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1. Introduction

Truncated distributions are conditional distributions that results restricting the domain of original
distribution to a smaller one. Truncation in probability distributions may occur in many studies such as
reliability and life testing. A truncated distribution occurs when there is no ability to detect or record
the events above or below a set threshold or inside or outside a certain range such as the study of plant
growth, which cannot be studied before the growth of the plant over the soil, so that the truncated
distributions have an important role in various fields such as agriculture, medicine, engineering and
physics etc. When the restriction occurs on both sides of the range, it is called doubly truncated.
If occurrences are limited to values which lie above a given threshold, the upper (right) truncated
distribution arises, if occurrences are limited to values which lie below a given threshold, the lower
(left) truncated distribution is obtained.

The importance of truncated distributions appears when using some distributions that have negative
domain to estimate the reliability function (rf) that can’t be estimated by these distributions such as the
logistic, normal and Cauchy distributions.

It was noticed that some studies apply their results to all items of society, while it may be necessary
to apply these results to a specific group of society that has the characteristics required for the study, so
it may be a need to truncate a part of the society to produce a society that fits the subject of the study
where the unimportant part is truncated, especially if this part is outside the scope of the research or
outside the researcher interest. In this case, it is not certain that the truncated study society will have the
same distribution as the original society. Therefore, the researcher may need to find the probabilistic
probability of the truncated data, including the probability density and estimation of parameters for the
truncated distributions.

Truncation that occurs on both sides of the range is called doubly truncated. If X is a random
variable (rv) from a population with pdf, f

(
x; θ

)
where xϵ(−∞,∞) and θ is the vector of the parameters,

then the general form of the pdf and cdf of the doubly truncated distribution can be written, respectively,
as:

fDT

(
x; θ

)
=

f
(
x; θ

)
F

(
d; θ

)
− F(c; θ)

, c < x < d, θ > 0 , (1.1)

and

FDT

(
x; θ

)
=

F
(
x; θ

)
− F

(
c; θ

)
F

(
d; θ

)
− F

(
c; θ

) , c < x < d, θ > 0 , (1.2)

where c and d are the points of truncation.
Various truncated distributions have been introduced by several authors such as: Balakrishnan and

Aggarwala [14] studied the right truncated generalized half logistic distribution. Al-Yousef [10] studied
the doubly truncated Burr distribution. AL-Hussaini et al. [5] obtained the truncated Type I generalized
logistic distribution. Nadarajah [19] studied truncated inverted beta distributions. Ateya and AL-
Hussaini [12] introduced truncated version of generalized Cauchy distribution suggested by Rider [26]
in a special setting.

Raschke [24] proposed the estimator for the right truncation point of the truncated exponential
distribution. Singh et al. [31] discussed the truncated Lindley distributions called upper, lower and
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doubly truncated Lindley distribution. Okasha and Al-qanoo [23] presented inference on the two-
parameter doubly truncated gamma distribution. Salih and Taqi [27] discussed the two parameters
truncated logistic distribution. Nurminen et al. [22] discussed the technical report gives analytical
formulae for the mean and covariance matrix of a multivariate normal distribution with one component
truncated from both below and above.

Kizilersu et al. [16] proposed the goodness-of-fit testing for the left-truncated two-parameter
Weibull distributions with known truncation point. Najarzadegan et al. [20] studied the family of
distributions as an alternative beta-G distribution with flexible hazard rate and greater reliability which
is called the truncated Weibull-G distribution. Aydin [13] proposed the five-parameter doubly truncated
exponentiated inverse Weibull distribution with known truncation points. Al-Omari [9] introduced the
acceptance sampling plan problem based on truncated life tests for Sushila distribution.

Al-Marzouki [6] introduced the truncated Weibull power Lomax distribution. Akbarinasab et al.
[4] studied the truncated log-logistic family of distributions and presented four baseline models of this
family to generate special models which are exponential, Weibull, gamma and generalized exponential
distributions.

Khalaf and Al-Kadim [15] presented the truncated Rayleigh Pareto distribution. Abid and Jani
[1] proposed the properties of doubly truncated generalized gamma distribution and doubly truncated
generalized inverse Weibull distribution. Al-Noor and Hadi [7] considered properties and applications
of the truncated exponential Marshall Olkin Weibull distribution.

Al-Noor and Hilal [8] presented a truncated distribution as a sub-model with three parameters called
truncated exponential Topp Leone exponential distribution. Neamah and Qasim [21] introduced the
left-truncated Gumbel distribution within the period (0,∞). Abid and Khadhim [2] studied the doubly
truncated exponentiated inverted gamma distribution. Shrahili and Elbatal [30] introduced the trun-
cated Cauchy power odd Fréchet-G family of distributions. Turjoman and Neamah [34] derived three
parameters of truncated distribution, called doubly truncated Weibull Pareto distribution.

Tahir and Cordeiro [32] proposed the complementary exponentiated-G Poisson family of distribu-
tions with the following probability density function (pdf):

f
(
x;α, λ, ξ

)
=
λαg

(
x; ξ

)
Gλ−1

(
x; ξ

)
e
α
[
G
(
x;ξ

)]2

eα − 1
, xϵR, α, λ, ξ>0. (1.3)

Ahmed [3] introduced the Zubair- Generalized (Z-G) family of distributions as a special case of the
complementary exponentiated-G Poisson family of distributions when λ = 2 in (1.3). Thus, the pdf,
cumulative distribution function (cdf) and rf of Z-G family of distributions are given, respectively, by:

f
(
x;α, ξ

)
=

2αg(x; ξ)G(x; ξ)eα
[
G
(
x;ξ

)]2

eα − 1
, α, ξ > 0, xϵR , (1.4)

F
(
x;α, ξ

)
=

eα
[
G
(
x;ξ

)]2

− 1
eα − 1

, α, ξ > 0 , x ϵ R, (1.5)

and

R
(
x;α, ξ

)
=

eα − eα
[
G
(
x;ξ

)]2

eα − 1
, α, ξ > 0, xϵR, (1.6)
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where G
(
x; ξ

)
and g

(
x; ξ

)
are the cdf and pdf of the baseline model.

This paper aims to introduce a new family of truncated distributions with flexible hazard rate func-
tion (hrf) and high reliability which is named truncated Zubair– Generalized (TZ-G) family with trun-
cated Zubair-Weibull (TZ-W) distribution as a sub-model of this family. The new family represents a
wider range of behaviors in real-life data compared to existing families, particularly situations involve
truncated data.

Some reasons of using TZ-G family of distributions are:

• The TZ-G family is highly flexible in modeling various types of data, including skewed, heavy-
tailed, and multimodal data.

• The TZ-G family often extends or generalizes existing distributions, allowing for more robust
modeling. It can have different shapes for hrfs and pdfs, making it useful in survival analysis and
reliability testing.

• These distributions often provide better goodness-of-fit measures (such as AIC, BIC) compared
to other models when applied to real-life data sets. These distributions are preferred for modeling
complex data.

• The TZ-G family is used in various applications, including risk analysis, lifetime modeling, re-
liability testing, and failure time data, especially where other distributions might not provide an
acceptable fit.

• Many models within the TZ-G family provide better estimation methods such as maximum like-
lihood (ML) and Bayesian for the unknown parameters, which can improve the performance of
inferential methods and prediction.

The advantages of using the TZ-G family: (1.1) it allows for a wide range of shapes for the pdf and
hrf. This flexibility makes it flexible for modeling various real-life data, particularly data with unique
skewness or kurtosis properties that cannot be easily represented by traditional distributions. It can
include both light-tailed and heavy-tailed distributions. (1.2) TZ-G family offers improved modeling
of extreme values or outliers. This makes it useful in reliability studies and risk analysis where tail
behavior (either high or low) is important. (1.3) The TZ-G family is a strong competitor for use in
both real-world and simulated data sets because of its flexibility to achieve a closer fit to various types
of data, through comparing measures of information criteria. (1.4) The TZ-G family includes several
sub-models (e.g. TZ-W), each of which adds specific characteristics to the overall family, allowing
researchers to select models that best fit their data without having to develop entirely new models.
(1.5) The TZ-G family can be applied across different fields, such as reliability engineering, survival
analysis and actuarial science. Its ability to model both increasing and decreasing hazard rate functions
makes it flexible for analyzing distinct real-world phenomena like lifetimes of mechanical components
or biological survival times.

The TZ-G family and its sub-models can effectively be utilized for both theoretical and practical
applications across various fields. It can be employed for theoretical applications through statistical
modeling, estimation theory and simulation studies to explore the properties of estimators, hypothesis
testing and model fitting. It can be used for practical applications in economics, finance, engineering
and quality control, biostatistics and environmental science.
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This paper targets to fill the following gaps:

• The TZ-G family and TZ-W distribution as a sub-model perform effectively in modeling real-
world data with truncation due to several key features that distinguish it from traditional dis-
tributions since truncation allows the TZ-W distribution to manage extreme values better than
traditional Weibull or Zubair-generalized models.

• The TZ-G family and TZ-W distribution as a sub-model exhibit greater shape flexibility compared
to its traditional distributions, allowing for a variety of hrfs including increasing, decreasing, or
bathtub-shaped hrfs.

• Moreover, empirical studies show that the TZ-G family and TZ-W distribution as a sub-model
provide a better fit for truncated data than traditional distributions, especially when comparing
measures of information criteria. The TZ-W distribution’s ability to handle truncation makes it
ideal for analyzing censored or truncated datasets, commonly found in survival analysis, reliabil-
ity testing, and medical studies.

This paper is arranged as follows: The doubly TZ-G (DTZ-G) family of distributions is presented
in Section 2. In Section 3, some statistical properties of DTZ-G family of distributions are studied.
The ML method is used to estimate the unknown parameters of DTZ-G family of distributions in
Section 4. In Section 5, the DTZ-Weibull (DTZ-W) distribution and several sub models are proposed.
In Section 6, some statistical properties of the DTZ-W distribution are derived. In Section 7, the ML
estimator of the unknown parameters, rf and hrf of the DTZ-W distribution based on a complete sample
are obtained. A simulation study is conducted to evaluate the performance of the ML estimates and
concluding remarks in Section 8. Two life-time real data sets are presented in Section 9.

