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Abstract: Internet-of-things (IoT) systems are expected to be integral to every aspect of human life. The number of IoT applications 

is exponentially growing, especially the low-power wide-area network (LPWAN). LPWAN is an emerging IoT networking paradigm 

with three main characteristics: low-cost, large-scale deployment, and high energy efficiency. IoT systems are becoming more and 

more important in a variety of areas, and LPWAN are essential because of their affordability, scalability, and energy efficiency (EE). 

One of the most popular LPWAN technologies, LoRaWAN, has performance issues with resource allocation (RA). This article 

investigates the architecture of the LoRaWAN network, emphasizing its primary resources and their characteristics. We classify 

current RA approaches, talk about important obstacles, and investigate future perspectives for LoRaWAN RA research. We also 

report a case study that improves resource distribution in LoRa networks by applying Spreading Factor Optimization (SFO) and the 

Hungarian algorithm. Our results demonstrate that, in comparison to conventional methods, the suggested SFO and Hungarian-based 

RA algorithms efficiently lower power consumption and enhance EE. 

 

Keywords: LoRa, LoRaWAN, Resource allocation, Hungarian Algorithm, Spreading Factor Optimization algorithm. 

 

1. Introduction 

IoT networks are growing quickly, with the goal of 

connecting half a billion devices for use in smart cities, 

industry, and sensing to improve sustainability and 

efficiency. A crucial IoT solution, LPWAN technologies 

allow for long-range, low-power communication that is 

perfect for energy-constrained sensors [1]. With an emphasis 

on cost-effectiveness, coverage, data rate, and power 

efficiency, LPWANs offer a different approach to wireless 

WANs than traditional ones, which prioritize high data rates 

and low power consumption. Cellular (such LTE-M and NB-

IoT) and non-cellular (like LoRa, ZigBee, Sigfox, and 

Ingenu) LPWAN technologies are separated out. LoRa and 

other non-cellular LPWANs use unlicensed frequency 

spectrum to function. LoRa Alliance supports LoRa, a well-

known non-cellular technology utilized in smart cities, 

agriculture, environmental monitoring, and industrial. 

Because LoRa operates in the congested ISM frequency 

region, efficient RA and interference management are 

necessary to guarantee peak performance [2].The purpose of 

this study is to investigate different RA mechanisms used by 

LoRaWAN, a major player in the LPWAN industry. 

Furthermore, we present an approach that is both 

straightforward and efficient for optimizing power 

consumption in LoRa networks by the strategic assignment 

of subcarriers and spreading factors to various LoRa nodes. 

 

  

The main contributions of this work can be summarized 

as follows: 

 Compare with different methods of resource allocation 

in the LoRa network with a specific focus on Spreading 

Factor as well as Transmit Power. 

 Come up with ideas that can be used to decrease the 

amount of energy that is used by LoRa networks but 

still maintain its performance which is an aspect rarely 

addressed in other studies. 

 Analyze actual situations showing how network 

performance and power consumption are impacted by 

various combinations of Spreading Code, Transmit 

Power, and Spreading Factor. 

 Present concrete steps that will help improve existing 

design concepts of LoRa networks for the operators to 

be able to make decisions based on our results. 

The rest of the paper is organized as follows: Section 2 

provides an overview on LoRa and LoRaWAN. Then, 

Section 3 surveys resources allocation methodologies in 

LoRaWAN and sheds the light on some interesting RA 

challenges and future research directions in LoRaWAN. 

Section 4 provides our System Model. Section 5 discusses 

our results. Finally, the paper is concluded in Section 6. 
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2. OVERVIEW ON LORA AND LORAWAN 

This section provides an overview on the main 

components and principles of operation of LoRa and 

LoRaWAN. 

2.1 LoRa Technology 

   LoRa, which was created by Cycleo in 2009 and later 

acquired by Semtech, is a widely used LPWAN technology 

because of its inexpensive, self-contained network 

architecture in unlicensed ISM bands. The chirp signals of 

LoRa are modulated using Chirp Spread Spectrum (CSS) to 

enhance robustness against noise and interference while 

requiring less power. Its coverage range is usually between 5 

and 15 km. Ten chirps are used as a preamble in every LoRa 

packet, and then the data payload and six synchronization 

chirps follow. Depending on the Spreading Factor, chirps 

can encode several bits. For instance, SF9 encodes nine bits. 

