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1. Introduction   

      Content-Based Image Retrieval CBIR is a well-studied 

problem. The retrieval problem typically falls into two 

types: category-level retrieval and instance-level 

retrieval. For example, given an Egyptian Pyramid query, 

a category-level retrieval seeks to locate any pyramids to 

be considered as a match. Whereas an instance-level 

retrieval locates any Egyptian Pyramids to be considered 

a match.  

 

 

 

 

      Regular CBIR techniques may utilize machine learning 

methods, including both unsupervised learning (such as 

Kmeans, Fcmeans, and GMM) and supervised learning 

(such as SVM) as well as advanced deep learning 

approaches. In classifier-based CBIR systems, the 

classifier first identifies and then categorizes the image. 

In [1], the author uses a bag of LBP features and then 

applies classification at a Fully Connected Layer (FCL).  
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 Developing an efficient classifier-based image retrieval system is vital for 
accurately and swiftly retrieving relevant images in computer vision 
applications. Hand-crafted features usually require extensive tuning and may 
fail to generalize across different types of images, making the retrieval process 
labor-intensive and less adaptable. Despite the advancements in deep learning 
for image retrieval, there is limited research on integrating Multi-Query (MQ) 
techniques with deep features for image retrieval. The novel MQ Deep Image 
Retrieval (MQDIR) system exploits this approach to extract deep features from 
an Image Set (IS) and handle MQ simultaneously. The methodology enhances 
the retrieval process by capturing more nuanced image characteristics through 
using MQs that traditional methods might overlook. A new precision-based 
metric is introduced in this study to offer a comprehensive average 
performance evaluation. The metric considers the precision of retrieval results 
across multiple ISs and Convolutional Neural Networks CNNs and allows a finer 
assessment of system performance compared to conventional measures. The 
experiments are conducted on popular benchmark ISs, including texture 
images, and demonstrate that MQDIR consistently outperforms existing 
methods in terms of retrieval accuracy and efficiency. 
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      The region of interest is first identified using SURF 

points then LBP features are extracted and clustered 

using a proposed method called Clustering with Fixed 

Centers to create a bag of LBP features. In [2] a deep 

learning IR method based on hashing distance variance 

for MQ having multiple labels, which computes the 

minimum variation of Hamming hashing distances 

between queries and IS. The variance produces the 

nearest images to the Pareto space center and the hash 

codes of the images are generated by Resnet50. The 

MLMQ-IR method uses a new method depending on 

binary cross-entropy loss and bit-balance loss functions. 

It is competed with six methods depending on multi-label 

and MQ through the benchmark ISs using metrics such as 

NDCG, ACG and wMAP. It is claimed that the method has 

the best average mean rank extracting the most relevant 

images among the other IR methods. CNNs are among 

the most widely used algorithms for image classification. 

Their hierarchical structure and extensive 

parameterization make them highly effective for object 

detection and classification.  

       Usually, CNNs have two main components: the 

Feature Extraction (FE) network and the classifier 

network. The FE network processes the input image, 

performing automatic feature extraction, which is its 

primary benefit. The research in [3] proposes a strategy 

that relies on a weight-learner based on the MQ linear 

weighted combination of the distances between each 

query image and a given image in an IS. The weight of 

each feature descriptor is learned through unsupervised 

learning, allowing discrimination by assigning the largest 

weight to the most relevant feature. The methodology in 
[4], uses hash codes generated by a deep multilabel image 

hashing algorithm for MQ with CNN. Retrieval is based on 

the Pareto front method, and reranking is performed on 

the retrieved images using non-binary deep features, 

which can increase retrieval accuracy. In [5], texture 

features are taken from various pre-trained models like 

DenseNet201, ResNet50, ResNet101, and AlexNet, and 

then SVM is used as a classifier. The performance is 

investigated using the KTH-TIPS, CURET, and Flowers 

texture ISs.  

 

 

 

 

 

 

      In [6], a methodology for predicting tropical storms is 

presented, using a CNN trained on real-time images to 

extract features. This method is assumed to decrease 

delivery time for testing images while increasing 

prediction accuracy. The proposed cloud image 

classification shows 94% prediction accuracy. The 

research in [7-10] presents recent trends and reviews on 

CBIR. This paper is organized as follows: Section 2 

introduces the methodology, Section 3 presents 

experimental results and discussion, and Section 4 offers 

the conclusion and future work. 

