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Abstract 
Background: Thalassemia is a genetic blood disorder caused by mutations in the α- or β-globin gene. Accurate and timely diagnosis is critical 

for appropriate management and genetic counseling. Traditional diagnostic techniques, such as PCR-based methods, often have limitations, 

including  the  inability  to  detect  all  genetic  variants,  long  processing  times,  and  high  costs.  Recent  advances  in  sequencing  technologies, 
specifically  Next-Generation  Sequencing  (NGS)  and  Third-Generation  Sequencing  (TGS),  offer  potential  improvements  for  thalassemia 

diagnosis by allowing comprehensive mutation detection, including single nucleotide variants (SNVs), insertions/deletions (indels), and copy 

number variations (CNVs). 
Aim: This study aims to review the current diagnostic approaches for thalassemia and evaluate the advantages of NGS and TGS for identifying 

complex genetic variations associated with both α- and β-thalassemia. 

Methods: A detailed review of conventional DNA analysis methods, such as Reverse Dot-Blot Analysis,  Gap-PCR, ARMS-PCR, Sanger 
Sequencing, and MLPA, was conducted. Additionally, the latest advancements in NGS and TGS technologies were discussed, focusing on their 

ability to simultaneously detect SNVs, indels, and SVs. Case studies of thalassemia diagnoses using NGS and TGS technologies, including 

detection of rare and complex mutations, were analyzed. 
Results:  The  study  found  that  NGS  and  TGS  technologies  significantly  improve  the  accuracy  of  thalassemia  diagnosis  by  enabling  the 

simultaneous detection of multiple mutation types. These technologies allow for faster and more comprehensive diagnoses, reduce the need for 

multiple diagnostic tests, and can detect complex mutations that are missed by conventional methods. Additionally, these methods require 
minimal DNA and offer reduced costs per sample through multiplexing. 

Conclusion: NGS and TGS are emerging as valuable tools for the diagnosis of thalassemia, providing significant improvements in the detection 

of  rare  and  complex  mutations.  While  conventional  methods  remain  important,  the  integration  of  NGS  and  TGS  into  routine  diagnostic 

workflows will enhance the accuracy and efficiency of thalassemia diagnosis and genetic counseling. 

Keywords: thalassemia, NGS, TGS, genetic mutations, diagnostic methods, α-globin, β-globin, genetic counseling, mutation detection.. 

 

1. Introduction 

Pediatricians Thomas B. Cooley and Pearl 

Lee of Detroit gave the first clinical description of 

thalassemia when they discovered a severe form of 

anemia in children that was later dubbed Cooley's 

anemia and was marked by splenomegaly and bone 

abnormalities [1]. Cooley's anemia with erythroblastic 

anemia was referred to as "thalassemia" by Whipple 

and Bradford in 1936 [2]. Since most of the afflicted 

people were of Mediterranean ancestry, the word 

comes from Greek and means "sea" and "blood." The 

disease was later discovered to be widespread in the 

Middle East, Southeast Asia (SEA), and the Indian 

subcontinent. 

Mutations that affect normal hemoglobin 

production—the main protein in red blood cells 

Egyptian Journal of Chemistry 
http://ejchem.journals.ekb.eg/ 

 