Although they reduce data rate, higher SF values increase 

noise resilience [2]. The SF is not the sole parameter or 

resource in LoRa networks. Below, we outline various 

resources, their permissible ranges, and their interrelations as 

documented in [3]: 

 Code Rate (CR): Within the fields of information 

theory and telecommunications, CR denotes the 

percentage of the data stream that comprises valuable, 

original information. CR values 4/5, 4/6, 4/7, and 4/8 

are available for LoRaWAN. 

 Carrier Frequency (CF): LoRa works on license-free 

sub-GHz ISM bands, which vary by region and include 

433 MHz, 868 MHz, and 915 MHz. LoRa operates in 

the 868–870 MHz range with nine channels throughout 

Europe. The first three channels, each with a bandwidth 

of 125 kHz, are required. FSK modulation is used on the 

ninth and tenth channels, which are both at 868.3 MHz 

and have a bandwidth of 250 kHz. 

 Bandwidth (BW): The band of frequencies used to 

send signals is referred to as BW. Different BW in 

LoRaWAN are available: 7.8, 10.4, 15.6, 20.8, 31.2, 

41.7, 62.7, 125, 250, and 500 kHz. But only 125 kHz 

and 250 kHz BWs are used in Europe. 

 Transmission Power (Ptx): LoRa nodes are allowed to 

send signals between 2 and 14 dBm in range. 

 Spreading Factor (SF): in LoRa is represented by a 

number between 7 and 12. While higher SF values 

decrease data throughput and increase airtime, they also 

boost signal quality and communication range [3]. 

Although perfect orthogonality isn't realistically 

feasible, SFs are ideally thought of as orthogonal in 

LoRaWAN to avoid interference [4]. 

2.2 LoRaWAN Architecture 

LoRaWAN is a MAC layer protocol developed by the 

LoRa Alliance that makes use of Semtech's LoRa technology 

[5]. With end devices, gateways, and network/application 

servers arranged in star network architecture, they are 

compatible with device classes A, B, and C. Data is sent by 

end nodes (ENs) to gateways, which then route it to network 

servers as shown in Fig.1. LoRaWAN manages data rates 

and minimizes collisions, making it ideal for the Internet of 

Things due to its great range, low cost, low power 

consumption, and resilience in unlicensed spectrum [6].  

 
 

FIGURE 1. LoRaWAN Architecture. 

3. RESOURCES ALLOCATION 

METHODOLOGIES AND METHODOLOGIES IN  

LORAWAN  

This section outlines RA methods in LoRaWAN, 

emphasizing their impact on system performance, including 

throughput, energy use, data rates, and range. Resource 

Allocation Methodologies 

- Distance-Based SFs Allocation 

LoRa end devices that participate in distance-based SF 

assignment get SFs determined by how close they are to the 

gateway. For shorter Time on Air (ToA), lower sensitivity, 

lower energy consumption, and faster data speeds, devices 

close to the gateway receive smaller SFs. Larger SFs 

improve communication range with increasing distance, but 

the advantages of smaller SFs are diminished. SFs 

Allocation Based on Channel State Information (CSI) [4]. 

Shadowing and channel fluctuation are not taken into 

account in distance-based SF allocation. In order to solve 

this, a plan that was put up in [7] assigns SFs in accordance 

with real-time CSI, outperforming more established 

distance-based techniques in terms of performance. 

- Adaptive Data Rate (ADR) 

For LoRaWAN to maximize spectrum efficiency, 

network servers can dynamically modify parameters like SF, 

BW, and Ptx thanks to ADR. The server determines the 

optimal configuration for dependable message receipt at 

gateways by evaluating signal strength; these changes are 

then communicated to ENs. While [9] established the 

Enhanced ADR (EADR) method, which balances energy 

consumption and delivery ratio by using capture effect and 

other parameters to optimize end-node performance, [8] 

employed ADR to increase EE and packet delivery ratio in 

noisy suburban regions. 

- Heuristic Algorithms (HA) 

In LoRaWAN, HA gives approximate answers by 

prioritizing speed over precision. A heuristic approach for 

optimizing LoRaWAN parameters, such as CF and SF, was 

created in [10]. Its goal is to increase packet delivery by 

decreasing channel use and packet collisions. In a similar 

idea, it is suggested a heuristic technique to increase network 
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throughput, communication range, and connection 

dependability while reducing power consumption and 

collisions [3]. 