 

2.  MQDIR Methodology 

      In Transfer Learning, a pre-trained CNNw receives 

an IS as input and predicts its class labels. Cross-

validation splits the IS into two subsets: a training set 

and a test set. Adjusting the network on the training 

set involves using a subset called the validation set. 

Applying metrics such as accuracy on the training 

images shows training progress, while applying these 

metrics to the test images measures the performance 

on the unseen data. Classifying the test images using a 

fine-tuned pre-trained model is critical, as 

performance is generally influenced by the IS. MQDIR 

follows an ablation procedure for learning which aims 

to determine the contribution of a component to a 

deep learning system by replacing a component, and 

then analyzing the resultant performance of the 

system. The system consists of two phases illustrated 

in Fig. 1 and listings (1 and 2). The first phase involves 

preparing two main elements for the FE process, the 

CNNw model and the ISi. The CNNw are Fine-tuned 

and trained for each IS. The second phase uses the 

MQ approach for the retrieval process for each 

specific model and IS. Consequently, a CNNw is first 

selected and experimented separately with an IS 

which is then replaced with another IS. The ISs that 

contain texture images are selected. The selected 

CNNw provide suitable choice with respect to the 

computational resources and the benchmark ISs. The 

second phase prepares for a main element which is 

the Query Set Size (QSS) and Query Set (QS) members 

selection. The QS selection is based on semantically 

related queries and QSS is changed from size 1 up to 

size 5. The precision is calculated for each experiment 

using MQ retrieval results to measure the system 

performance. 
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2.1. Feature extraction 

        CNNs learn features directly from image data, 

however, they can be combined with handcrafted 

features [12]. The FE network consists of numerous 

Convolutional layers (CL) and FCL Layers. The initial 

layers identify low-level features in an image, such as 

edges, corners, and colors. As the layers deepen, they 

focus on more complex, high-level features like 

identifying wheels in a car, making the features less 

sensitive to image variations. The deep features can be 

extracted from either whole images or image patches.     

      These features are essentially of two types: 

Convolutional Layer features, FCL features, or a fusion 

of both. In [13], it is argued that features obtained from 

the last FCL are effective and high-dimensional global 

feature descriptors that reflect semantic information. In 

such a case, it may require dimensionality reduction 

methods to obtain low-dimensional features. The 

performance of different layers varies throughout the 

retrieval process, with FCL features often achieving 

better results on standard retrieval ISs. In [14], FCL 

features are used to generate hash codes for medical 

CBIR. Research in [15] demonstrated high performance in 

high-resolution remote sensing image retrieval using 

FCL features from a fine-tuned, pre-trained CNN. 

Deeper models are computationally expensive and 

beneficial for learning higher-level abstract features, 

which helps mitigate the semantic gap. Images often 

contain multiple semantics, making it challenging to 

search for images with multiple meanings. Using 

semantically related MQ techniques, rarely exploited, 

can assist this process by highlighting the relevant 

semantics. More detail about the FE process from CNNs 

according to the model selected are found in section 3. 

2.2 The MQ Approach 

       This approach increases the amount of information 

gathered from the queries, which is crucial for the 

retrieval process. MQDIR uses a QS of images with 

arbitrary QSSs for retrieval. For example, if QS = {Q1, 

Q2}, then QSS = 2. Given QS= {Q1, …, Q5}, the QSS =1, …, 

5 selected from QS. The QS should include semantically 

related images containing some object to strongly 

declare its properties. The abundance of semantically 

similar objects in the IS should boost the retrieval of 

similar objects. The literature on MQ retrieval mainly 

presents two different approaches: Early Fusion and 

Late Fusion.  