730 
 

mailto:malthomari@moh.gov.sa
https://ejchem.journals.ekb.eg/?_action=article&au=860198&_au=Moteab+Abdulmohsen++althomari
https://ejchem.journals.ekb.eg/article_396115.html#aff1
https://ejchem.journals.ekb.eg/?_action=article&au=954297&_au=Ibrahim+Taher++Bohassan
https://ejchem.journals.ekb.eg/article_396115.html#aff2
https://ejchem.journals.ekb.eg/?_action=article&au=954298&_au=zahra+hajji++bohassan
https://ejchem.journals.ekb.eg/article_396115.html#aff3
https://ejchem.journals.ekb.eg/?_action=article&au=954299&_au=Fayez+Taher++Alhajouji
https://ejchem.journals.ekb.eg/article_396115.html#aff4
https://ejchem.journals.ekb.eg/?_action=article&au=954300&_au=Ebtihal+Lafi+M++Alhejaili
https://ejchem.journals.ekb.eg/article_396115.html#aff5
https://ejchem.journals.ekb.eg/?_action=article&au=954301&_au=Talal+Jubayr++alharthi
https://ejchem.journals.ekb.eg/article_396115.html#aff6
https://ejchem.journals.ekb.eg/?_action=article&au=954302&_au=Ahmed+Mohammed+Abdu++Sofyani
https://ejchem.journals.ekb.eg/article_396115.html#aff7
https://ejchem.journals.ekb.eg/?_action=article&au=954303&_au=Maram+Saad++Aljohani
https://ejchem.journals.ekb.eg/article_396115.html#aff8
https://ejchem.journals.ekb.eg/?_action=article&au=954304&_au=Amal+Faisal+khalaf++Al+anzi
https://ejchem.journals.ekb.eg/article_396115.html#aff9
https://ejchem.journals.ekb.eg/?_action=article&au=954305&_au=Hassan+Mohammed+Ali++Hazazi
https://ejchem.journals.ekb.eg/article_396115.html#aff10
https://ejchem.journals.ekb.eg/?_action=article&au=954306&_au=Adel+Ahmed++Harthi
https://ejchem.journals.ekb.eg/article_396115.html#aff10
https://ejchem.journals.ekb.eg/?_action=article&au=954307&_au=Sajidah+Saeed+Abdrabuh++Aljayzani
https://ejchem.journals.ekb.eg/?_action=article&au=954307&_au=Sajidah+Saeed+Abdrabuh++Aljayzani
https://ejchem.journals.ekb.eg/article_396115.html#aff11
https://ejchem.journals.ekb.eg/?_action=article&au=954308&_au=Ahmed+Awadh+Mohammed++Albarqi
https://ejchem.journals.ekb.eg/article_396115.html#aff12
https://ejchem.journals.ekb.eg/?_action=article&au=954309&_au=Hassan+Mohammed+Ali++Nasseri
https://ejchem.journals.ekb.eg/article_396115.html#aff13
https://ejchem.journals.ekb.eg/?_action=article&au=954310&_au=Safar+saad++alamoudh
https://ejchem.journals.ekb.eg/article_396115.html#aff14


 Moteab Abdulmohsen Althomari et.al.. 

_____________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. Vol. 67, SI: M. R. Mahran (2024) 

 

1520 

(RBCs) that carries oxygen from the lungs to tissues—

cause thalassemia and other hereditary 

hemoglobinopathies. In order to maintain balanced 

production in erythropoietic cells, the synthesis of the 

two pairs of α- and β-globin chains that make up adult 

hemoglobin is closely coordinated [3]. An imbalance 

in α/β-globin occurs when one or both copies of the β-

globin gene are unable to create functional β-globin, 

causing α-globin to continue producing normally. This 

imbalance causes free α-globin chains to accumulate 

in homozygous forms, where they produce hazardous 

inclusions [4]. There are two primary types of 

thalassemia: α-thalassemia and β-thalassemia. There 

are four phenotypes for the former: trait, silent carrier, 

HbH illness, and Hb Bart's disease. In contrast, β-

thalassemia is divided into primary phenotypes, silent 

carriers (β++), carriers, and intermedia. People with a 

β-thalassemia mutation who have a normal β-globin 

allele and are clinically asymptomatic are referred to 

as having β-thalassemia mild or trait. Lifelong blood 

transfusions are necessary for survival in cases of 

severe anemia in infancy caused by β-thalassemia 

major [5]. This disorder causes intravascular 

hemolysis, erythroid precursor destruction, and 

inefficient erythropoiesis by aggregating extra α-

globin chains into inclusion bodies that harm RBC 

membranes [6]. With clinical characteristics ranging 

from modest to serious [7], β-thalassemia intermedia 

is a milder variant that frequently affects homozygotes 

or compound heterozygotes for β-thalassemia [8]. 

Rarely, co-inheritance of genetic abnormalities, such 

as a segmental duplication of the α-globin gene, can 

cause symptoms in carriers of β-thalassemia. This can 

worsen the α/β-globin imbalance and result in a more 

severe phenotype [9,10]. 

Transfusion-dependent thalassemia (TDT) 

and non-transfusion-dependent thalassemia (NTDT) 

are new classifications that have been developed due 

to the complexity of phenotypic classification in 

thalassemia, especially in cases with concurrent α- and 

β-thalassemia mutations [11]. While NTDT comprises 

individuals who do not require continuous 

transfusions, although occasional or periodic 

transfusions may be necessary in specific clinical 

conditions [13], TDT refers to patients who need 

lifelong frequent blood transfusions for survival [12]. 