2. The Doubly Truncated Zubair-G Family of Distributions

Let X is a rv having the DTZ-G family of distributions with parameter vector ψ = (α, ξ, c, d), and
taking values in the interval [c, d]. Substituting (1.4), (1.5) in (1.1), then the pdf of the DTZ-G family
is

fTZG

(
x;ψ

)
=

2αg(x; ξ)G(x; ξ)eα
[
G(x;ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2 , c < x < d, ψ > 0 . (2.1)

The cdf, rf, hrf, reversed hrf (rhrf) and cumulative hrf (chrf) of the DTZ-G family of distributions are
given, respectively, by:

FTZG

(
x;ψ

)
=

eα
[
G(x;ξ)

]2

− eα
[
G(c;ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2 , c < x < d, ψ > 0, (2.2)

RTZG

(
x;ψ

)
= 1 − FTZG

(
x;ψ

)
=

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
x;ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2 , c < x < d, ψ > 0, (2.3)

hTZG

(
x;ψ

)
=

fTZG

(
x;ψ

)
RTZG

(
x;ψ

) = 2αg(x; ξ)G(x; ξ)eα
[
G(x;ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(x;ξ)

]2 , c < x < d, ψ > 0 , (2.4)
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rTZG

(
x;ψ

)
=

fTZG

(
x;ψ

)
FTZG

(
x;ψ

) = 2αg(x; ξ)G(x; ξ)eα
[
G(x;ξ)

]2

eα
[
G(x;ξ)

]2

− eα
[
G(c;ξ)

]2 , c < x < d, ψ > 0, (2.5)

and

HTZG

(
x;ψ

)
= − lnRTZG

(
x;ψ

)
= − ln

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
x;ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

 , c < x < d, ψ > 0. (2.6)

3. Some Statistical Properties of Doubly Truncated Zubair-G Family of Distributions

This section presented some statistical properties of the DTZ-G family of truncated distributions
such as: the quantile function, median, central and non-central moments, order statistics, entropy
measures, mean residual life (MRL), mean past lifetime (MPL) and mean time to failure (MTTF).

3.1. Quantile and median

The uth quantile function, say xu = Q(u) for a continuous rv X has cdf, F(x), is defined as:

xuTZG = F−1
TZG (u) = G−1

TZG


ln{u

[
eα

[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2]
+ eα

[
G
(
c;ξ

)]2

}

α


1
2

. (3.1)

The median can be obtained by substituting u = 0.5 in (3.1) as follows:

x0.5TZG = G−1
TZG


ln{0.5

[
eα

[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2]
+ eα

[
G
(
c;ξ

)]2

}

α


1
2

. (3.2)

3.2. Moments

3.2.1. Non-central moments

The rth non-central moment of the DTZ-G family of distributions is given by:

µ‵rTZG
= E (Xr) =

∫
x

xr fTZG

(
x;ψ

)
dx

=
2α

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

∫
x

xrg
(
x; ξ

)
G

(
x; ξ

)
eα

[
G
(
x;ξ

)]2

dx, r = 1, 2, 3, . . . .
(3.3)

The mean of the DTZ-G family of distributions is given by:

µ‵1TZG
≡ µ =

2α

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

∫
x

xg
(
x; ξ

)
G

(
x; ξ

)
eα

[
G
(
x;ξ

)]2

dx. (3.4)

The second non-central moment of the DTZ-G family of distributions is given by:

µ‵2TZG
=

2α

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

∫
x

x2g
(
x; ξ

)
G

(
x; ξ

)
eα

[
G
(
x;ξ

)]2

dx. (3.5)
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The variance of the DTZ-G family of distributions can be defined as

VTZG (X) =
2α

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

∫
x

x2g
(
x; ξ

)
G

(
x; ξ

)
eα

[
G
(
x;ξ

)]2

dx

−

 2α

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

∫
x

xg
(
x; ξ

)
G

(
x; ξ

)
eα

[
G
(
x;ξ

)]2

dx

2

.

(3.6)

3.2.2. Central moments

The central moments of the DTZ-G family of distributions can be defined as:

µrTZG = E(x − µ)r

=

r∑
j=0

(
r
j

)
(−1) j(µ) j `µr− j, r = 1, 2, 3, . . . .

(3.7)

3.3. Order statistics

Let x1, x2, . . . , xn be a random sample of size n obtained from the DTZ-G family of distributions
with fTZG

(
x;ψ

)
and FTZG

(
x;ψ

)
. Suppose x(1) ≤ x(2) ≤ . . . ≤ x(n) then, the pdf of the rth order statistics

is given by

fr:nTZG

(
x;ψ

)
=

n!
(r − 1)! (n − r)!

fTZG

(
x;ψ

) [
FTZG

(
x;ψ

)]r−1[
1 − FTZG

(
x;ψ

)]n−r
, c < x(r) < d, (3.8)

where fTZG

(
x;ψ

)
and FTZG

(
x;ψ

)
are the pdf and cdf of the DTZ-G family of distributions, then the

pdf of the rth order statistics of the DTZ-G family of distributions is

fr:nTZG

(
x;ψ

)
=

n!
(r − 1)! (n − r)!

2αg
(
x(r); ξ

)
G

(
x(r); ξ

)
eα

[
G
(
x(r);ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

×

eα
[
G(x(r);ξ)

]2

− eα
[
G(c;ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2


r−1eα

[
G(d;ξ)

]2

− eα
[
G(x(r);ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2


n−r

, c < x(r) < d.

(3.9)

Special cases
When r = 1, then the pdf of the smallest order statistics can be written as follows:

f1:nTZG

(
x;ψ

)
= n fTZG

(
x;ψ

) [
1 − FTZG

(
x;ψ

)]n−1

= n

2αg
(
x(1); ξ

)
G

(
x(1); ξ

)
eα

[
G
(
x(1);ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2


eα

[
G
(
d;ξ

)]2

− eα
[
G
(
x(1);ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2


n−1

, c < x(1) < d.
(3.10)

When r = n, then the pdf of the largest order statistics can be written as follows:

fn:nTZG

(
x;ψ

)
= n fTZG

(
x;ψ

) [
FTZG

(
x;ψ

)]n−1

= n

2αg
(
x(n); ξ

)
G

(
x(n); ξ

)
eα

[
G
(
x;ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2


eα

[
G(x(n);ξ)

]2

− eα
[
G(c;ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2


n−1

, c < x(n) < d.
(3.11)
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3.4. Entropy measures

Rényi entropy
Entropy usually measures variation or uncertainty of a rv X. Also, it measures the randomness of

rv. Entropy is extensively applied in physics and molecular imaging of tumors. The Rényi entropy of
order δ, where δ > 0 and δ , 1 [see Rényi [25]]. It can be defined as

EnδTZG (x) =
1

(1 − δ)
ln

(∫ ∞

0

[
fTZG(x;ψ)

]δ
dx

)
, δ > 0 and δ , 1. (3.12)

When X ∼ DTZ-G
(
ψ
)

family of distributions, Rényi entropy can be expressed as

EnδTZG (x) =
1

(1 − δ)
ln



∫ d

c

2αg(x; ξ)G(x; ξ)eα
[
G(x;ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2


δ dx

 , δ > 0 and δ , 1. (3.13)

Shannon entropy
Shannon entropy is a concept introduced by Shannon [29]. The Shannon entropy is a special case

of the Rényi entropy when δ→1. Mathematically, Shannon entropy, H is defined as an expectation of
E[−ln( fTZG

(
x;ψ

)
)] , which is equivalent to,

HTZG = −

∫ ∞

0
fTZG

(
x;ψ

)
ln fTZG

(
x;ψ

)
dx. (3.14)

If X∼ DTZ-G
(
ψ
)

family of truncated distributions, then the Shannon entropy is

HTZG = −

∫ d

c


2αg

(
x; ξ

)
G

(
x; ξ

)
eα

[
G
(
x;ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

 ln

2αg
(
x; ξ

)
G

(
x; ξ

)
eα

[
G
(
x;ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2


dx. (3.15)

Tsallis entropy
The Tsallis entropy was introduced by Tsallis [33]. Tsallis entropy is a generalization of the stan-

dard Boltzmann-Gibbs entropy. The Tsallis entropy is defined by

TρTZG
(x) =

(
1

ρ − 1

) (
1 −

∫ ∞

0

[
fTZG(x;ψ)

]ρ)
dx, ρ > 0 and ρ , 1. (3.16)

If X∼ DTZ-G
(
ψ
)

family of truncated distributions, then the Tsallis entropy is given by

TρTZG
(x) =

(
1

ρ − 1

) 1 −
∫ d

c

2αg
(
x; ξ

)
G

(
x; ξ

)
eα

[
G
(
x;ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

dx

 . (3.17)

3.5. Mean residual life, Mean past lifetime and Mean time to failure

The MRL is the expected remaining life, X− t, given that the item has survived to time t. Let X be a
non-negative rv (usually representing the lifetime of some engineering or biological component) with
rf; R (t) = P (x ≥ t) .
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If E (X) < ∞, the MRL of X is defined by

mTZG (t) = E (X − t| X ≥ t) =
1

RTZG(t;ψ)

∫ d

t
RTZG

(
x;ψ

)
dx

=
eα

[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(t;ξ)

]2

∫ d

t

eα
[
G(d;ξ)

]2

− eα
[
G(x;ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2

dx.