 

     Early Fusion is a feature-level fusion approach that 

combines queries in the feature space. It involves 

accumulating the features of multiple queries into a 

single feature vector (MQ_FV) before the image search 

process, then using MQ_FV for similarity inspection in 

the retrieval process. Early Fusion combination methods 

include MQ-maximum, MQ-average, and MQ-sum 

functions [3]. Preprocessing steps like normalization may 

be required to ensure that the features are on the same 

scale [15]. Late Fusion is a decision-level fusion method, it 

processes the queries individually and then combines 

their retrieval results into a single list. Examples of Late 

Fusion methods include Max Similarity of accumulated 

retrieval results and weighted similarity where each 

retrieved image is ranked according to the weight of the 

query [16]. The selection between early and late fusion 

depends on factors, including efficiency, performance, 

and the specific application. Listing 1 provides the 

algorithm of the MQDIR FE phase for any ISs. Listing 2 

provides a detailed description of MQDIR retrieval 

process for a specific IS. We have chosen early fusion 

since it is usually more computationally efficient, while 

late fusion can provide higher flexibility and accuracy at 

the cost of additional computation, due to multiple 

retrieval operations, and memory usage. To accurately 

characterize performance, the retrieved images are 

often assessed using well-known retrieval performance 

measures, such as Precision-based metrics. 

 

3. MQDIR Experimental Results and Discussion 

       To perform CNN learning, a collection of labeled ISs 

should be available, if not they need to be labeled 

manually, which can be labor-intensive. Several popular 

image sets are used in computer vision research, such as 

those from the ImageNet project, COCO, and Google 

Open Images. For example, ImageNet provides labels for 

entire images or bounding boxes for objects within 

images. Other widely used benchmarks include CIFAR-

100, Oxford 102, and Oxford-IIIT Pets. Selecting popular 

benchmark image sets and CNN models provides ways 

for comparing results with other approaches. There is 

little research on CNN with MQ texture retrieval. MQDIR 

is experimented with widely used five benchmark ISs 

(Table 1) that contain texture images as follows. 

Describable Texture Dataset (DTD): a challenging 

texture IS where each category with images containing 

at least 90% of the category's semantic content [17].  
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        KTH-TIPS: A texture IS containing same-sized 

categories, each with 81 images [5]. Flowers IS: A part of 

the DPhi Data Sprint#25: Flower Recognition, purely 

flowers texture IS [18]. Caltech 101: A general IS with 

categories that have large object variations and messy 

backgrounds. Some classes include textures such as 

airplanes, bonsai, sky, flowers, grass textures, and 

dotted and striped animals [19]. GHIM-10K: A natural 

general IS containing textures [20]. All experiments in this 

study are conducted using MATLAB PC with the 

following configuration: Intel(R) Core (TM) i7-5500U 

CPU @ 2.40GHz, 16 GB RAM, x64-based processor, and 

a single Nvidia GTX950 GPU. 

3.1. CNN Parameter Selection and Tuning 

       Two popular pre-trained CNNs were utilized in the 

experiments. The first CNN1 is AlexNet, consisting of 25 

layers, (referred to as A) [21] was initially trained on over 

one million images and is capable of classifying images 

into one thousand categories, including various objects 

and animals. A requires input images of size 227-by-227-

by-3, the image data augmenter preprocesses images 

before training and validation to automatically resize 

the training images to the required size, randomly flip 

the training images along the vertical axis, and randomly 

translate them up to 30 pixels horizontally and 

vertically. Also color preprocessing (gray to color image 

transform) to ensure that all output images have the 

number of channels required by the input layer in case 

the image datastore contains a mixture of grayscale and 

RGB images. The features of A are extracted from the 

23rd (FCL1) layer, producing one thousand features while 

the 24th layer further processes these values into binary 

outputs.  

       The second CNN2 is ResNet18, consists of 71 layers, 

(referred to as R) but requires input images sized 

224x224x3 then a similar preprocessing mentioned for A 

is used. R incorporates additional CLs to extract more 

abstract features and employs skip connections 

between CLs to address the vanishing gradient problem 

during training. For this experiment, only the final three 

layers of R were replaced with a new FCL2, a softmax 

layer, and a classification output layer to adapt the 

network for different classification tasks. This 

customization allows R to be fine-tuned for the new ISs 

and FCL2 is set to match the number of classes in the IS. 

MQDIR uses features extracted from the 69th layer of R, 

where the number of features extracted from this FCL2 

is one thousand.  