Hemoglobin E/β-thalassemia (mild and moderate 

variants), α-thalassemia intermedia (HbH illness), 

hemoglobin S/β-thalassemia, hemoglobin C 

thalassemia, and β-thalassemia intermedia are the five 

different types of NTDT [11]. α- and β-thalassemia are 

linked to mutations in the HBA and HBB genes, 

respectively. With more than a thousand different 

variations, including single nucleotide variations 

(SNVs), insertions and deletions (indels), segmental 

deletions and duplications, and inversions, these 

changes are extremely diverse [14,15,16]. While 

segmental deletions are prevalent in α-thalassemia, 

SNVs are the primary cause of β-thalassemia. In 

addition to being less commonly linked to inversions 

or donor insertions, deletions in the HBB cluster can 

cause diseases like high persistence of fetal 

hemoglobin (HPFH), delta beta (δβ-thalassemia), or β-

thalassemia. Compared to the β-globin cluster, the α-

globin cluster has a higher frequency of segmental 

duplications. Because of the disease's diverse 

phenotypic manifestation, molecular diagnostics is 

vital for verifying diagnoses, directing treatment, and 

offering genetic counseling, making it a critical 

component of thalassemia prevention and therapeutic 

management. 

Conventional DNA Analysis 
Before PCR was invented, Southern transfer 

and hybridization or Southern-blot analysis [19,20], 

linkage analysis, and restriction fragment length 

polymorphism (RFLP) [17,18] were used to diagnose 

β-thalassemia. Despite being initially used in 1971 

[21], enzymatic DNA amplification was first used in 

clinical settings to diagnose sickle cell anemia in 

fetuses. Phosphorus-32 (^32P)-labeled 

oligonucleotide probes were used to increase the 

sensitivity of DNA hybridization using as little as 20 

ng of DNA, or less than 100 times the typical amount 

[22]. Later, this enzymatic amplification method was 

dubbed the polymerase chain reaction (PCR) [23], 

which allowed for the use of non-radioactive probes 

for dot-blot analysis, such as oligonucleotides tagged 

with horseradish peroxidase [24, 25]. 

 
Figure 1: Conventional DNA Analysis. 

Reverse Dot-Blot Analysis 
The development of reverse dot-blot analysis 

followed, in which sequence-specific oligonucleotide 

probes labeled with horseradish peroxidase were 

attached to a nylon membrane to allow for 

simultaneous hybridization with several sequences 

[26]. Numerous populations have used this modified 

reverse dot-blot technique [27-34]. Three steps are 

usually involved in reverse dot-blot hybridization: 

first, allele-specific oligonucleotide probes are 

immobilized onto a nylon membrane; next, a 

biotinylated primer is used to amplify the target DNA 

region; and finally, streptavidin-alkaline phosphatase 

and colorimetric substrates are used to hybridize the 

biotinylated DNA with the probe-bound membrane. 

 

Gap-PCR 
In deletional types of thalassemia, the extra 

segment is amplified using gap-PCR. It is possible to 

estimate the precise deletional types based on the size 

of the amplicons produced. In multiplex detection of 

common α-thalassemia deletions [35], as well as 

αααanti 3.7 and αααanti 4.2 triplications [36], gap-
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PCR is most frequently used. Additionally, HPFH, δβ-

thalassemia, and β-thalassemia are examples of 

deletional variants of both α- and β-thalassemia that 

can be detected by gap-PCR [37,38,39]. 

Amplification Refractory Mutation System 

(ARMS) or Allele-Specific Polymerase Chain 

Reaction (ASPCR) 
For the DNA investigation of sickle cell 

anemia, Wu and associates developed a 

straightforward allele-specific PCR (ASPCR) method 

that did not call for blot hybridization or enzyme 

digestion [40]. This idea was eventually developed 

into the amplification refractory mutation system 

(ARMS) [41], which matches the intended point 

mutation exactly by using allele-specific primers with 

a modified 3′ end. By stopping Taq polymerase from 

extending the primer, a mismatch at the fourth 

nucleotide at the 3′ end improves specificity. Primers 

that exactly match the wild-type sequence are used to 

determine homozygosity or heterozygosity, which 

allows ARMS to detect tiny indels and single 

nucleotide variants (SNVs). Allele-specific PCR is 

typically used in ARMS to amp up DNA fragments, 

and the amplified results are then subjected to gel 

electrophoresis. Many populations have used 

customized multiplex ARMS 

[33,41,42,43,44,45,46,47,48,49,50,51,52]. 

Sanger Sequencing 
The introduction of Sanger sequencing in 

1975 made it possible to identify certain DNA 

sequences [53]. Later, automated data capture [55] 

took the place of autoradiography, and fluorophore-

labeled dNTPs covalently coupled to oligonucleotide 

primers for DNA sequencing [54] replaced isotope 

labeling. The development of PCR made it possible to 

identify uncommon β-thalassemia mutations by 

sequencing particular DNA regions [56,57]. A major 

development in sequencing technologies occurred in 

1990 when capillary electrophoresis (CE) was used to 

distinguish fluorescently labeled DNA fragments [58]. 

