x,t)

x u(x, t))3u(x, t)

+ u(x, t) + (x5 − x2 + 1)(3t− t2 − 1)− (x5 − x2 + 1)(t2 − 4)4(
120x5−θ(x,t)

Γ(6− θ(x, t))

− 2x2−θ(x,t)

Γ(3− θ(x, t))
) + 1202(t2 − t)2x10, 0 < x < 2, 0 < t ≤ 1,

u(x, 0) = 0, 0 < x < 2,

u(0, t) = t2 − t, u(1, t) = t2 − t, u(2, t) = 29(t2 − t), 0 < t ≤ 1,

where α(x, t) = 8+x+t
4 , θ(x, t) = 4+x+t

4 . The exact solution is ue(x, t) = (t2 −
t)(x5 − x2 + 1).

Table 2 shows the absolute errors for the approximate solution u5(x, 0.5) for
N = 104; 105; 106; 107. It can be concluded from Table 2 that the values of the
absolute errors go to zero as the value N increases.

Example 3. Consider

ut(x, t) = Γ(5− α(x, t))xα(x,t)Dα(x,t)
x u(x, t)− (Γ(5− θ(x, t)))2x2θ(x,t)

. (Dθ(x,t)
x u(x, t))2u(x, t) + cos(t)(x4 + 1)24 sin(t)x4 + 576 sin(t)x8

. (x4 + 1), 0 < x < 3, 0 < t < 1,

u(x, 0) = 0, 0 < x < 3, u(0, t) = sin(t), u(3, t) = 82 sin(t), 0 < t ≤ 1,

where α(x, t) = 5+x+t
5 , θ(x, t) = 1+x+t

5 . Note that the exact solution to this

problem is ue(x, t) = (x4 + 1) sin(t).
Table 3 displays the absolute errors for the approximate solution u4(x, 0.5) for

N = 104; 105; 106; 107. From the table it is seen that better results are obtained
when the value of N increases.
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Example 4.Let us consider the following problem

ut(x, t) = e3txα(x,t)+θ(x,t)Γ(4− α(x, t))Γ(4− θ(x, t))Γ(2− θ(x, t))
. Dα(x,t)

x u(x, t)Dθ(x,t)
x u(x, t).u(x, t)− e5t(Γ(4− β(x, t)))2x2β(Dβ(x,t)

x u(x, t))2

. u3(x, t)− u(x, t) + 36(x3 − x)3x6 − 6(x3 − x)x3(6x3Γ(2− θ(x, t)
− xΓ(4− θ(x, t)), 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = x3 − x, 0 < x < 1, u(0, t) = 0, u(1, t) = 0, 0 < t ≤ 1,

where α(x, t) = 5+x+t
4 , β(x, t) = 6+sin(x+t)

4 , θ(x, t) = 1+x+t
4 . The exact solution

is ue(x, t) = (x3 − x)e−t.
Taking m = 3 and Y 0 = (0,−3/4, 0, 1/8)∗, the absolute errors for u3(x, t) is

computed. In Table 4, the absolute errors for u3(x, t) for N = 104; 105; 106; 107

and t = 0.5; 0.8 are presented. Table 4 indicates the influence of the value N on
the absolute error. Fig.1 shows 3D plot of the approximate solution u3(x, t) for
N = 104.

Example 5. Consider the following problem

ut(x, t) = xα(x,t)Dα(x,t)
x u(x, t).u(x, t) + x2θ(Dθ(x,t)

x u(x, t))2.u(x, t)

+ cos(t) cos(x) + x2E2,3−α(x,t)(−x2). cos(x) sin2(t)− x4(E2,3−θ(x,t)(−x2))2

. cos(x) sin3(t), 0 < x <
π

2
, 0 < t ≤ 1,

u(x, 0) = 0, 0 < x <
π

2
, u(0, t) = sin(t), u(

π

2
, t) = 0, 0 < t ≤ 1,

where α(x, t) = 5+x+t
4 , θ(x, t) = 1+x+t

4 . The exact solution is ue(x, t) = cos(x) sin(t).