- Genetic Algorithm (GA) 

By modeling natural selection, GA solves both bounded 

and unbounded problems optimally. Through the 

optimization of SFs and Ptx for ENs and the strategic 

distribution of channels to address near-far concerns. To 

choose the best transmission configurations based on 

different quality of service (QoS) needs, [11] authors 

presented a hybrid genetic-fuzzy logic technique. To 

improve system performance overall, this approach—which 

was tested for voice, text, and image transmission—included 

a unique ADR model. 

- Traditional Machine-Learning (ML) Methods 

Research on machine learning methods for SF 

assignment in LoRa networks has been spurred by recent 

developments in the field. SF assignment, for example, is a 

classification problem that [14] suggests addressing with 

support vector machine (SVM), Naive Bayes, and K-nearest 

neighbor (KNN) approaches given the normal SF range of 7 

to 12. 

- Reinforcement-Learning (RL) Methods 

Along with supervised and unsupervised learning, RL is 

a fundamental machine learning technique that teaches an 

agent how to map circumstances to behaviors in order to 

maximize rewards in the future. Channel selection, SF, and 

other network resources can all be optimized with the help of 

RL. In [12], the best transmission parameters were chosen 

using centralized multi-agent reinforcement learning 

algorithms, where agents represented LoRa nodes and made 

use of Deep Q-Networks (DQN). In a similar idea, it is 

suggested resource management plans for SFs with a 

restricted number of channels in order to save energy 

expenses in LoRa networks by approximating the action-

value function with deep neural networks (DNNs) [13]. 

Also, in [1] the authors use the reinforcement learning 

method is used to determine the parameters involved for 

minimizing the transmission power. 

- Integer Linear Programming (ILP) 

Taking into consideration network characteristics, 

application requirements, and trade-offs between data rate, 

range, and power consumption, ILP is used for SFO in LoRa 

networks to choose the best SF for data transmission. ILP 

seeks to balance these aspects in order to improve network 

performance. Larger SFs take longer to transmit data, but use 

less power overall. Lower SFs require more power. Selecting 

the right SF helps save power usage without sacrificing 

reliability of performance [15]. Section 4 will explore ILP 

using the SFO to significantly improve performance. 

3.1 Resource Allocation Challenges 

Multi-Armed Bandits (MAB) For LoRaWAN 

Resources Allocation 

MAB is a reinforcement learning method where an agent 

chooses from a variety of possibilities (or "arms") in order to 

maximize rewards. It was inspired by bandit machine games. 

Identifying the most rewarding behaviors requires striking a 

balance between taking use of known ones and investigating 

unknown ones. When creating communication algorithms 

and allocating resources in LoRa networks, MAB is 

especially helpful. Different combinations of parameters 

(SF/BW/CF/CR) are regarded as bandits in this context, and 

performance measures like data rate, EE, and latency are 

reflected in the rewards. 

 Deep-Learning (DL) Based Collision Detection 

and SF Assignment 

DL is a branch of machine learning that uses multiple 

layers of artificial neural networks (ANNs) to automate 

feature extraction while simulating the human brain. In 

contrast to conventional techniques that depend on 

characteristics that be manually retrieved, DL modifies 

weights and biases while training on sample data. DL has 

been utilized to optimize Ptx for EE in LoRa networks. This 

uses real-world data to train ANNs directly, which has been 

shown to be over ten times more successful than 

conventional model-based methods. 

 Joint SubCarrier, SF, and Time-Slots Allocation 

Research on SF assignment in LoRa networks 

demonstrates how it affects performance, although other 

factors also have an impact. Consequently, a combined 

method that takes into account other variables like time slots 

and subcarriers is required. It is predicted that a combined 

SF-time slot-subcarrier approach will greatly enhance 

performance. 

* The Resources Allocation Methodologies are 

summarized in Table 1. 