Following targeted PCR, RFLP, and dot-blot 

investigations [29,33,50,51,59], this sequencing 

method emerged as the gold standard for identifying 

thalassemia mutations and examining copy number 

variations (CNVs). 

Multiplex Ligation Probe-Dependent Analysis 
First used to detect the Hepatitis C virus [60], 

ligation-dependent PCR was later patented in 1996 as 

multiplex ligation-dependent amplification (MLPA) 

[61]. Since then, MLPA has been used to identify a 

variety of illnesses, and MRC Holland (Amsterdam, 

The Netherlands) has increased its commercial uses in 

methylation status, tumor profiling, and inherited 

disorders. Two probes make up each MLPA probe set: 

one has the target-matching sequence linked to a 

universal primer, and the other has a stuffer sequence 

to produce a distinct amplicon following ligation, 

amplification, and hybridization. When probes are 

hybridized to target DNA, the probe signal can be 

amplified quantitatively, which is very helpful for 

identifying single nucleotide polymorphisms (SNPs). 

MLPA has been used to identify deletions in HBG1-

HBG2 [64], εγδβ-thalassemia [70,71], significant 

segmental duplications in β-thalassemia carriers 

[65,66,67,68,69], and α-thalassemia [63,64]. 

Advanced Molecular Techniques in Single-Assay 

DNA Analysis 

Two basic methods have been the mainstay 

of DNA analysis of Mendelian diseases, including 

thalassemia, for many years: finding rare mutations 

using Sanger sequencing and Multiplex Ligation-

dependent Probe Amplification (MLPA) and detecting 

common mutations using a variety of targeted DNA 

analysis techniques. Sanger sequencing and MLPA, 

respectively, are used in comprehensive DNA analysis 

to detect variations in the HBA, HBB, and HBD genes 

as well as CNV. The HBB gene frequently exhibits 

indels, necessitating the use of extra sequencing reads 

in order to handle the frameshifted, heterozygous 

mixed reads in Sanger sequencing. Homozygous 

variations require extra testing to rule out possible 

deletions on the opposite allele since they must be 

considered. The HBA2 gene has been amplified [35] 

to identify deletional thalassemia, and cluster-

spanning amplicons have been used [37,38,39] to 

verify that the other allele is normal. To rule out 

uncommon CNVs, homozygous deletions found by 

Gap-PCR must be validated by MLPA. In order to find 

CNVs, MLPA uses spanning probes to compare the 

sample to a known reference. Even while MLPA is 

usually easy to understand, its small number of probes 

prevents it from being a stand-alone method. Because 

the HBA and HBB gene clusters have a large number 

of accessible probes, long-range PCR can be used to 

validate deletions and duplications within these 

clusters. However, because there are so few MLPA 

probes outside of the HBA and HBB clusters, it is still 

difficult to identify breakpoints for bigger deletions 

and duplications. 

Next-Generation Sequencing (NGS) 

High-throughput sequencing was made 

possible by next-generation sequencing (NGS), a 

groundbreaking technology that surfaced two years 

after the Human Genome Project (HGP) was finished. 

Small DNA fragments (150–1000 bp) can be 

sequenced in parallel using NGS. These fragments can 

be utilized for specific techniques like methylation, 

RNA, or exome sequencing, or for whole-genome 

sequencing (WGS). Platform-specific sequencing 

chemistry varies; for example, Illumina sequencing 

employs a unique reversible terminator and clonal 

array creation for large-scale sequencing. This 

technique creates millions of DNA clusters by 

immobilizing adaptor and index-ligated DNA 

fragments on a flow cell and isothermally amplifying 

each fragment. Sequence by synthesis (SBS) is 

determined by illuminating these clusters and using 

the fluorescent signal that is released. While the 

emission wavelength and signal intensity aid in 

determining the base calls, the number of cycles 
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determines the read length.  

The origin of each sequencing read is ascertained by 

mapping the reads to a reference sequence prior to 

variant calling. The Scalable Nucleotide Alignment 

Program (SNAP) [76], Bowtie2 [74], minimap2 [75], 

Burrow-Wheeler Aligner-Maximal Exact Match 

(BWA-MEM) [73], and Genome Analysis Toolkit 

(GATK) [72] are popular mappers. By compressing, 

sorting, identifying duplicates, and indexing the 

output, SNAP streamlines the procedure. While some 

programs, like GATK [72], FreeBayes [77], and 

SAMtools [78], use Bayesian techniques to call 

variants and indels, others, such as DeepVariant, use 

deep neural networks [79], and Strelka2 uses a unique 

mixture-model-based approach [80].  