     The input ISs are divided into 70% for training and 

30% for testing. In [22] a deep learning approach to 

classify blood smears images, total of 18,365 images, to 

its morphological classes of leukocytes. The results show 

classification accuracy of 93.30% and 93.85% for 

AlexNet and ResNet18 respectively. In [23] a deep 

learning approach for Face recognition using FERET IS 

consisting of 14,126 images, the classification accuracy 

for Resnet18 and AlexNet are 96.3% and 93.3%, 

respectively.  

      Model Overfitting can occur if the model memorizes 

the details of the training images rather than learning to 

generalize. To ensure the prevention of overfitting in 

MQDIR’s models. First, image pre-processing techniques 

such as data augmentation are used to help prevent 

both overfitting and remembering the precise specifics 

of the training images and additionally regularizing the 

model in order to improve testing accuracy on several 

ISs. The shuffling of the training images before training 

and between epochs, as well as the shuffling of the 

validation images before each validation, helps prevent 

model overfitting by ensuring that batches represent 

the entire training set and are independent of ordering.      

      The initial fine-tuning experiments used batch sizes 

of 32 and 128 which resulted in very low validation 

accuracy and faster convergence times. It is notable in 

practice that using larger batch sizes, especially for small 

IS can degrade model quality due to reduced 

generalization capability. An attempt to help large 

batches perform better is discussed in [11]. Second, the 

careful selection of hyperparameters for fine-tuning 

such as, the piecewise learning rate for the layers is set 

to 0.0001, with a learning rate drop schedule set to 0.2 

every 5 epochs. The minimum batch size for all input 

sizes is set to 20, with 10 epochs for R and 15 epochs for 

A. The momentum value for the stochastic gradient 

descent, representing the contribution of the previous 

iteration's parameter update to the current iteration, is 

set to 0.95. The selected models are trained for a few 

epochs and validated every few iterations, known as 

Validation Frequency (VF). If the number of training 

images is large and VF is small, then it is not learning 

enough. Conversely, if VF is too large, then it will spend 

an extended time training. During the experiment, when 

VF is set to 3 (Table 2), the training time is substantial. 

However, when VF reaches 15, the training time is 

reduced by more than a third. To accelerate learning in 

the new layers, the Weight LearnRateFactor and Bias 

LearnRateFactor for FCL2 are both increased to 10. 
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       For evaluating CNN performance, various metrics 

are derived from the confusion matrix, such as 

validation accuracy, and these results are summarized in 

Table 2. Fig. 2 shows that the training and validation loss 

both decrease and stabilize at a specific point which 

indicates that the model does not overfit or underfit. 

Loss and accuracy are measures of loss and accuracy on 

the training set, and also on the validation set. As a 

result, this model has an accuracy of ~95% on the 

training set and ~92% on the validation set. This figure is 

produced and examined for each ISi and CNNw. 

     The proposed methodology aims to enhance retrieval 

accuracy, ensuring that more images from the same or 

similar classes are retrieved. The MQ formulation is 

designed adequately reflecting the user's interest. A QSS 

with one query is termed as 1-QSS, with two queries as 

2-QSS, and two queries and more as 2+QSS. Initial 

experiments comparing the early fusion with the MQ-

maximum approach showed it returned fewer relevant 

images than the MQ-average approach [16]. Table 2 

indicates the selected investigation trials, for instance, 

trial (b) for A and trial (d) for R are chosen for evaluation 

with any IS with small changes that depend on IS. 

Classification-based CBIR retrieval results are evaluated 

from two perspectives: similarity without refereeing to 

classes (non-class-based) and similarity refereeing to 

predefined classes (class-based). In non-class-based 

retrieval, similar images are acceptable from any class, 

while in class-based retrieval, they must come from the 

same Query class. A hybrid approach may combine both 

retrieval types. Classifying DTD textures is particularly 

challenging. The training accuracy on the DTD using 

either A or R is relatively low, with a maximum of 66%. 

Other datasets show higher training accuracies: 

Caltech101 reaches 92%, GHIM-10K 97.40%, Flowers 

91.16%, and KTH-TIPS 96.88%. The classification 

accuracy, derived from the confusion matrix for R, is 

98.15% for GHIM-10K, 98.12% for KTH-TIPS, 92.11% for 

Flowers, 91.74% for Caltech101, and 62.77% for DTD.  