(3.18)

The MPL in a real-life situation, where systems often are not monitored continuously, one might be
interested in getting inference more about the history of the system, e.g. when the individual compo-
nents have failed. Assume that a component with lifetime X has failed at or some time before t, t > 0.
Consider the conditional rv, t − X|X ≤ t. This conditional rv shows, in fact, the time elapsed from
the failure of the component given that its lifetime is less than or equal to t. Hence, the MPL of the
component denoted by m∗ (t), is defined by

m∗TZG (t) = E (t − X| X ≤ t) =

∫ t

c
FTZG(x;ψ)dx

FTZG(t;ψ)

=
eα

[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2

eα
[
G(t;ξ)

]2

− eα
[
G(c;ξ)

]2

∫ t

c

eα
[
G(x;ξ)

]2

− eα
[
G(c;ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2 dx,

(3.19)

[see Asadi [11]].
MTTF is the expected (average) time that the system is likely to operate successfully before a failure

occurs. [see Shafiq et al. [28]]. The MTTF of the DTZ-G family of distributions is as follows:

MTT FTZG =

∫ d

c
RTZG

(
t;ψ

)
dt =

∫ d

c

eα
[
G(d;ξ)

]2

− eα
[
G(t;ξ)

]2

eα
[
G(d;ξ)

]2

− eα
[
G(c;ξ)

]2 dt. (3.20)

4. Maximum likelihood estimation for the doubly truncated Zubair-G family

Let x1, x2, . . . , xn be a random sample from the DTZ-G
(
ψ
)

with pdf fTZG

(
x;ψ

)
. The likelihood

function of the DTZ-G
(
ψ
)

is

LTZG

(
ψ; x

)
∝

n∏
i=1

fTZG

(
x(i), ψ

)
=

n∏
i=1

2αg
(
x(i); ξ

)
G

(
x(i); ξ

)
eα

[
G
(
x(i);ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2 ,

where ψ = α, ξ, c and d.
The log likelihood function can be rewritten as
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lTZG ≡ lnLTZG

(
ψ; x

)
= ln

n∏
i=1

2αg
(
x(i); ξ

)
G

(
x(i); ξ

)
eα

[
G
(
x(i);ξ

)]2

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

=

n∑
i=1

ln
[
2αg

(
x(i); ξ

)
G

(
x(i); ξ

)
eα

[
G
(
x(i);ξ

)]2]
− nln

[
[eα

[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2]
=

n∑
i=1

{
ln (2) + ln(α) + ln

[
g
(
x(i); ξ

)]
+ ln

[
G

(
x(i); ξ

)]
+ α

[
G

(
x(i); ξ

)]2
}

− nln
[
eα

[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2]
.

(4.1)

The ML estimators of the truncation points c and d are ĉML = arg max LTZG

(
ψ; x

)
= x(1), and

d̂ML = arg max LTZG

(
ψ; x

)
= x(n). The ML estimators of the parameters α and ξ can be obtained by

solving the following log-likelihood equations:

∂lTZG

∂α
=

n∑
i=1

{
1
α
+

[
G

(
x(i); ξ

)]2
}
−

n

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

{
eα

[
G
(
d;ξ

)]2[
G

(
d; ξ

)]2
− eα

[
G
(
c;ξ

)]2[
G

(
c; ξ

)]2
}
.

(4.2)

∂lTZG

∂ξ
=

n∑
i=1

g‵
(
x(i); ξ

)
g
(
x(i); ξ

) + G‵
(
x(i); ξ

)
G

(
x(i); ξ

) + 2α
[
G

(
x(i); ξ

)] [
G‵

(
x(i); ξ

)]
−

n

eα
[
G
(
d;ξ

)]2

− eα
[
G
(
c;ξ

)]2

{
2α

[
G

(
d; ξ

)] [
G‵

(
d; ξ

)]
eα

[
G
(
d;ξ

)]2

− 2α
[
G

(
c; ξ

)] [
G‵

(
c; ξ

)]
eα

[
G
(
c;ξ

)]2}
(4.3)

By equating these partial derivatives in (4.2) and (4.3) with zeros and solving numerically, hence
the ML estimators of α and ξ can be obtained. One can apply the invariance property of the ML
estimators to obtain the ML estimators of the rf and hrf by replacing the parameters ψ = (α, ξ) in (2.3)

and (2.4) with their ML estimators. Then the ML estimators of RTZG

(
x;ψ

)
and hTZG

(
x;ψ

)
are given,

respectively, by:

R̂TZG

(
x; ψ̂

)
=

eα̂
[
G
(
d̂;̂ξ

)]2

− eα̂
[
G
(
x;̂ξ

)]2

eα̂
[
G
(
d̂;̂ξ

)]2

− eα̂
[
G
(
ĉ;̂ξ

)]2 , ĉ < x < d̂, (4.4)

and

ĥTZG

(
x; ψ̂

)
=

2α̂g(x; ξ̂)G(x; ξ̂)eα̂
[
G(x;̂ξ)

]2

eα̂
[
G(d̂;̂ξ)

]2

− eα̂
[
G(x;̂ξ)

]2 , ĉ < x < d̂. (4.5)

5. Doubly Truncated Zubair-Weibull Distribution

A special sub-model of the DTZ-G family of truncated distributions, called DTZ-Weibull (DTZ-W)
distribution will be considered and studied. The cdf and pdf of the Weibull distribution are given by

G
(
x; ξ

)
= 1 − e−γxθ , x > 0, ξ > 0 , (5.1)
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and

g
(
x; ξ

)
= θγxθ−1 e−γxθ , x > 0, ξ > 0, (5.2)

where ξ = (θ, γ) .

Then, the pdf and cdf of the DTZ-W distribution can be expressed as given below. The following
functions are the main characteristic functions of the DTZ-W distribution.

fTZW

(
x;ψ

)
=

2αθγxθ−1e−γxθ(1 − e−γxθ)eα(1−e−γxθ )
2

eα(1−e−γdθ )
2

− eα(1−e−γcθ )
2 , 0 < c < x < d < ∞, ψ > 0, (5.3)

and

FTZW

(
x;ψ

)
=

eα(1−e−γxθ )
2

− eα(1−e−γcθ )
2

eα(1−e−γdθ )
2

− eα(1−e−γcθ )
2 , 0 < c < x < d < ∞, ψ > 0. (5.4)

where ψ =
(
α, ξ, c, d

)
and ξ = (θ, γ) .

The rf, hrf, rhrf and chrf of the DTZ-W distribution are given, respectively, by:

RTZW

(
x;ψ

)
=

eα
(
1−e−γdθ

)2

− eα
(
1−e−γxθ

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2 , 0 < c < x < d < ∞, ψ > 0, (5.5)

hTZW

(
x;ψ

)
=

2αθγxθ−1e−γxθ(1 − e−γxθ)eα(1−e−γxθ )
2

eα(1−e−γdθ )
2

− eα(1−e−γxθ )
2 , 0 < c < x < d < ∞, ψ > 0, (5.6)

rTZW

(
x;ψ

)
=

2αθγxθ−1e−γxθ(1 − e−γxθ)eα(1−e−γxθ )
2

eα(1−e−γxθ )
2

− eα(1−e−γcθ )
2 , 0 < c < x < d < ∞, ψ > 0, (5.7)

and

HTZW

(
x;ψ

)
= −ln


eα

(
1−e−γdθ

)2

− eα
(
1−e−γxθ

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

 , 0 < c < x < d < ∞, ψ > 0. (5.8)

Some important special sub-models of DTZ-W distribution are given in Table 1.
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Table 1. Special sub-models of the DTZ-W distribution

Parameter Model pdf

γ = 1 Doubly truncated f1 (x;α, θ) =
2αθxθ−1e−xθ

(
1−e−xθ

)
e
α

(
1−e−xθ

)2

e
α
(
1−e−dθ

)2
−e

α
(
1−e−cθ

)2 , c < x < d,

Zubair-standard Weibull α, θ > 0.

θ = 1 Doubly truncated f2 (x;α, γ) = 2αγe−γx(1−e−γx)eα(1−e−γx)2

eα(1−e−γd)2
−eα(1−e−γc)2

, c < x < d,

Zubair-exponential α, γ, > 0.

θ = 2 Doubly truncated f3 (x;α, γ) =
4αγxe−γx2

(
1−e−γx2

)
e
α

(
1−e−γx2

)2

e
α
(
1−e−γd2 )2

−e
α
(
1−e−γc2 )2 , c < x < d,

Zubair-Rayleigh α, γ > 0.

θ = 1 and Doubly truncated f4 (x;α) = 2αe−x(1−e−x)eα(1−e−x)2

eα(1−e−d )2−eα(1−e−c)2
, c < x < d,

γ = 1 Zubair-standard exponential α > 0.

θ = 2 and Doubly truncated f5 (x;α) = 4αxe−x2
(1−e−x2

)eα(1−e−x2
)
2

eα(1−e−d2 )
2
−eα(1−e−c2 )

2 , c < x < d,

γ = 1 Zubair-standard Rayleigh α > 0.

c > 0 and Left truncated f6

(
x;ψ

)
=

2αθγxθ−1e−γxθ
(
1−e−γxθ

)
e
α

(
1−e−γxθ

)2

eα−e
α
(
1−e−γcθ

)2 , c < x < ∞,

d → ∞ Zubair-Weibull α, ξ > 0.

c > 0, Left truncated f7 (x;α, θ) =
2αθxθ−1e−xθ

(
1−e−xθ

)
e
α

(
1−e−xθ

)2

eα−e
α
(
1−e−cθ

)2 , c < x < ∞,

d → ∞ and Zubair-Standard
γ = 1 Weibull α, θ > 0.

c > 0, Left truncated f8 (x;α, γ) = 2αγe−γx(1−e−γx)eα(1−e−γx)2

eα−eα(1−e−γc)2 , c < x < ∞,
d → ∞ and Zubair-exponential
θ = 1 α, γ > 0.

c > 0, Left truncated f9 (x;α, γ) =
4αγxe−γx2

(
1−e−γx2

)
e
α

(
1−e−γx2

)2

eα−e
α
(
1−e−γc2 )2 , c < x < ∞,

d → ∞ and Zubair-Rayleigh
θ = 2 α, γ > 0.
c > 0, Left truncated

d → ∞, Zubair-Standard f10 (x;α) = 2αe−x(1−e−x)eα(1−e−x)2

eα−eα(1−e−c)2
, c < x < ∞,

θ = 1 and exponential
γ = 1 α > 0.
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c > 0, Left truncated

d → ∞, Zubair-Standard f11 (x;α) = 4αxe−x2
(1−e−x2

)eα(1−e−x2
)
2

eα−eα(1−e−c2 )
2 , c < x < ∞,

θ = 2 and Rayleigh
γ = 1 α > 0.

c = 0 and Right truncated f12

(
x;ψ

)
=

2αθγxθ−1e−γxθ
(
1−e−γxθ

)
e
α

(
1−e−γxθ

)2

e
α
(
1−e−γdθ

)2
−1

, 0 < x < d,

d < ∞ Zubair-Weibull α, ξ > 0.

c = 0, Right truncated f13 (x;α, θ) =
2αθxθ−1e−xθ

(
1−e−xθ

)
e
α

(
1−e−xθ

)2

e
α
(
1−e−dθ

)2
−1

, 0 < x < d,

d < ∞ and Zubair-Standard
γ = 1 Weibull α, θ > 0.

c = 0, Right truncated f14 (x;α, γ) = 2αγe−γx(1−e−γx)eα(1−e−γx)2

eα(1−e−γd)2
−1

, 0 < x < d,

d < ∞ and Zubair-expontial
θ = 1 α, γ > 0.

c = 0, Right truncated f15 (x;α, γ) =
4αγxe−γx2

(
1−e−γx2

)
e
α

(
1−e−γx2

)2

e
α
(
1−e−γd2 )2

−1

, 0 < x < d,

d < ∞ and Zubair-Rayleigh
θ = 2 α, γ > 0.
c = 0, d < ∞, Right truncated

θ = 1 and Zubair-Standard f16 (x;α) = 2αe−x(1−e−x)eα(1−e−x)2

eα(1−e−d )2−1
, 0 < x < d, α > 0.