 
Figure 2: Biochemical and Imaging Markers of 

Thalassemia. 

However, short lengths and GC-content 

biases make it difficult to identify significant 

rearrangements and CNVs using NGS data. There are 

a number of techniques to get around these 

restrictions, including CNVkit, which employs bias 

correction using rolling median and circular binary 

segmentation (CBS) for CNV calling [84], DELLY, 

which combines split-read analysis with short- and 

long-range paired-end mapping [83], and Control-

FREEC, which uses a LASSO-based algorithm [82]. 

ExomeDepth, which combines likelihood values 

across multiple exons using a beta-binomial model and 

the hidden Markov model (HMM) [85], CoNIFER, 

which normalizes read depth using singular value 

decomposition (SVD) and generates z-scores for CNV 

detection [86], and FishingCNV, which uses principal 

component analysis (PCA) and CBS tests for CNV 

analysis [87], are tools specifically made for CNV 

analysis from exome sequencing data. A graphical 

software program called FishingCNV is also 

accessible.  

The interpretation of output text formats, 

which frequently lack genetic or clinical annotations, 

presents another difficulty in CNV analysis. In 

response, a number of interactive and dynamic CNV 

visualization tools have been created. For example, 

SG-ADVISER provides a web server and annotation 

pipeline that exposes information on genomic 

variations, including CNVs, both known and 

anticipated [91]. Similar to this, inCNV is a web-based 

program that creates annotations from Ensembl, the 

Database of Genomic Variants (DGV), ClinVar, and 

OMIM [90] and combines CNV results from several 

techniques. Additional tools that offer interactive 

representations of CNV data, such reconCNV and 

CNVxplorer, enable functional evaluations of CNVs 

in a clinical diagnostic setting [92][93]. R tools that 

visualize copy number and beta allele frequency data 

include KaryoploteR [94], Gviz [95], and 

CopyNumberPlots [96].  

Because the relevant clusters are tiny, targeted 

sequencing (TS) is a more economical method for 

analyzing thalassemia. In addition to detecting point 

mutations in the HBA, HBB, HBD, and HBG genes, a 

perfect TS strategy should incorporate uniform reads 

covering neighboring genes for breakpoint analysis 

and unusual CNV detection. It has been demonstrated 

that TS performs better than conventional DNA 

analysis techniques. For instance, simultaneous 

genotyping of globin genes and genetic modifiers 

utilizing the GATK variant calling pipeline and an 

internal CNV tool produced better results than 

standard screening techniques [97].  

Furthermore, TS showed genotype 

agreement with traditional PCR results when 

employing Ion Torrent to genotype the HBB gene and 

common deletional α-thalassemia variants (-α3.7 and 

-α4.2) [98]. Compared to conventional screening 

methods based on MCV, MCH, and HbA2 levels, a 

combination of gap-PCR for α-thalassemia deletions 

and NGS for variant genotyping of the HBA and HBB 

genes produced a greater sensitivity [99]. 

Additionally, prioritized CNV genotyping in the α-

globin cluster in conjunction with HBA and HBB 

variant analysis resulted in greater sensitivity and 

specificity [100,101]. RPKM analysis and a tailored 

targeted panel were used to characterize Inv-Del 

English V, a novel deletion in the HBB cluster [71]. 

Comparative genomic hybridization (CGH) and 

MLPA were used to identify a new variation of εγδβ-

thalassemia that NGS had overlooked [102], while 

CNV analysis was not described. It is still difficult to 

map short reads in highly homologous regions, 

including the HBA1, HBA2, HBG1, and HBG2 genes, 

despite advancements in NGS. A specialized 

bioinformatics pipeline called NGS4THAL was 

created to realign ambiguously mapped reads from 

hemoglobin gene clusters by combining several CNV 

finding algorithms in order to increase genotyping 

sensitivity and specificity [104]. Furthermore, phasing 
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of the entire genome is made possible by the use of 

long-read sequencing technologies, such as link-read 

sequencing, which also yield useful haplotype 

information. Preimplantation genetic testing for 

embryo selection in carriers of α-thalassemia has 

shown this [106]. 