 

TABLE 1.  Summary of Resources Allocation Methodologies in LoRa Networks 

 

 Used Methods Ref. Simulation Tool Contribution 

 

1 

Distance-Based SFs 

Allocation method 

 

[4] 

Numerical Simulation 

Matlab 

 

Enhance throughput at imperfect Sfs 

 

2 

CSI-Based SFs 

Allocation 

[7] Matlab Using Dynamic SF to improve the performance 

 

 

3 

 

Adaptive Data Rate 

(ADR) 

[8] OMNET ++ With 

FloRa 

Reduce EC and enhancing the PDR 

[9] Python Optimize EC and delivery ratio by CR 
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4 

Heuristics 

Algorithm 

Method (HA) 

[3] Matlab Decrease PC and increase network throughput 

[10] LoRaSim Decrease PC and Increase PD 

 

5 

Genetic Algorithm 

Method (GA) 

 

[11] 

 

FUZZY logic 

 

Select optimal Tx configuration with required 

QOS 

 

 

6 

 

Reinforcement 

Learning 

Method (RL) 

[12] PyLTEs optimization Presenting a novel heuristic algorithm for LoRa 

[13] OPNET with Python Showing a good performance in terms of EC 

[1] Python  Use RL to enhance resource allocation efficiency 

in LPWANs 

 

7 

Traditional 

Machine Learning 

(ML) 

[14] Numerical Simulations Proposed a SF assignment using traditional ML 

 

8 

Integer Linear 

Programming (ILP) 

 

[15] 

 

LoRaSim 

Present an energy-efficient ILP to optimize SF 

allocation 
 

4. SYSTEM MODEL 

The focus of this work is on a LoRaWAN network 

consisting of a single GW and ENs. Around the GW, the 

ENs are evenly dispersed over a circle with a radius of 𝑅 = 

20 km. Both small-scale and large-scale fading are expected 

to occur in the channels connecting the GW to ENs. It is 

anticipated that the channel ℎ𝑛 of the 𝑛𝑡ℎ end node will fade 

on a small scale according to an independent identically 

quasi-static Rayleigh distribution. The Log distance path loss 

model with shadowing is used to express the large-scale path 

loss between the GW and the 𝑛𝑡ℎ end node, as follows [18]: 

                
 

    
             (

  

  
)                     

Where 𝑑𝑜 is the reference distance, 𝜆 is the wavelength, 

and   is the path loss exponent for an end node at distance 

𝑑𝑛 from the GW, and     is the path loss in dB. Every end 

node uses a Chip Spread Spectrum modulated signal on a 

particular sub-carrier and SF to send its messages to GW. 

The GW receiver's sensitivity level and data transmission 

rate are both managed by the SF. Larger SFs boost 

sensitivity, which increases LoRa signal communication 

range. The following equation can be used to determine the 

sensitivity of the GW [18]:  

              𝑜            𝑅                      

The thermal noise power at a BW of 1 Hz is represented 

by the constant value of -174. The temperature of the 

receiver, however, may cause variations. The receiver's noise 

floor, indicated by   , is determined by the hardware 

architecture of the receiver. The threshold SNR for 

identifying the received signal for a given SF is denoted by 

  𝑅     Furthermore, the smallest P(𝑛, SF) value needed for 

the 𝑛𝑡ℎ end node to be successfully received at the GW on a 

particular SF can be stated as follows if   and    are 

identified [18]:   

                                                                                   

It's important to note that LoRa ENs can range from 2 

dBm to 20 dBm in power. However, because of hardware 

limitations, the maximum power is usually limited to 17 

dBm. 

Proposed Algorithm (Alg1): In order to reduce the 

overall network Ptx, we provide a RA mechanism that 

allocates the best SFs and frequency channels. There are 48 

SF-SC combinations (6 SFs and 8 SCs) that each EN can 

utilize. LoRa channels have center frequencies separated by 

0.3 MHz and operate in the unlicensed EU863-870 MHz 

range. In order to improve noise and interference robustness, 

the upper layers of LoRaWAN, which are based on 

Semtech's CSS modulation, employ chirp signals that exhibit 

linear frequency change over time. The SF, which varies 

from 7 to 12, determines how many data bits are sent every 

chirp. For example, modulating seven data bits per signal 

when using SF7. As a result, increasing the SF lengthens a 

packet's transmission time, or ToA, which is defined as [17]: 

 𝑜   𝑛   
   

  
                                                                          