γ = 1 exponential
c = 0, d < ∞, Right truncated

θ = 2 and Zubair-Standard f17 (x;α) = 4αxe−x2
(1−e−x2

)eα(1−e−x2
)
2

eα(1−e−d2 )
2
−1

, 0 < x < d, α > 0.

γ = 1 Rayleigh

5.1. Graphical description

The plots of the pdf and hrf of the DTZ-W distribution for different values of the parameters are
given in Figures 1 and 2, respectively. Figure 1 shows plots of the pdf for various values of the
parameter. The pdf can take different shapes such as unimodal, increasing and decreasing. Figure 2
displays plots of the hrf for some values of the parameters. The hrf represents major shapes such as
increasing, bathtub and unimodal.

6. Some Properties of the Doubly Truncated Zubair-Weibull Distribution

6.1. Quantile and median

The uth quantile function xu of the DTZ-W (ψ) distribution is given by
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xuTZW =


−1
γ

ln

1 −

ln

{
u
[
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2]
+ eα(1−e−γcθ )

2
}

α


1
2




1
θ

, 0 < u < 1. (6.1)

The median can be obtained by substituting u = 0.5 in (6.1) as follows:

x0.5TZW =


−1
γ

ln

1 −

ln

{
0.5

[
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2]
+ eα(1−e−γcθ )

2
}

α


1
2




1
θ

, (6.2)

6.2. Moments

a. Non-central moments
The rth non-central moment of the DTZ-W (ψ) distribution is given by

µ‵rTZW
=

2αγ

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

[
1

γ (1 + j)

] r+θ
θ

×

∞∑
i=0

αi

i!

∞∑
j=0

(−1) j
(
2i + 1

j

) {
Γ

(r + θ
θ

, γcθ(1 + j)
)
− Γ

(r + θ
θ

, γdθ(1 + j)
)}
,

(6.3)

then the first four non-central moments of the DTZ-W distribution are given, respectively, by

µ‵1TZW
=

2αγ

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

[
1

γ (1 + j)

] 1+θ
θ

×

∞∑
i=0

αi

i!

∞∑
j=0

(−1) j
(
2i + 1

j

) {
Γ

(
1 + θ
θ

, γcθ(1 + j)
)
− Γ

(
1 + θ
θ

, γdθ(1 + j)
)}
,

(6.4)

µ‵2TZW
=

2αγ

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

[
1

γ (1 + j)

] 2+θ
θ

×

∞∑
i=0

αi

i!

∞∑
j=0

(−1) j
(
2i + 1

j

) {
Γ

(
2 + θ
θ

, γcθ(1 + j)
)
− Γ

(
2 + θ
θ

, γdθ(1 + j)
)}
,

(6.5)

µ‵3TZW
=

2αγ

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

[
1

γ (1 + j)

] 3+θ
θ

×

∞∑
i=0

αi

i!

∞∑
j=0

(−1) j
(
2i + 1

j

) {
Γ

(
3 + θ
θ

, γcθ(1 + j)
)
− Γ

(
3 + θ
θ

, γdθ(1 + j)
)}
,

(6.6)
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Table 2. Mean, median, variance, skewness, kurtosis, ID and CV of DTZ-W
(
ψ
)

for different
values of the parameters

α θ γ Mean Median Variance Skewness Kurtosis ID CV
0.5 0.1437 0.1039 0.0157 1.0496 3.5103 0.1092 0.8719

0.2 0.6 3 0.1994 0.1498 0.0261 0.9551 3.0182 0.1309 0.8102
0.8 0.2930 0.2612 0.0374 0.6984 2.5070 0.1276 0.6600

2 0.5810 0.6225 0.1376 0.1491 1.6584 0.2368 0.6384
3.5 0.5 0.5 0.5839 0.5787 0.1322 0.1476 1.8521 0.2264 0.6227
4.5 0.5875 0.5526 0.1209 0.0102 1.8624 0.2058 0.5918

2.2 0.4476 0.4165 0.0512 0.3063 2.1861 0.1144 0.5055
0.7 0.9 3.3 0.3428 0.3346 0.0401 0.3211 2.0778 0.1170 0.5841

5 0.2438 0.2302 0.0216 0.3299 2.0312 0.0886 0.6028

and

µ‵4TZW
=

2αγ

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

[
1

γ (1 + j)

] 4+θ
θ

×

∞∑
i=0

αi

i!

∞∑
j=0

(−1) j
(
2i + 1

j

) {
Γ

(
4 + θ
θ

, γcθ(1 + j)
)
− Γ

(
4 + θ
θ

, γdθ(1 + j)
)}
.

(6.7)

The variance of the DTZ-W (ψ) distribution is

VTZW(x) =

 2αγ

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

[
1

γ (1 + j)

] 2+θ
θ

×

∞∑
i=0

αi

i!

∞∑
j=0

(−1) j
(
2i + 1

j

) {
Γ

(
2 + θ
θ

, γcθ(1 + j)
)
− Γ

(
2 + θ
θ

, γdθ(1 + j)
)}

−

 2αγ

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

[
1

γ (1 + j)

] 1+θ
θ

×

∞∑
i=0

αi

i!

∞∑
j=0

(−1) j
(
2i + 1

j

)

Γ

(
1 + θ
θ

, γcθ(1 + j)
)
− Γ

(
1 + θ
θ

, γdθ(1 + j)
)]2

.

(6.8)

The coefficient of variation (CV) and the index of dispersion (ID) are given, respectively, by:

CV =
(µ2)1/2

µ
, and ID =

µ2

µ
. (6.9)

Numerical results of the mean, median, variance, SK, Kur, ID and CV of DTZ-W distribution for
different values of the parameters are presented in Table 2.

One can observe from Table 2 that:
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• For fixed values of α and γ when θ increases, the mean, median and the variance increase, skew-
ness and kurtosis decrease. When the parameter α increases, and fixed values of θ and γ; the
mean increases, while the median and the variance decrease, skewness decreases and kurtosis
increases. For fixed values of α and θ when γ increases, the mean, median and the variance
decrease, skewness increases and kurtosis decreases.

• Since the mean is greater than the variance, the DT-ZW (ψ) distribution is suitable for analyzing
under-dispersed data sets.

• The proposed distribution is suitable for modeling positively skewed data and can accommodate
either leptokurtic (Kur > 3) or platykurtic (Kur < 3) data sets.

• Since the CV is smaller than one, it indicates that the standard deviation (a measure of variability)
is less than the mean, implying relatively low variability in the data.

6.3. Order statistic of doubly truncated Zubair-Weibull distribution

The pdf of the rth order statistic of the DTZ-W (ψ) is

fr:nTZW

(
x;ψ

)
=

n!
(r − 1)! (n − r)!


2αθγxθ−1

(r) e−γxθ(r)
(
1 − e−γxθ(r)

)
e
α

(
1−e

−γxθ(r)

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2


×

e
α

(
1−e

−γxθ(r)

)2

− eα
(
1−e−γcθ

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2


r−1eα

(
1−e−γdθ

)2

− e
α

(
1−e

−γxθ(r)

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2


n−r

, c < x(r) < d.

(6.10)

The pdf of the smallest order statistic is as follows:

f1:nTZW

(
x;ψ

)
= n


2αθγxθ−1

(1) e−γxθ(1)
(
1 − e−γxθ(1)

)
e
α

(
1−e

−γxθ(1)

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2


eα

(
1−e−γdθ

)2

− e
α

(
1−e

−γxθ(1)

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2


n−1

, c < x(1) < d.

(6.11)
The pdf of the largest order statistic is given below

fn:nTZW

(
x;ψ

)
= n


2αθγxθ−1

(n) e−γxθ(n)
(
1 − e−γxθ(n)

)
e
α

(
1−e

−γxθ(n)

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2


e

α

(
1−e

−γxθ(n)

)2

− eα
(
1−e−γcθ

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2


n−1

, c < x(n) < d.