Third-Generation Sequencing (TGS) 
Single-molecule sequencing (SMS), which is 

used in third-generation sequencing (TGS), avoids the 

need for previous clonal amplification of DNA by 

directly sequencing individual DNA or RNA strands 

inside a sample [107]. This method allows for 

continuous DNA synthesis by continuously 

incorporating fluorescently tagged 

deoxyribonucleoside triphosphates (dNTPs) into DNA 

polymerase [108]. By ligating adapters to double-

stranded DNA and converting it into circular single-

stranded DNA (SMRTbell), Pacific Biosciences 

(PacBio) uses single-molecule real-time (SMRT) 

isoform sequencing (Iso-Seq) to create a DNA library. 

A SMRT cell, a device with zero-mode waveguide 

(ZMW) wells, is then loaded with this library. A 

mounted polymerase in each ZMW well starts DNA 

replication and generates a fluorescent pulse that can 

be understood [109]. Circular Consensus Sequence 

(CCS) reads are produced by the Sequel II device. 

By repeatedly sequencing the same molecule, 

HiFi reads—highly accurate long reads—are 

produced, improving the accuracy of single nucleotide 

variation (SNV) calling [110].  

On the other hand, DNA molecules are translocated 

through tiny pores in nanopore-based SMS, which 

only permit single-stranded DNA to pass through in a 

rigid linear sequence [107]. As DNA fragments travel 

through protein nanopores implanted in a semi-

synthetic insulating membrane, Oxford Nanopore 

Technologies (ONT) sequencers pick up variations in 

ionic current. A DNA fragment, an adapter-bound 

motor protein, and a tethering molecule that binds the 

DNA to the membrane and nanopore make up a library 

[111,112]. The motor protein directs the bases through 

the pore and regulates the rate of DNA translocation. 

MinKNOWTM software (version 20.10, Oxford, UK) 

records the "squiggle," a constant current change 

caused by the DNA as it passes through the nanopore. 

A neural network approach is then used to convert this 

squiggle into nucleotides in real time utilizing 

graphical processing units (GPUs) [113]. Because a 

single read can span across exons, genes, 

pseudogenes, highly duplicated regions, and copy 

number variants (CNVs), long-read sequencing is very 

useful for identifying CNVs. The greater indel error 

rate of this approach, however, presents difficulties 

[114,115]. To solve these problems, a number of 

cutting-edge mistake correction techniques are 

available and can be used while optimizing pipelines 

[116]. Either before or after genome assembly, error 

repair can be carried out. Before refining or fixing the 

assembly, assemblers like Flye [117], wtdbg2 [118], 

Shasta [119], and CONSENT [120] use the minimap2 

pairwise aligner [75] to align the raw data. On the 

other hand, read errors are corrected before assembly 

using MECAT (an in-house aligner) [121], Canu [122] 

(using the MinHash Alignment Process (MHAP) 

aligner [123]), Falcon [124] (using the BLASR aligner 

[125]), and NECAT (an in-house assembly module) 

[126].  

It has been demonstrated that variant calling 

for ONT data is improved using deep neural network 

(DNN) techniques such PEPPER-Margin-

DeepVariant [127], NanoCaller [128], and Clair3-trio 

[129]. Similarly, GATK HaplotypeCaller [72,110], 

DeepVariant [79], and HELLO [130] have been 

shown to provide reliable variant calling for HiFi 

readings. For SMRT read analysis, PacBio's 

proprietary structural variant (SV) calling tool, pbsv, 

can be used. There are numerous CNV callers that 

support both ONT and SMRT reads. For CNV 

detection, Sniffles2 employs coverage-adaptive 

filtering, quick consensus sequence, and adaptive 

clustering (repeat-aware) [131]. While SVIM finds 

tandem duplications, interspersed duplications, and 

new element insertions [133], CuteSV2 uses heuristic 

signature purification and a specially made scanning 

line for CNV calling [132]. NanoVar's neural-

network-based approach finds SVs in whole-genome 

sequencing (WGS) data with low read depth [134]. 

While library preparation, sequencing of the prepared 

library, quality assessment, and read trimming are the 

first steps in both NGS and TGS procedures, the 

assembly process is different. SNV, indel, and SV 

calling must come after reading polishing, which can 

be done either before or after mapping in TGS. 