Where 𝑛 the number of symbols per packet, and    is 

the signal BW. This means that the SF is inversely 

proportional to the achievable data rate, which is given as 

follows [3]: 

𝑅    𝑅     
  

                                                                 

When several ENs utilize different SFs, they can transmit 

on the same sub-carrier without interfering with each other 

since LoRa signals with different SFs are, in theory, 

orthogonal. Concurrent transmissions and IoT connectivity 

are improved by this orthogonality. It is not possible to 

achieve full orthogonality, and the capture effect may result 

in interference if different nodes utilize the same sub-carrier 

and SF at the same time. According to Table I of [19], if a 

signal's signal-to-interference-plus-noise ratio (SINR) is 

higher than its co-SF interference threshold, the signal will 

survive. Therefore, preventing collisions, reducing power 

consumption, and enhancing bit error rate (BER) 

performance all depend on an efficient SF and sub-carrier 

assignment mechanism. When determining the Ptx needed to 

satisfy the SF's target SNR and sensitivity thresholds, each 

end node should take into account the SF, SC, gateway 

distance, and channel condition data. With an O(|V|
3
) 

complexity, the Hungarian method (Kuhn-Munkres) is 

ideally suited for effectively matching ENs with SF-SC 

combinations in order to maximize performance. Figure 2 
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shows that the Ptx needed for an end node to employ a 

certain SF-SC combination is represented by the weight of 

each edge. The input for the Hungarian method is a square 

(M × N) cost matrix formed by these weights, as indicated in 

Table 2. The larger set's size, M, is indicated here (M = max 

(N, C)). Dummy combinations with no cost are added to the 

rows if (N > C). This configuration leaves certain nodes 

unserved for the following time slot while serving the ENs 

with the least amount of total power consumption1. On the 

other hand, if (N < C), some SF-SC combinations are left 

unutilized when dummy ENs with no cost is added to the 

columns. 

 

FIGURE 2.  Hungarian Matching. [17] 

 

TABLE 2.  Hungarian Cost Matrix. 

 

 CM                   

ENN 

C1 C2 … Cm … CM 

EN1 P1,1 P1,2 … P1,m … P1,M 

EN2 P2,1 P2,2 … P2,m … P2,M 

… … … … … … … 

ENn Pn,1 Pn,2 … Pn,m … Pn,M 

… … … … … … … 

ENN PN,1 PN,2 … PN,m … PN,M 

a Where Pn,m is the transmit power at n end node and m combination of 

SF-SC 

 

Each EN can be assigned one of 48 SF-SC combinations 

given LoRa's six SF values (SFi) for (i ∈ {7, 8, 9, 10, 11, 

12}) and eight subcarriers (SCj) for (j ∈ [1, 8]). Certain 

formulas can be used to calculate the transmit power (Pn,m) 

required for the nth end node using the (m
th

) combination. 

The work is formulated as an optimization problem with the 

goal of minimizing overall power consumption and 

preventing collisions, which will enhance BER and decrease 

retransmissions. This problem falls under the category of a 

Linear Sum Assignment Problem (LSAP), which is a 

fundamental combinatorial optimization problem with wide 

applicability that includes matching two sets (ENs and SF-

SC combinations) [16], [20]. 

The proposed problem can be expressed as follows [17]:  

  𝑛      ∑ ∑                
 
   

  
                                                                                                                   

Subject to  

                   𝑛 ∈           ∈                  

∑                                            ∈                                                                                     

 ∑                                                𝑛 ∈                   𝑑                                                                  

     ∈                   𝑛 ∈           ∈                   

The assignment element is represented as  𝑛,m, where m 

= 1 if the 𝑛𝑡ℎ ENs are allocated the  𝑡ℎ combination (  ) and 

zero otherwise. Considering that   = { 𝑛,m} is the MXN cost 

matrix,  𝑛,m is the cost of assigning the 𝑛𝑡ℎ and the  𝑡ℎ 

entries. The goal is to find an assignment that will cost the 

least overall. The sensitivity (S𝑛,m) of EN𝑛 is greater than the 

sensitivity threshold of the     of    combination, as 

indicated by constraint (6b) [19]. Each combination can only 

be allocated to one EN, according to constraint (6c). 

Constraint (6d), on the other hand, guarantees that every end 

node is allocated to a maximum of one combination. 