(6.12)

6.4. Entropy measures

Rényi entropy for the DTZ-W distribution can be defined as
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EnδTZW (x) =
1

(1 − δ)
ln

∫ d

c

(2αθγ)δxδ(θ−1)e−δγxθ(1 − e−γxθ)
δ
eδα(1−e−γxθ )

2

eδα(1−e−γdθ )
2

− eδα(1−e−γcθ )
2 dx

 , δ,1,δ> 0, (6.13)

As δ→ 1, Rényi entropy tends to Shannon entropy.
Shannon entropy measures the uncertainty or randomness of the rv X and is as follows:

H = −
∫ d

c


2αθγxθ−1e−γxθ

(
1 − e−γxθ

)
eα

(
1−e−γxθ

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

 ln


2αθγxθ−1e−γxθ

(
1 − e−γxθ

)
eα

(
1−e−γxθ

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

 dx ,

(6.14)
Tsallis entropy is parameterized by a real number ρ and is given by

TρTZW
(x) =

1
ρ − 1

1 − ∫ d

c

 (2αθγ)ρxρ(θ−1)e−ργxθ(1 − e−γxθ)
ρ
eρα(1−e−γxθ )

2

eρα(1−e−γdθ )
2

− eρα(1−e−γcθ )
2

 dx

 , ρ , 1. (6.15)

6.5. Mean of residual life, Mean past lifetime and Mean time to failure

The MRL, MPL and MTTF for the DTZ-W are given, respectively, by

mTZW (t) =
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γtθ

)2

∫ d

t

eα
(
1−e−γdθ

)2

− eα
(
1−e−γxθ

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2 dx, (6.16)

m∗TZW (t) =
eα(1−e−γdθ )

2

− eα(1−e−γcθ )
2

eα(1−e−γtθ )
2

− eα(1−e−γcθ )
2

∫ t

c

eα(1−e−γxθ )
2

− eα(1−e−γcθ )
2

eα(1−e−γdθ )
2

− eα(1−e−γcθ )
2 dx, (6.17)

and

MTT FTZW =

∫ d

c

eα
(
1−e−γdθ

)2

− eα
(
1−e−γtθ

)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2 dt. (6.18)

7. Maximum likelihood estimation for the doubly truncated Zubair-Weibull distribution

The unknown parameters of the DTZ-W (ψ) can be estimated using the ML method as follows:

LTZW

(
ψ ; x

)
=

n∏
i=1

2αθγx(i)
θ−1e−γx(i)

θ
(
1 − e−γx(i)

θ
)

eα
(
1−e−γx(i)

θ
)2

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2 , (7.1)

where ψ =
(
α, ξ, c, d

)
and ξ = (θ, γ) .

The log likelihood function (ln L) can be written as
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lTZW ≡ lnLTZW

(
ψ; x

)
=

n∑
i=1

ln
[
2αθγx(i)

θ−1e−γx(i)
θ
(
1 − e−γx(i)

θ
)

eα
(
1−e−γx(i)

θ
)2]

− nln
[
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2]
=

n∑
i=1

[
ln (2) + ln (α) + ln (θ) + ln (γ) + (θ − 1) ln(x(i)) − γx(i)

θ +ln
(
1 − e−γx(i)

θ
)
+ α

(
1 − e−γx(i)

θ
)2
]

− nln
[
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2]
.

(7.2)

The ML estimators of the truncation points c and d are ĉML = arg max LTZW

(
ψ; x

)
= x(1),

d̂ML = arg max LTZW

(
ψ ; x

)
= x(n), can be obtained by differentiating the log LF with respect to the

parameters α, θ and γ as follows:

∂lTZW

∂α
=

n∑
i=1

[
1
α
+

(
1 − e−γx(i)

θ
)2
]
−

n
{[

eα
(
1−e−γdθ

)2(
1 − e−γdθ

)2
]
−

[
eα

(
1−e−γcθ

)2(
1 − e−γcθ

)2
]}

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2 , (7.3)

∂lTZW

∂θ
=

n∑
i=1

1
θ
+ ln

(
x(i)

)
− γx(i)

θln
(
x(i)

)
+

(
γx(i)

θ
) (

e−γx(i)
θ
)

ln
(
x(i)

)(
1 − e−γx(i)θ

)
+2α

(
γx(i)

θ
)

ln
(
x(i)

) (
e−γx(i)

θ
) (

1 − e−γx(i)
θ
)]

−

2αn


(γdθ

)
ln (d)

(
e−γdθ

) (
1 − e−γdθ

)
e
α
(
1−e−γdθ

)2
−

[(
γcθ

)
ln(c)

(
e−γcθ

) (
1 − e−γcθ

)
eα

(
1−e−γcθ

)2]


eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2 ,

(7.4)

∂lTZW

∂γ
=

n∑
i=1

1
γ
−x(i)

θ +

(
x(i)

θ
) (

e−γx(i)
θ
)(

1 − e−γx(i)θ
) + 2α

(
x(i)

θ
) (

e−γx(i)
θ
) (

1 − e−γx(i)
θ
)

−

2αn


[(

dθ
) (

e−γdθ
) (

1 − e−γdθ
)

eα
(
1−e−γdθ

)2]
−

2α(cθ) (e−γcθ
) (

1 − e−γcθ
)

e
α
(
1−e−γcθ

)2
[

eα
(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2] .

(7.5)
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The ML estimators of the parameters α, θ and γ can be obtained through equating equations (7.3), (7.4)
and (7.5) to zero and solving numerically.

The ML estimators of the rf and hrf can be obtained using the invariance property of the ML esti-
mators to by replacing the parameters ψ =

(
α, ξ, c, d

)
and ξ = (θ, γ) in (5.5) and (5.6) with their ML

estimators, then the ML estimators of RTZW

(
x;ψ

)
and hTZW

(
x;ψ

)
are given, respectively, by:

R̂TZW

(
x; ψ̂

)
=

e
α̂

(
1−e−γ̂d̂θ̂

)2

− e
α̂

(
1−e−γ̂x̂θ

)2

eα̂
(
1−e−γ̂d̂θ̂

)2

− eα̂
(
1−e−γ̂ĉ̂θ

)2 , 0 < ĉ < x < d̂ < ∞, (7.6)

ĥTZW

(
x; ψ̂

)
=

2α̂̂θ̂γxθ̂−1e−γ̂x̂θ(1 − e−γ̂x̂θ)eα̂(1−e−γ̂x̂θ )
2

eα̂(1−e−γ̂d̂θ̂ )
2

− eα̂(1−e−γ̂x̂θ )
2 , 0 < ĉ < x < d̂ < ∞. (7.7)

To obtain the confidence intervals (CIs) of the parameters ψ = α, θ and γ of the DTZ-W distribution,

the distributions of the ML estimators ψ̂ = α̂, θ̂ and γ̂ are needed. Since these estimators do not have a
closed form, it is not possible to obtain their exact distributions. Therefore, the approximate CIs can be
constructed using the asymptotic distribution of the ML estimators as the results of the asymptotically
normal with mean α, θ and γ and the asymptotic variance-covariance matrix which is the inverse of the
asymptotic Fisher information matrix as:

Ĩ
(
ψ̂
)
=


−

(
∂2l
∂α2

)
−

(
∂2l
∂α∂θ

)
−

(
∂2l
∂α∂γ

)
−

(
∂2l
∂θ∂α

)
−

(
∂2l
∂θ2

)
−

(
∂2l
∂θ∂γ

)
−

(
∂2l
∂γ∂α

)
−

(
∂2l
∂γ∂θ

)
−

(
∂2l
∂γ2

)

∣∣∣∣∣∣∣∣∣∣
(α̂,̂θ γ̂)

, (7.8)

which can be written as

Ĩ
(
ψ̂
)
≈ −

[
∂2lTZW

∂ψi∂ψ j

]
≈

[
Ii j

]∣∣∣∣
ψ̂
, i, j = 1, 2, 3, (7.9)

with the elements as given below

I11 =
−∂2lTZW

∂α2 =

n∑
i=1

[
1
α2

]
+

 n[
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2]2


×

eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2
 2

(
1 − e−γcθ

)2(
1 − e−γdθ

)2

−
(
1 − e−γcθ

)4(
1 − e−γdθ

)4


 ,

(7.10)
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I12 =
−∂2lTZW

∂α∂θ
=

n∑
i=1

[
−2

(
1 − e−γx(i)

θ
) (
−e−γx(i)

θ
) (
−γx(i)

θ
)

ln
(
x(i)

) ]

+

 n[
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2]2


×

{
2
(
γdθ

)
ln (d)

(
e−γdθ

) (
1 − e−γdθ

) [
e2α

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
+ 2

(
γcθ

)
ln (c)

(
e−γcθ

) (
1 − e−γcθ

) [
e2α

(
1−e−γcθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
− 2αγeα

(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2 [(
cθ

)
ln (c)

(
e−γcθ

) (
1 − e−γcθ

)3
+

(
dθ

)
ln (d)

(
e−γdθ

) (
1 − e−γdθ

)3

+2αγeα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2


(
cθ

)
ln (c)

(
e−γcθ

) (
1 − e−γcθ

) (
1 − e−γdθ

)2

+
(
dθ

)
ln (d)

(
e−γdθ

) (
1 − e−γcθ

)2 (
1 − e−γdθ

) 
 ,

(7.11)

I13 =
−∂2lTZW

∂α∂γ

=

n∑
i=1

[
−2α

(
1 − e−γx(i)

θ
) (

e−γx(i)
θ
) (

x(i)
θ
)]
+

 n[
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2]2


×

{
2
(
dθ

) (
e−γdθ

) (
1 − e−γdθ

) [
e2α

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
+ 2

(
cθ

) (
e−γcθ

) (
1 − e−γcθ

) [
e2α

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
− 2αeα

(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2 [(
cθ

) (
e−γcθ

) (
1 − e−γcθ

)3
+

(
dθ

) (
e−γdθ

) (
1 − e−γdθ

)3
]

+ 2αeα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2


(
cθ

) (
e−γcθ

) (
1 − e−γcθ

) (
1 − e−γdθ

)2

+
(
dθ

) (
e−γdθ

) (
1 − e−γcθ

)2 (
1 − e−γdθ

) 
 ,

(7.12)

I22 =
−∂2lTZW

∂θ2 =

n∑
i=1

{
1
θ2 + γln

(
x(i)

) (
x(i)

θ
)

ln
(
x(i)

)

−


(
1 − e−γx(i)

θ
) [
γln

(
x(i)

) ] [
x(i)

θ
(
e−γx(i)

θ
) (
−γx(i)

θ
)

ln
(
x(i)

)
+

(
e−γx(i)

θ
) (

x(i)
θ
)

ln
(
x(i)

) ]
−

[(
γx(i)

θ
) (

e−γx(i)
θ
)

ln
(
x(i)

) (
−e−γx(i)