Fig.2 shows 3D plot of the approximate solution u5(x, t) for N = 104. Fig.3
indicates behavior of the absolute error of the u5(x, t) for N = 104.

Example 6.Let us consider nonlinear space fractional Fisher’s equation with
initial and boundary conditions

ut(x, t) = D1.5
x u(x, t) + u(x, t)− u(x, t)2 + x2, 0.0125 < x < 1.0125,

0 < t ≤ 1, u(x, 0) = x, 0.0125 < x < 1.0125,

u(0.0125, t) = 0.0125(1 + t) + 0.00609375t2 − 0.082176t3 − 0.02105414

− 7.16634.10−6t5, u(1.0125, t) = 1.0125(1 + t)− 0.518906t2

− 0.921366t3 + 0.310529t4 + 0.0845434t5, 0 < t ≤ 1.

In Table 5, the approximate solution u9(x, t) is computed for N = 106 at t = 0.1.
Table 5 illustrates the comparison between the present method and GDTM (gener-
alized differential transform method) [29], VIM (variational iteration method)[29],
RBFM (radial basis functions method)[41], QPSM (quadratic polynomial spline-
based method)[9], CSCM (cubic spline Collocation Method)[11]. We conclude that
the Pell collocation method is closer to the generalized differential transformation
method than other methods.

6. Conclusion

In this paper, a collocation method based on the Pell polynomials with together
finite difference method is applied to the general form of the space fractional VON-
PDEs with initial and boundary conditions. Furthermore, convergence analysis of
the method is given. In section 5, numerical results shows that the method has
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high accuracy and can be apply to all space fractional VONPDEs containing first
order time derivative without any effort. In Example 1, as the terms of the trun-
cated series are increased, the obtained solution excellently approximates to the
exact solution. In Examples 2-5, the numerical results show that the algorithm
converges to the exact solution as the number of N is increased. In Example 6, the
space fractional VON Fisher’equation is solved, the analytical solution of which is
unknown. The obtained numerical solutions are compared with the results of other
methods in the literature and it has been seen that the results are close to each
other.In section 5, all numerical results are obtained by building fast algorithms
using Matlab programming.

As it is known, there are many separately written articles in the literature inves-
tigating the solution of equations that are important in the physics and engineering
[4, 19, 23, 34, 42, 8, 24, 26]. One of the advantages of the presented method is also
that since it can be applied to all space fractional VONPDEs containing first-order
time derivative, the physical equations such as space fractional KdV, KdV-Burgers-
Kuramoto, Burgers-Huxley, Benjamin-Ono, Cahn-Hilliard, Chafee Infante, Harry
Dym, Rosenau-Hyman can be solved using the presented method.
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Table 1. The absolute errors for N = 104 at t = 0.2; 0.8 in Ex-
ample 1.

x m = 4 m = 6 m = 7 m = 9 m = 11
t = 0.2t = 0.7 t = 0.2 t = 0.7 t = 0.2 t = 0.7 t = 0.2 t = 0.7 t = 0.2 t = 0.7

0.13.10−6 10−5 6.10−9 2.10−83.10−109.10−107.10−143.10−138.10−15 10−14

0.24.10−6 2.10−5 8.10−9 2.10−87.10−112.10−102.10−135.10−137.10−15 10−14

0.3 10−4 4.10−5 8.10−9 2.10−84.10−106.10−102.10−13 10−12 3.10−152.10−14

0.47.10−6 3.10−5 10−8 5.10−98.10−11 2.10−9 10−14 6.10−132.10−152.10−14

0.52.10−8 5.10−67.10−107.10−84.10−10 3.10−9 3.10−134.10−132.10−155.10−14

0.67.10−6 10−5 10−8 10−7 6.10−11 10−9 9.10−143.10−122.10−156.10−14

0.78.10−6 2.10−5 7.10−9 7.10−83.10−102.10−113.10−132.10−12 10−14 5.10−14

0.82.10−6 9.10−6 7.10−9 5.10−9 10−10 2.10−9 5.10−133.10−133.10−144.10−14

0.96.10−6 4.10−5 10−9 2.10−83.10−10 2.10−9 10−12 2.10−122.10−153.10−14

Table 2. The absolute errors for u5(x, 0.5) in Example 2.