Between end node 𝑛 and combination  , constraint (6e) 

represents a binary selection index. The literature has used a 

variety of algorithms to solve LSAPs. In 1946, Easterfield 

presented a non-polynomial method with an O (2𝑛 𝑛2
) time 

complexity [21]. Kuhn introduced the Hungarian algorithm 

in the 1950s, which uses graph theory and the duality of 

linear programming to solve the problem in O (𝑛4
) time [22]. 

Further reductions in the complexity of LSAP to O (𝑛3
) were 

achieved by Munkres [23], Edmonds, and Karp [24] using 

variations of the Hungarian method.  

 If constraint (6b) holds true for the 𝑛th
 EN and   , 

the weight of the edge between them, as depicted in 

Fig. 2, represents the minimum required power for 

successful reception ( 𝑛, ).  

 If any constraint is violated, a significantly large 

power value is assigned to the corresponding edge 

to discourage its selection during RA.  

 The Hungarian algorithm addresses the matching 

problem using a square matrix. Given that we have 

  >  , we introduce (  −  ) dummy combinations 

starting from row   + 1.  

 Upon completion of the algorithm, if any end node 

is matched with a dummy combination, it indicates 

that this end node is inactive during the current time 

slot. The Kuhn-Munkres Hungarian algorithm takes 

the cost matrix as input and produces the optimal 

assignment matrix. In this matrix, each row and 

column is represented as a one-hot vector, 

containing a single logic-one element, with all other 

elements being logic-zero.  

 To further clarify the implementation details of the 

proposed Algorithm, we present the pseudo code for the 

Hungarian Method applied to resource allocation in 

LoRa networks: 

1: Input: Cost matrix C of size n × m where n is the number of 

End Nodes and m is the number of resources. 

2: Output: Allocation matrix A and minimum cost. 

3: Initialize matrix C′ from matrix C by subtracting row minima. 
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4: Subtract column minima from matrix C′. 

5: Initialize zero matrix A of size n × m. 

6: while not all rows and columns are covered do 

7: Find the optimal assignment in matrix C′ using the Hungarian 

algorithm. 

8: Update allocation matrix A based on the optimal assignment. 

9: Cover the rows and columns of the assigned zeros. 

10: Update uncovered elements in matrix C′. 

11: end while 

12: Calculate minimum cost based on allocated resources. 

13: return Allocation matrix A and minimum cost. = 0 

 To illustrate the optimization process in resource 

allocation, we provide the pseudo code for the 

Spreading Factor Optimization (SFO) method applied to 

LoRa networks: 

1: Input: Network parameters, channel conditions, and node 

requirements. 

2: Output: Optimal Spreading Factor allocation for each End 

Node. 

3: Initialize array SF to store Spreading Factors for each End 

Node. 

4: for each End Node i do 

5:         Evaluate channel conditions CCi for End Node i. 

6:         if CCi is good then 

7:             Set SF [i] ← 7 {Higher data rate} 

8:         else if CCi is moderate then 

9:             Set SF [i] ← 10 {Balanced approach} 

10:        else 

11:            Set SF [i] ← 12 {Lower data rate for poor conditions} 

12:        end if 

13: end for 

14: Return array SF containing optimal Spreading Factors for all 

End Nodes. =0 

5. RESULTS AND DISCUSSION 

TABLE 3.  Simulation parameters 

 

Parameters Value 

 

Number of End-Nodes (ENs) 

Up to 250 

SF values 7 , 8 , 9 , 10 , 11 and 12 

Reference distance (m) (d0) 40 

BW (kHz) 250 

Variance (sigma) (dB) 3 

Path loss exponent ( ) 4 

No. of channels used (SC) 8 
 

In this section, we provide representative simulations to 

evaluate the performance of the proposed algorithm (Alg1). 

Each time slot is assumed to equal the largest ToA of SF 12 

to avoid interference. Table 3 shows the simulation 

parameters and settings [10]. In the following, we compare 

the performance of the proposed algorithm with:  

- The random assignment algorithm of both SFs and 

SCs without repetition (Alg2): Each EN is randomly 

assigned both SC and SF. The nodes are assumed to 

operate with the minimum power required for successful 

transmission [9].  