3.2. Retrieval Results and Ranking 

      MQDIR is tested with QSs selected from a maximum 

number of 47 classes for any IS, which is optionally can 

be chosen otherwise. Relevance is estimated based on 

the similarity found in the entire or the parts of image 

content. If an image contains water, vegetation, and 

boats, its relevant images are those that contain one or 

more of these elements. Images that do not contain any 

of these three elements are considered irrelevant. 

       For DTD retrieval using A as shown in Fig. 3-(i), 1-

QSS retrieval results achieve maximum precision for 13 

classes, and 2+QSS for up to 21 classes. Fig. 3-(iii) and 

Fig. 3-(iv) show the maximum precision profile for all 

classes using 1-QSS and 2+QSS. In Fig. 3-(vii), the 

number of relevant images for 1-QSS is less than for any 

2+QSS. For DTD using R as shown in Fig. 3-(ii), 1-QSS 

achieves maximum precision for 16 classes, while 2+QSS 

covers up to 21 classes. Fig. 3-(v) and Fig. 3-(vi) show 

more maximum precision values closer to 1 compared 

to Fig. 3-(iii) and Fig. 3-(iv). Fig. 3-(vii) and Fig. 3-(viii) 

indicate that 1-QSS retrieves fewer relevant images 

compared to 2+QSS. For Caltech101 using A, as shown 

in Fig. 3-(i), 1-QSS achieves maximum precision for 17 

classes, while 2+QSS reaches up to 30 classes.  As shown 

in Fig. 3-(iii) and Fig. 3-(iv) maximum precision tends to 

improve with 2+QSS. In Fig. 3-(vii), the number of 

relevant images retrieved by 1-QSS is lower than by any 

2+QSS. For Caltech101 using R, in Fig. 4-(ii), the 1-QSS 

retrieval results achieve maximum precision for 22 

classes, while 2+QSS gains maximum precision for up to 

34 classes. The maximum precision curve for 2+QSS is 

significantly better than that shown in Fig. 4-(iv), as 

illustrated in Fig. 4-(vi). In Figs. 4-(vii) and 4-(viii), the 

number of relevant images for 1-QSS is lower than for 

any 2+QSS. Fig. 7 demonstrates increasing precision 

with the MQ approach with GHIM-10K IS, where the 

single query approach usually has the lowest precision. 

Overall, Figs. 3, 4, and 7 indicate that R outperforms A, 

with more classes achieving 100% precision and that 

MQ approach generally surpasses the single query 

approach.  

      For the challenging textures DTD, which contains up 

to 47 classes such as banded, blotchy, braided, bubbly, 

bumpy, wrinkled, zigzagged, dotted, polka_dotted, 

…etc. Fig. 5 demonstrates the superiority of 2+QSS over 

1-QSS. The 'polka_dotted' and the ‘dotted’ images are 

retrieved in all cases. The images in the ‘polka_dotted’ 

class are visually relevant to those in the ‘dotted’ class. 

Both 'Sprinkled' and 'Perforated' images were retrieved 

when using used 1-QSS. In non-class-based retrieval, the 

retrieval performance for these queries in Fig. 5 is 

assumed to be 100% since all retrieved images have the 

dotted texture, while in class-based retrieval, the 

performance is lower. It is also noted that most of the 

queries in 2+QSS retrieval reappeared in the retrieved 

images.  
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      In Table 3, fourteen classes retrieval results are 

examined, the non-class-based retrieval yields an 

average increase in precision ranging from 7% to 50% 

over class-based retrieval. Some DTD textures, such as 

'marbled' and 'pitted', are particularly difficult to 

recognize. QSs selected from the same class typically 

may retrieve images from the same class or other 

classes. For example, using Caltech101 IS, retrieving 

results for the 'faces' class also retrieves similar images 

from 'faces_easy', and queries from 'crayfish' class 

retrieves similar images from 'lobster' and 'crab'. 