θ
) (
−γx(i)

θ
)

ln
(
x(i)

) ] (
1 − e−γx(i)θ

)2
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−2αγln
(
x(i)

) 
x(i)

θ
(
e−γx(i)

θ
) (
−e−γx(i)

θ
) (
−γx(i)

θ
)

ln
(
x(i)

)
+x(i)

θ
(
1 − e−γx(i)

θ
) (

e−γx(i)
θ
) (
−γx(i)

θ
)

ln
(
x(i)

)
+

(
e−γx(i)

θ
) (

1 − e−γx(i)
θ
) (

x(i)
θ
)

ln
(
x(i)

)



+

 n[
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2]2


×

{
2αγ2

(
d2θ

)
[ln(d)]2

(
e−2γdθ

) [
e2α

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
+2αγ

(
dθ

)
[ln(d)]2

(
e−γdθ

) (
1 − e−γdθ

) [
e2α

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
−2αγ2

(
d2θ

)
[ln(d)]2

(
e−γdθ

) (
1 − e−γdθ

) [
e2α

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
+2αγ2

(
c2θ

)
[ln(c)]2

(
e−2γcθ

) [
e2α

(
1−e−γcθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
+2αγ

(
cθ

)
[ln(c)]2

(
e−γcθ

) (
1 − e−γcθ

) [
e2α

(
1−e−γcθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
−2αγ2

(
c2θ

)
[ln(c)]2

(
e−γcθ

) (
1 − e−γcθ

) [
e2α

(
1−e−γcθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
−4α2γ2eα

(
1−e−γdθ

)2
+α

(
1−e−γdθ

)2 [(
c2θ

)
[ln (c) ]2

(
e−2γcθ

) (
1 − e−γcθ

)2
+

(
d2θ

)
[ln (d) ]2

(
e−2γdθ

) (
1 − e−γdθ

)2
]

+8α2γ2
(
cθ

) (
dθ

)
[ln (c) ] [ln (d) ]

(
e−γcθ

) (
e−γdθ

) (
1 − e−γcθ

)
(
1 − e−γdθ

)
eα

(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2

 , (7.13)

I23 =
−∂2lTZW

∂θ∂γ

=

n∑
i=1


[
x(i)

θln
(
x(i)

) ]
−

(
1 − e−γx(i)

θ
)2 {(

x(i)
θ
)

ln
(
x(i)

) [(
e−γx(i)

θ
)
− (γ)

(
x(i)

θ
) (

e−γx(i)
θ
)]}

−
{
γ
(
x(i)

2θ
)

ln
(
x(i)

) (
e−γx(i)

θ
)}

(
1 − e−γx(i)θ

)2

−2α
(
x(i)

θ
)

ln
(
x(i)

)  (γ)
(
x(i)

θ
) (

e−2γx(i)
θ
)
− (γ)

(
x(i)

θ
) (

e−γx(i)
θ
) (

1 − e−γx(i)
θ
)

+
(
e−γx(i)

θ
) (

1 − e−γx(i)
θ
) 


+

 n[
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2]2
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×

{
2α (γ)

(
d2θ

)
ln (d)

(
e−2γdθ

) [
e2α

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
− 2α (γ)

(
d2θ

)
ln (d)

(
e−γdθ

) (
1 − e−γdθ

) [
e2α

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
+ 2αdθln (d)

(
e−γdθ

) (
1 − e−γdθ

) [
e2α

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
+ 2α (γ)

(
c2θ

)
ln (c)

(
e−2γcθ

) [
e2α

(
1−e−γcθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
− 2α (γ)

(
c2θ

)
ln (c)

(
e−γcθ

) (
1 − e−γcθ

) [
e2α

(
1−e−γcθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
+ 2αcθln (c)

(
e−γcθ

) (
1 − e−γcθ

) [
e2α

(
1−e−γcθ

)2

− eα
(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2]
− 4α2 (γ)

(
c2θ

)
eα

(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2 [
c2θln (c)

(
e−2γcθ

) (
1 − e−γcθ

)2
+ d2θln(d)

(
e−2γdθ

) (
1 − e−γdθ

)2
]

+ 4α2 (γ)
(
cθ

) (
dθ

) (
e−γcθ

) (
e−γdθ

) (
1 − e−γcθ

) (
1 − e−γdθ

)
eα

(
1−e−γcθ

)2
+α

(
1−e−γdθ

)2

[ln (c) − ln (d) ]
}
,

(7.14)

I33 =
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8. Simulation Study

In this section, a simulation study is presented to examine the accuracy and efficiency of the ML
estimates of the parameters, rf and hrf of the DTZ-W (ψ) for different samples of size (n =30, 60,
100, 200 and 300) using number of replications (NR)=1000. The computations are performed using
Mathematica 11.

The steps of the simulation procedure are:

a. Using two different combinations of population parameter values

I: (α= 2, γ= 0.5, θ= 0.3, c= 0.2 and d= 2.5),
and
Π: (α= 3, γ= 0.3, θ= 0.2, c= 0.1 and d= 4).

b. Generating 1000 random samples of size (n =30, 60, 100, 200 and 300) from DTZ-W(ψ) distri-
bution using the following formula:

xuTZW =


−1
γ

ln

1 −

ln

{
u
[
eα

(
1−e−γdθ

)2

− eα
(
1−e−γcθ

)2]
+ eα(1−e−γcθ )

2
}

α


1
2




1
θ

, 0 < u < 1,

where u are random samples from the uniform distribution.

c. Computing the averages, relative errors (REs), variances, relative absolute biases (RABs) and
mean square errors (MSEs) of the ML estimates, as follows:

Average =
∑NR

i=1 estimated value
NR ,

Estimated risk(ER) =
∑NR

i=1 (estimated value−true value)2

NR

RE =
√

ER (estimated value)
true value ,

variance = ER (estimated value) − bais2 (estimated value) .

bias = estimatedvalue − true value

RAB = |estimatedvalue−true value|
true value ,

and
MSE= variance (estimated value) + bais2 (estimated value) .

d. Calculating the averages of the ML estimates, RABs, REs, MSEs, biases and variances of the
parameters, rf and hrf for the model parameters and for each sample size.

Table 3- 6 shows the averages of the ML, RABs, REs, MSEs, biases, variances and 95% CIs of the
unknown parameters α, γ, θ, c and d under different sample sizes for the DTZ-W distribution.
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Table 3. Averages of the ML estimates, relative absolute biases, relative errors, mean
square errors, biases, variances and 95% confidence intervals of the parameters of the DTZ-
W distribution for different samples of size n and the number of replications NR =1000,
(α= 2,γ= 0.5, θ= 0.3, c= 0.2 and d= 2.5)

n Parameters Averages RABs REs MSEs Biases Variances UL LL Length

30

α 1.8798 0.0601 0.1924 0.148 0.0144 0.1336 2.5962 1.1634 1.4327
γ 0.51 0.0201 0.4392 0.0482 0.0001 0.0481 0.9399 0.0801 0.8598
θ 0.2816 0.0613 0.4903 0.0216 0.0003 0.0213 0.5676 0.0998 0.5676
c 0.2356 0.1781 0.2624 0.0027 0.0013 0.0015 0.3111 0.1601 0.151
d 2.3899 0.044 0.0609 0.0232 0.0121 0.0111 2.5964 2.1835 0.4129

60

α 1.9128 0.0436 0.1716 0.1178 0.0076 0.1102 2.5634 1.2622 1.3012
γ 0.4964 0.0072 0.3318 0.0275 1.3×10−5 0.0275 0.8215 0.1713 0.6502
θ 0.2977 0.0077 0.3414 0.0105 5.4×10−6 0.0105 0.4983 0.097 0.4013
c 0.2184 0.0921 0.131 0.0007 0.0003 0.0003 0.2549 0.1819 0.073
d 2.4431 0.0227 0.0318 0.0063 0.0034 0.0031 2.552 2.3342 0.2178

100

α 1.9219 0.039 0.1171 0.0549 0.0061 0.0488 2.3548 1.489 0.8658
γ 0.4935 0.013 0.2655 0.0176 4.2×10−5 0.0176 0.7534 0.2336 0.5198
θ 0.3039 0.0131 0.259 0.006 0.000015 0.006 0.456 0.1518 0.3042
c 0.2113 0.0568 0.0809 0.0003 0.0001 0.0001 0.2339 0.1888 0.0451
d 2.4649 0.014 0.0196 0.0024 0.0012 0.0012 2.5323 2.3975 0.1348

200

α 1.9495 0.0252 0.1044 0.0436 0.0025 0.0411 2.3469 1.5521 0.7948
γ 0.5013 0.0025 0.2047 0.0105 1.6×10−5 0.0105 0.7018 0.3007 0.4011
θ 0.2979 0.0068 0.1832 0.003 4.1×10−6 0.003 0.4056 0.1903 0.2153
c 0.2051 0.0256 0.0356 0.000051 0.000026 0.000024 0.2148 0.1954 0.0194
d 2.4817 0.0073 0.0103 0.0007 0.0003 0.0003 2.5172 2.4462 0.071

300

α 1.9578 0.021 0.0969 0.0376 0.0018 0.0358 2.3288 1.5869 0.7418
γ 0.498 0.004 0.1833 0.0084 4.1×10−6 0.0084 0.6776 0.3183 0.3593
θ 0.2991 0.0028 0.1489 0.002 3×10−7 0.002 0.3867 0.2116 0.1751
c 0.2036 0.0183 0.0255 0.000026 0.000013 0.000012 0.2106 0.1967 0.0139
d 2.4881 0.0047 0.0066 0.0003 0.0001 0.0001 2.5105 2.4657 0.0448