- The distance-based SF assignment with maximum 

power (Alg3): According to their respective distances 

from GW, the ENs are assigned SFs [4]. It is assigned 

that the farthest EN has the highest SF and the nearest 

EN the lowest SF. The users receive SCs at random. At 

14 dBm, the maximum power level, each EN operates.  

- The distance-based assignment with Hungarian 

channel assignment (Alg4): The ENs receive SFs 

according to how far away they are from GW. 

Concurrently, SCs are distributed utilizing the 

Hungarian algorithm to guarantee that the system runs 

with the least amount of overall power consumption.  

- The random assignment algorithm of both SFs and 

SCs with repetition (Alg5): Random SF and SC 

assignments are made to every EN, which uses the least 

amount of power necessary for successful transmission. 

To prevent interference, numerous time slots are used, 

with each time slot equal to the longest ToA for SF 12 

for   > 48, which exceeds the number of eligible SF-SC 

combinations ( ). 

Fig. 3, The power consumption of the five algorithms is 

plotted against the number of end nodes (where   ∈ {50, 

100, 150, 200, 250}). Notably, we assume employing 

numerous time slots to be able to service all users for   > 

48, which is bigger than the number of possible 

combinations ( ). To prevent interference, each time slot is 

taken to be equivalent to the longest duration SF 12 is on the 

air. The findings demonstrate that the suggested Hungarian 

algorithm with SFs distribution (Alg1) performs better than 

distance-based assignment with Hungarian and channel 

distribution (Alg4) by 15.78%, random assignment without 

repetition (Alg2) by 40.86%, and distance-based assignment 

with maximum power and random channel distribution 

(Alg3) by 85.83% in total transmitted power. Finally, 

random distribution with repetition (Alg5) by 66.53%. 

The results indicate that Alg5 uses a random distribution 

with repetition, and Alg2 uses a random distribution without 

repetition, producing somewhat comparable results. Also, 

Alg3 has the largest power consumption because it does not 

consider power adaptation. Furthermore, because Alg4 uses 

the Hungarian algorithm to merge power adaption and SC 

allocation, it comes out as the second most effective 

algorithm after our proposed approach. 
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FIGURE 3. Total Transmitted Power at different no. of ENs. 
 

Figure 4 shows the EE of the LoRaWAN system for 

various numbers of ENs (  ∈ {50, 100, 150, 200, 250}) with 

a bandwidth of 250 kHz. The results show that Alg1, the 

suggested Hungarian algorithm, outperforms Alg2, Alg3, 

Alg4, and Alg5 by 73.04%, 96.83%, 56.78%, and 75.65%. 

Undoubtedly, the algorithm we proposed, Alg1, has the 

highest energy efficiency. Alg4, the second-ranked 

algorithm, and Alg3, the least efficient algorithm, are in 

order of decreasing EE. 

 
FIGURE 4. Energy Efficiency at different no. of ENs. 

 

 
 

FIGURE 5. Data rate at different no. of ENs 

 

Figure 5 indicates that the data rate is consistent across 

Alg1, Alg2, Alg3, and Alg4, all outperforming Alg5, which 

has the lowest data rate at 250 KHz. 

The Hungarian method and SFO are compared in Fig. 6 

with respect to the minimal overall transmitted power 

needed for varying numbers of ENs. Because the SFO 

approach uses less power than the Hungarian algorithm, it is 

more effective for LoRa applications that are power-

sensitive. 

 
 

FIGURE 6. Comparison between Hungarian and SFO methods. 

6. CONCLUSION 

This paper has provided a comprehensive overview of 

the applicability of resource allocation techniques in the area 

of LoRa networks. Also, this work shows that the 

performance of the proposed algorithms Hungarian and SFO 

algorithms reduces the power consumption and improves the 

energy efficiency compared with other conventional 

algorithms especially SFO algorithm. The discussion has 

identified challenges and hurdles that need to be addressed to 

establish viable resource allocation protocols for LoRaWAN. 

Our future plan is to test with more than enough end nodes 

and also experiment with different network conditions in as 

many various aspects as possible especially if there are 

diverse rates of work in the situation so we can identify how 

reliable our approach will be under such circumstances. 

Also, our objective is to assess our algorithm we have 

proposed based on different applications which have QoS 

requirements among them that one includes UAVs. 
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