Another example in Fig 6, the 1-QSS result for the 'crab' 

class (the query images include the first image that 

include a ‘crab’ object), more images from other classes 

similar to ‘crab’ appear, the irrelevant images like 'pizza' 

and 'background_google' also appear. Whereas in 2-QSS 

retrieval, such irrelevant images typically disappear. 

Generally, precision improves significantly with 2+QSS, 

implying better MQ retrieval results. 

3.3. MQ_Precision Metric 

      Regarding the system results ranking performance, 

the              matrix records the precision for 

each class for each QSS and is defined as the precision 

calculated at a cutoff NR representing the number of 

top relevant images considered. In the experiments, NR 

is set to 15. A newly defined measure called 

MQ_Precision (CNNs, IDBs) is used for MQDIR 

performance evaluation given a collection of labeled ISs 

and CNNs as a measure of the effect of QSS. It is the 

percentage of the average precision when comparing 

and evaluating specific combinations of CNNs with ISs 

using different QSS. 

 

 

 

 

      It is computed from              matrix:  
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where        
      *     (            )+

                 
 

       represents the percentage of classes that 

achieved maximum precision using either 1-QSS or 

2+QSS where 'c' represents a class. It first determines 

the classes for each QSS that achieves maximum 

precision, counting these classes, and then calculating 

the percentage of these classes out of the total number 

of classes. After computing        for each QSS across 

all ISs and CNNs under interest, the average is taken 

based on QSSs. These averages are summed, and the 

percentages of these averages from their sum are 

depicted in the pie chart in Fig. 8 and Fig. 9.  

     This measure is applicable to both class-based and 

non-class-based retrieval.  The difference between 

precision and             is that precision is used for a 

single IS while             is used for measuring the 

average performance of MQDIR while applying multiple 

ISs and CNNs in the experiments. Table 4 presents the 

percentage of instances where each QSS achieves 

maximum precision for each IS and CNN. The pie charts 

in Fig. 8 show that the performance generally increases 

as the number of QSS increases and Fig. 9 shows the 

superiority of the MQ approach over single query 

approach (the yellow curve) for the ten experiments. 

From the previous outcomes, it is assumed that the 

more relevant images are obtained using R and some/all 

2+QSS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 MQDIR system End to End Process. 

                  

                  

 

 

                          

                                                                 

  

  

                                                                                    

                             

                                                                                    

                   

 

                                                                                    

                                

Fig. 1 MQDIR End to End Process 

  

 

 

 

 

 
        Fig. 2 mqs for expressing a ‘breaded’ Object 

from the DTD IS (class ‘Braided’).    

                                                                     

Listing 1 MQDIR FE Algorithm 

Inputs: -IS= {isi, i=1, …, N} is a set of  

              Labeled isi,  

             -cnnw, w=1,2 

Output: global Feature Vector FV at fclw 

Steps: For each isi 

               For each cnnw 

a. Fine tune an input cnnw(isi) 

b. Split isi into isi_Train and isi_Test 

c. Train cnnw(isi) using isi_Train 

d. Calculate classification accuracy 

and save information & output 

e. Extract the features for isi using 

activations at fclw 

f. Construct and save fvisi 

g. Index images using generated fvisi 

With every well-selected query, the amount of 

information about the object increases, and the 

abundance of semantically similar objects in  
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Listing 1 
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Listing 1 MQDIR FE Algorithm Listing 2 MQDIR Retrieval Algorithm 

Inputs: IS= {ISi} set of             labeled ISs, 

i=1,…, 5, set of CNNw, w=1,2 

 

Outputs: Global Feature Vector FV    

               at FCLw 

Steps: 

For each ISi in IS 

   For each CNNw  

a. Fine tune an input 

CNNw(ISi) 

b. Split ISi into ISi_Train and 

ISi_Test 

c. Train CNNw(ISi) using 

ISi_Train 

d. Calculate classification 

accuracy and save 

information & output 

e. Extract the features 

for ISi using activations 

at FCLw 

f. Construct and save 

FVISi 

g. Index images using 

generated FVISi 

Inputs: Given ISi, N is the number of classes in ISi, 

            FVIsi: feature vector of ISi, QS, QSS, 

            NR: Number of top relevant retrieved images, 

Outputs:  NR-relevant images, MQ_Precision for ISi 

Steps: 