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 222–257



246

Table 4. Averages of the ML estimates, relative absolute biases, relative errors, mean
square errors, biases, variances and 95% confidence intervals of the parameters of the DTZ-
W distribution for different samples of size n and the number of replications NR =1000,
(α=3, γ=0.3, θ=0.2, c=0.1 and d=4)

n Parameters Averages RABs REs MSEs Biases Variances UL LL Length

30

α 2.8542 0.0486 0.1477 0.1962 0.0212 0.175 3.6741 2.0343 1.6398
γ 0.3098 0.0327 0.4285 0.0165 9.6 × 10−5 0.0164 0.561 0.0585 0.5025
θ 0.1842 0.0788 0.5037 0.0101 2.5 × 10−4 0.0099 0.3792 0.0000 0.3792
c 0.1294 0.2938 0.4372 0.0019 8.6 × 10−5 0.001 0.1928 0.0659 0.1269
d 3.7434 0.0641 0.0867 0.1202 0.0658 0.0544 4.2007 3.2861 0.9146

60

α 2.9131 0.0289 0.1383 0.1722 0.0075 0.1646 3.7084 2.1179 1.5905
γ 0.3039 0.0131 0.3268 0.0096 1.5 × 10−5 0.0096 0.4959 0.1119 0.384
θ 0.1955 0.0223 0.3498 0.0049 2.0 × 10−5 0.0049 0.3324 0.0587 0.2737
c 0.1137 0.1369 0.1972 0.0004 1.9 × 10−4 0.0002 0.1415 0.0859 0.0556
d 3.8728 0.0318 0.0442 0.0313 0.0162 0.0151 4.1138 3.6319 0.4819

100

α 2.9416 0.0195 0.1311 0.1547 0.0034 0.1513 3.7039 2.1792 1.5247
γ 0.2981 0.0064 0.2748 0.0068 3.7 × 10−6 0.0068 0.4596 0.1365 0.3231
θ 0.1986 0.007 0.2671 0.0028 1.9 × 10−6 0.0028 0.3033 0.0939 0.2094
c 0.1081 0.0808 0.1165 0.0001 6.5 × 10−5 7.0 × 10−5 0.1245 0.0916 0.0329
d 3.9232 0.0192 0.0269 0.0116 0.0059 0.0057 4.071 3.7754 0.2956

200

α 2.9476 0.0175 0.1157 0.1205 0.0027 0.1177 3.62 2.2751 1.3449
γ 0.3043 0.0143 0.2268 0.0046 1.8 × 10−5 0.0046 0.4374 0.1712 0.2662
θ 0.1979 0.0107 0.1924 0.0015 4.6 × 10−6 0.0015 0.2732 0.1225 0.1507
c 0.1041 0.0408 0.0572 3.3 × 10−5 1.7 × 10−5 1.6 × 10−5 0.1119 0.0962 0.0157
d 3.9616 0.0096 0.0136 0.003 0.0015 0.0015 4.0373 3.8859 0.1514

300

α 2.9502 0.0166 0.113 0.115 0.0025 0.1125 3.6078 2.2926 1.3151
γ 0.3011 0.0039 0.2044 0.0038 1.4 × 10−6 0.0037 0.4213 0.181 0.2403
θ 0.199 0.0048 0.1548 0.0009 9.3 × 10−7 0.0009 0.2597 0.1384 0.1213
c 0.1026 0.0266 0.0381 1.4 × 10−5 7.1 × 10−6 7.4 × 10−6 0.108 0.0973 0.0107
d 3.9734 0.0066 0.0093 0.0014 0.0007 0.0007 4.0247 3.9221 0.1026
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Table 5. Averages of the ML estimates, relative absolute biases, relative errors, mean square
errors, biases, variances and 95% confidence intervals of the reliability and hazard rate func-
tions at (x0 = 0.4 ) of the DTZ-W distribution for different samples of size n and the number
of replications NR =1000, (α=2, γ=0.5, θ=0.3, c=0.2 and d=2.5)

n rf and hrf Averages RABs REs MSEs Biases Variances UL LL Length

30
R (x0) 0.856 0.0169 0.0653 0.003 0.0002 0.0028 0.9602 0.7518 0.2084
h (x0) 0.8984 0.1083 0.3237 0.0688 0.0077 0.0611 1.383 0.4138 0.9692

60
R (x0) 0.8502 0.01 0.044 0.0014 7.1 × 10−5 0.0013 0.9208 0.7795 0.1413
h (x0) 0.8467 0.0445 0.2131 0.0298 0.0013 0.0285 1.1778 0.5154 0.6624

100
R (x0) 0.8483 0.0077 0.0327 0.0007 4.2 × 10−5 0.0007 0.9007 0.7959 0.1048
h (x0) 0.8261 0.0191 0.1573 0.0162 0.0002 0.016 1.0742 0.5779 0.4963

200
R (x0) 0.8431 0.0016 0.0222 0.0003 1.8 × 10−6 0.0003 0.8798 0.8065 0.0733
h (x0) 0.8254 0.0183 0.1105 0.008 0.0002 0.0078 0.9986 0.6522 0.3464

300
R (x0) 0.8429 0.0013 0.0184 0.0002 1.3 × 10−6 0.0002 0.8732 0.8127 0.0605
h (x0) 0.8201 0.0117 0.0892 0.0052 0.0001 0.0051 0.9606 0.6795 0.2811

8.1. Concluding Remarks

• From Tables 1 and 2, one can observe that the ML averages are close to the parameter values
as the sample size increases, demonstrating the asymptotic properties of the estimators such as
the consistency and the efficiency of the ML estimators where the estimator uses the informa-
tion from the data most effectively. Also, in most cases the RABs, REs and variances of the
ML estimates of the parameters (α, θ, γ, c, d) decrease when the sample size increases indicating
improved precision and accuracy.

• From Tables 3 and 4, it is noticed that the RABs, REs and variances of the rf and hrf decrease
when the sample size increases, which confirms that larger sample sizes enhance the reliability of
parameter estimates.

• The lengths of the confidence intervals of the parameters, rf and hrf decrease when the sample
size increases, reflecting the increased robustness of the model when having with more data and
information.

9. Applications to Real Data Set

This section is devoted to illustrate the ability and flexibility of the DTZ-W distribution in real
life. Two applications are used to demonstrate the importance of the DTZ-W distribution com-
pared with some distributions such as Zubair-Weibull (Z-W), doubly truncated exponentiated in-
verse Weibull distribution (DTEIW), truncated Weibull power Lomax (TWPL), truncated log-logistic-
Weibull (TLLW) and truncated exponential Marshall Olkin Weibull (TEMOW). By using some criteria
such as Kolmogorov-Smirnov (K-S) test and its P-value, -2 log likelihood function (-2lnL), Akaike
information criterion (AIC), Bayesian information criterion (BIC) and corrected Akaike information
criterion (CAIC), also named AIC with correction, where

AIC = 2k − 2ln(L),
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Table 6. Averages, relative absolute biases, relative errors, mean square errors, biases, vari-
ances of the ML estimates and 95% confidence intervals of the reliability and hazard rate
functions at (x0 = 0.4 ) of the DTZ-W distribution for different samples of size n and the
number of replications NR=1000, (α=3, γ=0.3, θ=0.2, c=0.1 and d=4)
n rf and hrf Average RABs REs MSE Bias Variance UL LL Length

30
R (x0) 0.7784 0.0066 0.0845 0.0043 2.6 × 10−5 0.0042 0.9062 0.6507 0.2555
h (x0) 0.7556 0.1134 0.2929 0.0395 0.0059 0.0336 1.1148 0.3964 0.7184

60
R (x0) 0.7767 0.0044 0.0582 0.002 1.1 × 10−5 0.002 0.8647 0.6887 0.176
h (x0) 0.7103 0.0466 0.1838 0.0155 0.001 0.0145 0.9468 0.4737 0.4731

100
R (x0) 0.7762 0.0037 0.044 0.0012 8.1 × 10−6 0.0011 0.8427 0.7097 0.133
h (x0) 0.695 0.0241 0.1354 0.0084 0.0003 0.0082 0.8722 0.5178 0.3544

200
R (x0) 0.7739 0.0007 0.0313 0.0005 3.1 × 10−7 0.0006 0.8213 0.7265 0.0948
h (x0) 0.6894 0.0158 0.0959 0.0042 0.0001 0.0041 0.8152 0.5635 0.2517

300
R (x0) 0.7738 0.0006 0.0251 0.0004 2.9 × 10−7 0.0004 0.8119 0.7358 0.0761
h (x0) 0.6852 0.0097 0.0758 0.0026 0.1×10−5 0.0026 0.7852 0.5852 0.2

CAIC = AIC + 2
k(k + 1)
n − k − 1

,

and
BIC = kln (2) − 2ln(L) ,

where k denotes the number of distribution parameters, n is the sample size, and ln(L) is the log-
likelihood function evaluated at the ML estimates. The distribution with the lowest value of these
statistics and the largest P-value for the K-S test is the best fit for the data.

9.1. Application I:

The first application was provided by Murthy et al. [18]. The data refers to the time between failures
for a repairable item: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40,
1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86 and 1.17.

Table 7 shows the ML estimates of the parameters and standard errors (SEs), K-S statistic, P-value,
−2ln (L) statistic, AIC, BIC and CAIC. From the results, one can observe that the DTZ-W distribution
provides a better fit to this data compared with other distributions.

Figure 3 displays the TTT-plot, fitted pdf, P-P, Q-Q and histogram plots indicate that the DTZ-W
distribution provides a better fit to real data set, Also, the total time test (TTT) plot of the first real
data set which shows that this data has an increasing hrf which is one of the hrf shapes of the DTZ-W
distribution given in Figure 2(a). It means that as the item ages or undergoes more use, it becomes more
likely to fail. This is characteristic of the ”wear-out” phase, commonly observed in repairable systems
or mechanical components. This indicates that precautionary maintenance or replacement strategies
should be considered to reduce the risk of failure as the item continues to age.