Targeted sequencing of certain amplicons to 

genotype common -thalassemia deletions (-3.7, -4.2, -

-SEA) and HBA and HBB single nucleotide variations 

(SNVs) using Circular Consensus Sequencing (CCS) 

showed perfect agreement with conventional PCR-

based genotyping techniques [135]. Later, this method 

was changed to make it possible to genotype other 

deletional types of thalassemia. Targeted SMRT 

sequencing was used in this improved approach, called 

Comprehensive Analysis of Thalassemia Alleles 

(CATSA), which was evaluated on 1,759 samples and 

effectively identified copy number variations (CNVs), 

insertions/deletions (indels), and common and unusual 

thalassemia SNVs [136]. Later, 100 samples with 

aberrant hematological parameters that had not 

yielded any useful results from traditional genetic 

diagnostic techniques such reverse dot blot (RDB) and 

gap-PCR (genotyping for -α3.7, -α4.2, and --SEA) 

were genotyped using CATSA. In these situations, ten 

uncommon mutations were found [137]. More 

recently, Li et al. showed that different deletional and 

non-deletional α-thalassemia mutations can produce 

HbH disease. They also showed that α-thalassemia 

with point mutations and indels in β-thalassemia can 

also cause HbH disease [138]. A number of significant 

mutations were identified through the use of MLPA 

and SMRT sequencing. These included a deletion of 
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27,311 bp in the α-globin gene cluster (--27.3/αα), a 

deletion of 16,079 bp in the HS-40 region, a 

rearrangement of -α3.7α1α2 on one allele, a deletion 

of 4924 bp in the HBG1-HBG2 β-globin gene cluster, 

and a deletion of 15.8 kb in α-thalassemia [63,64]. 

In non-invasive prenatal testing (NIPT), 12 

out of 13 fetal thalassemia statuses were successfully 

genotyped using a long-range 20 kb amplicon 

sequenced by Oxford Nanopore Technologies (ONT) 

and next-generation sequencing (NGS) to phase 

parental haplotypes for fetal inherited haplotypes via 

relative haplotype dosage (RHDO) analysis [139]. 

100% agreement for HBB genotyping was found in a 

small-scale research in Tanzania that compared ONT 

with Sanger sequencing [140]. The viability of ONT 

sequencing for preimplantation genetic testing (PGT) 

was illustrated by Liu et al.'s successful genotyping of 

homozygous --SEA deletion embryos using 

straightforward read density plots throughout the HBA 

locus [141]. 

Discussion 
DNA analysis has always been guided by 

differential diagnosis based on the patient's phenotypic 

and hematological characteristics. However, because 

of the limits of traditional DNA analysis tests and the 

variation in phenotypes, this approach may be unclear. 

Large deletions are found using gap-PCR or MLPA, 

whereas point mutations and insertions/deletions 

(indels) are usually found using ARMS-PCR or 

sequencing. ARMS-PCR and sequencing results for 

homozygous β-thalassemia may not always show a 

real homozygote, but rather a compound heterozygous 

state with a deletional or δβ-thalassemia mutation. To 

confirm the diagnosis in these situations, further 

testing with gap-PCR, MLPA, or cascade screening is 

necessary. Complex genotyping raises the risk of 

misdiagnosis, especially in situations like moderate β-

thalassemia/δ-thalassemia with normal HbA2 levels. 

These numerous diagnostic techniques increase 

laboratory turnaround time (TAT) and are labor-

intensive. Targeted genomic sequencing (TGS) and 

next-generation sequencing (NGS), on the other hand, 

have the benefit of concurrently identifying mutations 

in copy number variations (CNVs), indels, and single 

nucleotide variants (SNVs). This feature enhances the 

accuracy of DNA analysis and gives a better 

knowledge of the genotype–phenotype link by 

enabling more thorough genotyping of both α- and β-

thalassemia and uncommon variations.  