x N = 104 N = 105 N = 106 N = 107

0.25 10−6 10−7 10−8 10−9

0.5 2.10−6 2.−7 2.10−8 2.10−9

0.75 10−6 10−7 10−8 10−9

1.25 10−6 10−7 10−8 10−9

1.5 10−6 10−7 10−8 10−9

1.75 2.10−7 2.10−8 2.10−9 2.10−10
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Table 3. The absolute errors for u4(x, 0.5) in Example 3.

x N = 104 N = 105 N = 106 N = 107

0.25 10−6 10−7 10−8 10−9

0.5 10−6 10−7 10−8 10−9

0.75 10−6 10−7 10−8 10−9

1 7.10−7 7.−8 7.10−9 7.10−10

1.25 3.10−7 3.7.−8 3.10−9 3.10−10

1.5 2.10−8 2.10−9 2.10−10 2.10−11

1.75 10−7 10−8 10−9 10−10

2 4.10−8 4.10−9 4.10−10 4.10−11

2.25 10−7 10−8 10−9 10−10

2.5 3.10−7 3.10−8 3.10−9 3.10−10

2.75 3.10−7 3.10−8 3.10−9 3.10−10

Table 4. The absolute errors for m = 3 at t = 0.5; 0.8 in Example 4.

x N = 103 N = 104 N = 105 N = 106 N = 107

t = 0.5t = 0.8t = 0.5t = 0.8t = 0.5t = 0.8t = 0.5t = 0.8 t = 0.5 t = 0.8

0.1 10−5 2.10−5 2.10−6 2.10−6 2.10−7 2.10−7 2.10−8 2.10−8 2.10−9 2.10−9

0.23.10−5 3.10−5 3.10−6 3.10−6 3.10−7 3.10−7 3.10−8 3.10−8 3.10−9 3.10−9

0.33.10−5 3.10−5 3.10−6 3.10−6 3.10−7 3.10−7 3.10−8 3.10−8 3.10−9 3.10−9

0.43.10−5 4.10−5 3.10−6 4.10−6 3.10−7 4.10−7 3.10−8 4.10−8 3.10−9 4.10−9

0.53.10−5 4.10−5 3.10−6 4.10−6 3.10−7 4.10−7 3.10−8 4.10−8 3.10−9 4.10−9

0.63.10−5 3.10−5 3.10−6 3.10−6 3.10−7 3.10−7 3.10−8 3.10−8 3.10−9 3.10−9

0.72.10−5 3.10−5 2.10−6 3.10−6 2.10−7 3.10−7 2.10−8 3.10−8 2.10−9 3.10−9

0.82.10−5 2.10−5 2.10−6 2.10−6 2.10−7 2.10−7 2.10−8 2.10−8 2.10−9 2.10−9

0.98.10−6 10−5 8.10−7 10−6 8.10−8 10−7 8.10−9 10−8 8.10−10 10−9

Table 5. The approximate solution for u9(x, 0.1) in Example 6.

x Presented Method VIM GDTM RBFM QPSM CSCM

0.2 0.220285 0.220589 0.220348 0.219761 0.210917 0.220600

0.4 0.439894 0.440329 0.439957 0.438920 0.425837 0.440452

0.6 0.658735 0.659214 0.658707 0.657719 0.645538 0.659483

0.8 0.876818 0.877185 0.876585 0.875592 0.869671 0.877676

1 1.094120 1.094096 1.093587 1.092409 1.093920 1.094273
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Figure 1. The behavior of the approximate solution u3(x, t) for
N = 104, 0 < x < 1 and 0 < t < 1 in Example 4.

Figure 2. The behavior of the absolute error for u5(x, t) for N =
104, 0 < x < π

2 and 0 < t < 1 in Example 5.
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Figure 3. The approximate solution u5(x, t) for N = 104, 0 <
x < π

2 and 0 < t < 1 in Example 5.
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