9.2. Application II:

The second application was given by Lawless [17]. The data consists of a number of cycles divided
by 1000 up to the failure for 60 electrical appliances in a life test. The data is: 0.014, 0.034 ,0.059,
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Table 7. ML estimates, SEs, AIC, BICs, CAIC, K-S statistics and P-values for fitted distri-
butions

Model Parameter Estimate SEs K-S P-value -2lnL AIC BIC CAIC

α 1.2295 0.1976
γ 0.5986 0.2222

DTZ-W θ 0.2990 0.2377 0.1333 0.9560 82.4705 88.4705 92.6741 89.3936
c 0.1100 0.2478
d 4.7300 0.3382

α 1.1609 0.1994
Z-W γ 1.303 0.1961 0.1667 0.8039 92.5821 98.5821 102.786 99.5052

θ 0.5477 0.2247

α 2.1563 0.2073
γ 0.0406 0.2516

DTEIW θ 0.4312 0.2307 0.3333 0.0709 89.1206 95.1206 99.3242 96.0437
c 0.1100 0.2478
d 4.7300 0.3382

α 2.9199 0.2448
β 0.8814 0.2092

TWPL λ 1.6864 0.1947 0.3333 0.0693 90.5631 98.5631 104.168 100.163
γ 4.5089 0.3276

α 1.5942 0.1940
γ 0.6103 0.2216

TLLW β 2.6641 0.2312 0.3000 0.1234 106.166 114.166 119.771 115.766
λ 0.3188 0.2366

θ 1.1067 0.2010
λ 1.4213 0.1944

TEMOW α 0.1836 0.2438 0.2667 0.2355 179.01 187.01 192.614 188.61
β 0.9937 0.2048

0.061, 0.069, 0.080, 0.123, 0.142, 0.165, 0.210, 0.381, 0.464, 0.479, 0.556, 0.574, 0.839, 0.917, 0.969,
0.991, 1.064, 1.088, 1.091, 1.174, 1.270, 1.275, 1.355, 1.397, 1.477, 1.578, 1.649, 1.702, 1.893, 1.932,
2.001, 2.161, 2.292, 2.326, 2.337, 2.628, 2.785, 2.811, 2.886, 2.993, 3.122, 3.248, 3.715, 3.790, 3.857,
3.912, 4.100, 4.106, 4.116, 4.315, 4.510, 4.580, 5.267, 5.299, 5.583, 6.065 and 9.701.

Table 8 presents the ML estimates of the parameters, SEs, K-S statistic, P-value, −2ln (L) statistic,
AIC, BIC and CAIC. From the results, one can observe that the DTZ-W distribution provides a better
fit to this data compared with other distributions.

Figure 4 indicates that the TTT-plot, P-P plot, Q-Q plot, histogram and the fitted pdf show that the
DTZ-W distribution fits the data very well. The TTT plot of the second data set represents the bathtub
hrf which is one of the hrf shapes of the DTZ-W distribution given in Figure 2(a) and 2(b). The bathtub-
shaped TTT plot reflects the typical lifecycle of many products, including electrical appliances, where
there is a phase of early failures, followed by a period of stability (useful life), and then a wear-out
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Table 8. The ML estimates, SEs, AIC, BICs, CAIC, K-S statistics and its p-values for fitted
distributions

Model Parameter Estimate SEs K-S P-value -2lnL AIC BIC CAIC

α 0.9825 0.1424
γ 1.4706 0.1770

DTZ-W θ 0.4149 0.1446 0.0833 0.9866 26.3745 32.3745 36.5781 33.2975
c 0.014 0.1732
d 1.649 0.1909

α 0.8639 0.1373
Z-W γ 0.7007 0.1349 0.15 0.5130 107.371 113.371 117.575 114.294

θ 0.5506 0.1381

α 2.3731 0.2429
γ 0.4596 0.1421

DTEIW θ 0.3955 0.1457 0.1667 0.3777 32.1318 38.1318 42.3354 39.0548
c 0.014 0.1732
d 1.649 0.1909

α 2.7716 0.2682
β 0.6414 0.1356

TWPL λ 1.4897 0.1785 0.2167 0.1197 54.3423 62.3423 67.9471 63.9423
γ 2.5933 0.2571

α 2.6258 0.2592
γ 0.5151 0.1395

TLLW β 2.9954 0.2816 0.1333 0.6647 51.762 59.762 65.3668 61.362
λ 0.9556 0.1411

θ 0.7186 0.1349
λ 4.2723 0.3491

TEMOW α 0.2612 0.1546 0.1833 0.2671 132.683 140.683 146.287 142.283
β 1.8919 0.2092

phase as the appliances age. This indicates that precautionary measures could be considered during the
early stage to address defects and extend the operational lifespan, and maintenance strategies may be
needed towards the end to reduce the impact of wear-out failures.
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Figure 1. Plots of the pdf of the DTZ-W distribution
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Figure 2. Plots of the hrf of the DTZ-W distribution
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Figure 3. TTT-plot, P-P plot, Q-Q plot, histogram and the fitted pdf for the DTZ-W distri-
bution for Application I
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Figure 4. TTT-plot, P-P plot, Q-Q plot, histogram and the fitted pdf for the DTZ-W distri-
bution for Application II
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10. Conclusion

In this paper, a new truncated family of distributions called the DTZ-G family of distributions
is presented, also the DTZ-W distribution as a sub model of this family is proposed. The DTZ-W
distribution is flexible and has a variety of shapes of the pdf and hrf. Some of different statistical
properties such as hrf, quantile function, moments, order statistics and entropies are derived. The ML
method is used to estimate the unknown parameters. The simulation study is performed to investigate
the effectiveness of the ML estimates of the DTZ-W distribution parameters, rf and hrf. Two real
data sets are applied to show the flexibility and applicability of the DTZ-W compared with other
distributions.

References

1. Abid, S. H. and Jani, H. H. (2020). Properties of two doubly-truncated generalized distributions.
Journal of Physics: Conference Series. https://dx.doi.org/10.1088/1742-6596/1591/1/012097.

2. Abid, S. H. and Kadhim, F. J. (2021). Doubly truncated exponentiated inverted Gamma distribu-
tion. Journal of Physics: Conference Series. https://dx.doi.org/10.1088/1742-6596/1999/1/012098.

3. Ahmed, Z. (2018). The Zubair-G family of distributions. Annals of Data Science.
https://doi.org/10.1007/s40745-018-0169-9.

4. Akbarinasab, M., Arabpour, A.R. and Mahdavi, A. (2019). Truncated log-logistic family of distri-
butions. Journal of Biostatistics and Epidemiology, 5(2): 137-147.

5. AL-Hussaini, E. K., AL-Dayian, G. R. and AL-Angary, A.M. (2006). Bayesian prediction bounds
under the truncated Type I generalized logistic model. Journal of the Egyptian Mathematical Soci-
ety, 14 (1): 55-67.

6. Al-Marzouki, S. (2019). Truncated Weibull power Lomax distribution: statistical properties and
applications. Journal of Nonlinear Sciences and Applications, 12: 543–551.

7. Al-Noor, N. H. and Hadi, H. H. (2021). Properties and applications of truncated ex-
ponential Marshall Olkin Weibull Distribution. Journal of Physics: Conference Series.
https://dx.doi.org/10.1088/1742-6596/1879/3/032024.

8. Al-Noor, N. H. and Hilal, O. A. (2021). Truncated exponential Topp Leone exponen-
tial distribution: properties and applications. Journal of Physics: Conference Series.
https://dx.doi.org/10.1088/1742-6596/1879/3/032039.

9. Al-Omari, A. I. (2018). Acceptance sampling plans based on truncated life tests for Sushila distri-
bution. Journal of Mathematical Fundamental Science, 50 (1): 72-83.

10. Al-Yousef, M. H. (2002). Estimation in a doubly truncated Burr distribution. Journal King Saudi
University Admin Sciences, 14 (1): 1-9.

11. Asadi, M. (2006). On the mean past lifetime of the components of a parallel system. Journal of
Statistical Planning and Inference, 136: 1197 – 1206.

12. Ateya, S. F. and AL-Hussaini, E. K. (2012). On truncated generalized Cauchy distribution. Journal
of Mathematical and Computational Science, 2(2): 289-304.

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 1, 222–257



256

13. Aydin, D. (2018). The doubly-truncated exponentiated inverse Weibull distribution. Anadolu Uni-
versity Journal of Science and Technology B- Theoretical Sciences, 6 (1): 55 – 74.

14. Balakrishnan, N. and Aggarwala, R. (1996). Relationships for moments of order statistics from the
right-truncated generalized half logistic distribution. Annals of the Institute of Statistical Mathe-
matics, 48 (3): 519-534.

15. Khalaf, R. Z. and Al-Kadim, K. A. (2020). Truncated Rayleigh Pareto distribution. Journal of
Physics: Conference Series. https://dx.doi.org/10.1088/1742-6596/1591/1/012106.

16. Kizilersu, A., Kreer, M. and Thomas, A. (2016). Goodness-of-fit testing for left-truncated two-
parameter Weibull distributions with known truncation point. Austrian Journal of Statistic, 45:
15–42.

17. Lawless, J. F. (2011). Statistical models and methods for lifetime data. John Wiley & Sons, New
York.

18. Murthy, D. N. P., Xie, M. and Jiang, R. (2004). Weibull Models. John Wiley and Sons, Inc.,
Hoboken, New Jersey.

19. Nadarajah, S. (2008). A truncated inverted beta distribution with application to air pollution data.
Stoch. Environ Res, Risk 22: 285-289.

20. Najarzadegan, H., Hossein M. and Hayati, S. (2017). Truncated Weibull-G more flexible and more
reliable than Beta-G distribution. International Journal of Statistics and Probability, 6(5):1-17.

21. Neamah, M. W. and Qasim, B. A. (2021). A new left truncated Gumbel distribution: prop-
erties and estimation. Journal of Physics: Conference Series. https://dx.doi.org/10.1088/1742-
6596/1897/1/012015.

22. Nurminen, H., Rui, R., Ardeshiri, T., Bazanella, A. and Gustafsson, F. (2016). Mean and covari-
ance matrix of a multivariate normal distribution with one doubly truncated component. Technical
Report from Automatic Control at Linkoping University, 3092: 1-3.

23. Okasha, M. K. and Alqanoo, I. M. A. (2014). Inference on the doubly truncated gamma distribution
for lifetime data. International Journal of Mathematics and Statistics Invention, 2(11): 1-17.

24. Raschke, M. (2012). Inference for the truncated exponential distribution. Stochastic Environmental
Research Risk Assessment, 26:127-138.
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