The fact that NGS and TGS can handle 

sample multiplexing and require less DNA input 

boosts throughput while lowering costs and 

turnaround times per sample. However, library 

preparation and sequencing, which need smaller 

amounts of DNA, are the main causes of the high costs 

connected with NGS and TGS. Notwithstanding its 

inability to match the resolution provided by NGS and 

TGS, conventional DNA analysis is more economical 

in comparison, mostly because it uses less expensive 

reagents (such as PCR master mix). The 

bioinformatics analysis, which might be technically 

complex, is one particular difficulty with these more 

recent technology. Haplotype phasing for short reads 

can be achieved using pangenomic mapping, even 

though TGS permits phasing during genome 

assembly. By combining whole-genome sequences 

from different people, a pangenome provides a more 

thorough depiction of genetic variation. The reference 

pangenome is anticipated to assist in mitigating the 

biases and inaccuracies associated with the single 

linear reference genome (GRCh38), which is being 

managed by the Human Pangenome Reference 

Consortium (HPRC) [142,143,144]. Graph-based 

pangenome mapping techniques and pipelines, 

however, are still developing and might not be widely 

available. Because NGS and TGS may concurrently 

detect SNVs, indels, and structural variations (SVs), 

they are superior to traditional DNA analysis. A single 

test needs uniform readings, long reads for haplotype 

phasing of homologous genes (like HBA and HBG), 

and breakpoint-spanning readings to directly detect 

common deletions and duplications because of the 

heterogeneity of mutations. The detection of 

heterogeneous thalassemia mutations will be further 

improved by advances in sequencing technologies, 

including Illumina's Complete Long-Read technology, 

the soon-to-be PacBio Revio long-read system, Onso 

short-read systems, and state-of-the-art error 

correcting techniques for TGS.  

Notwithstanding these benefits, the 

complexity and usability of NGS and TGS 

technologies make them unlikely to displace 

traditional screening and PCR-based genotyping. It 

can be challenging to diagnose complex thalassemia 

cases using NGS, such as those with the HKαα allele 

(which has both -α3.7 and αααanti4.2 deletions). 

Additionally, traditional PCR is still a useful method 

for confirming TGS and NGS findings. By using blood 

test results before DNA analysis, traditional 

differential diagnosis enables genotype-phenotype 

correlation and reduces sample handling errors. The 

primary advantage of NGS and TGS is their capacity 

to genotype α- and β-thalassemia at the same time, 

offering a comprehensive diagnosis of thalassemia and 

its genetic modifiers—a crucial component of genetic 

counseling. Sequencing data can also be saved for later 

analysis if needed. Nevertheless, start-up labs may 

find the infrastructure needed for these technologies—

which includes processing power, qualified 

bioinformatics technicians, well-established target 

sequencing (TS) methods, and efficient bioinformatics 

pipelines—to be expensive. These expenses should go 

down as sample throughput rises, increasing the 

technology's accessibility. A number of guidelines and 

suggestions have been established to enable the 

integration of these technologies into routine 

diagnostic practice in order to facilitate their clinical 

application [145-148]. 
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Conclusion: 

The rapid evolution of sequencing 

technologies has revolutionized the genetic diagnosis 

of thalassemia. Conventional DNA analysis methods, 

such as Reverse Dot-Blot Analysis, Gap-PCR, 

ARMS-PCR, Sanger sequencing, and Multiplex 

Ligation Probe-Dependent Analysis (MLPA), have 

been the cornerstone of thalassemia diagnosis for 

years. While these techniques have served their 

purpose, they have limitations, particularly in 

detecting complex mutations and variations like large 

deletions and rare variants, and they are often time-

consuming and labor-intensive. In contrast, Next-

Generation Sequencing (NGS) and Third-Generation 

Sequencing (TGS) have demonstrated significant 

potential in overcoming these limitations. NGS allows 

for the simultaneous detection of single nucleotide 

variants (SNVs), insertions and deletions (indels), and 

copy number variations (CNVs), providing a more 

comprehensive picture of the thalassemia genotype. 

The ability of TGS to generate long reads and facilitate 

haplotype phasing further enhances its potential to 

detect structural variations (SVs) and complex 

mutations, which are often missed by traditional 

methods. These advanced sequencing technologies 

offer several key advantages, including the ability to 

analyze multiple genetic markers simultaneously, 

reduce laboratory turn-around time (TAT), and 

minimize the DNA sample required. By increasing 

throughput and reducing costs per sample through 

multiplexing, NGS and TGS provide a more cost-

effective and efficient approach to genetic testing. 

Furthermore, these technologies have the potential to 

detect rare and complex mutations associated with 

both α- and β-thalassemia, improving the overall 

accuracy of diagnosis and enabling more personalized 

treatment strategies. Despite their promising 

capabilities, NGS and TGS technologies are not 

without challenges. The bioinformatics analysis 

required for interpreting sequencing data can be 

complex and requires skilled technicians. 

Additionally, the infrastructure needed for these 

technologies can be costly for start-up laboratories. 

Nevertheless, as sequencing technology continues to 

improve and costs decrease, NGS and TGS are 

expected to become more accessible and integrated 

into clinical practice. In conclusion, NGS and TGS are 

transforming the diagnostic landscape for thalassemia, 

offering unprecedented accuracy, efficiency, and the 

ability to detect complex mutations. These 

technologies complement traditional methods and, 

when combined with conventional PCR-based 

genotyping, can provide a comprehensive approach to 

thalassemia diagnosis and genetic counseling, 

ultimately improving patient outcomes. 
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