1. Load CNNw(ISi) information and FVIsi. 

2. Load QS for each class i (i=1,…,N).  

3. for i=1: N 

         for j=1: QSS   

a. For Each Query Image QSk (k = 1 to j) 

o Retrieve QSk index of from the augmented data store. 

o Compute FVQSk by extracting features using FCLw  

b. Construct and normalize MQ_FV using FVQSk 

c. Apply MQ-Average on MQ_FV  

d. Compare MQ_FV with FVISi using Euclidean distance. 

e. Sort distances to identify the most relevant images. 

f. Retrieve NR-images based on the closest to MQ_FV.  

g. Construct matrix Precision@NR(i, j) of size N x QSS. 

4. Calculate the overall precision measure MQ_Precision using 

Precision@NR (i, j). 

 

 

 

 
 

 

 

 

 

 
 

 

Fig. 2 Training progress for ResNet18 (Caltech101 IS) (validation accuracy 92.24%, average run time 208 minutes, VF=15, 

piecewise learning rate).   
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Table 1. Characteristics of ISs. 

 

 

 

 

Table 2. Fine tuning Training Trials.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IS DTD KTH- TIP Caltech101 Flowers. GHIM 

Resolution 300x300 up to 

640x640 

200x200 80x300 upto  

3481x 2955 

159x240 up to 

500x441 

400 × 300 and 

300 × 400 

Class 47 10 101 5 20 

count 5640 810 9144 3670 10000 

Scene Examples Texture Images Texture Images: 

aluminium_foil, 

cotton, linen  

Texture & others 

airplanes, bonsai, 

sky,grass 

,flowers,dotted, 

striped  

 

Textures: daisy, 

rose, sunflower, 

tulip, dandelion 

Texture & others 

buildings, festivals 

type color gray color color color 

      

IS         

Trial epoch VF validation accuracy Elapsed  

Time minutes 

Final learn rate 

DTD  

 

b) A 15 15 57.71 146 4e-6 

d) R 10 15 63.74 120 2e-5 

Caltech 101  

 

b) A  15 15 90.00 225 4e-6 

d) R 10 15 92.24 208 2e-5 

GHIM-10K  b) A 15 15 97.40 481 4e-6 

d) R 10 15 98.30 321 2e-5 

Flowers  

 

b) A 15 15 87.48 68 4e-6 

d) R 15 15 91.16 82 4e-6 

KTH_ TIPS 

 

b) A 15 15 96.88 11 4e-6 

d) R 15 15 96.88 12 4e-6 
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        Fig. 3 DTD Precision using different QSS.                               Fig. 4 Caltech101 Precision using different QSS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
i. A 

 
ii. R  

 
iii. A: 1-QSS  

 
iv. A: 2+ QSS  

 
v. R: 1-QSS  

 
vi. R: 2+ QSS  

 
vii. A 

 
viii. R 

 
i. A 

 
ii. R 

 
iii. A: 1-QSS  

 
iv. A: 2+ QSS 

 
v. R: 1-QSS 

 
vi. R: 2+ QSS. 

 
vii. A 

 
viii. R 
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1-QSS 

A Results: 9 

dotted,  5 polka-

dotted, and 1 

sprinkled 
 

 
1-QSS 

R Results: 10 

dotted, 4 polka 

dotted, 1 

perforated 
 

 
3-QSS 

A Results: 11 

dotted and 4 

polka-dotted 

 

 

 
3-QSS 

R Results: 11 

dotted, 3 polka-

dotted and 1 

perforated 

 

 

 
5-QSS 

A Results: 9 

dotted and 6 

polka dotted 
 

 

 
5-QSS 

R Results: 12 

dotted and 3 

pokadotted 
 

 

Fig. 5 Dotted Class-based retrieval (DTD IS). 

 

 

Table 3. R-Average Precision showing Class- and Non-Class-based QSS Retrieval for some. 

 

class Non-class-based 

retrieval 

Class-based 

retrieval 

1-QSS 2+ QSS 1 QSS 2+ QSS 

banded 4 13 2 5 

braided 14 15 9 12 

bubbly 13 13 13 13 

bumpy 10 13 6 12 

checkered 15 9 15 7 

cobwebbed 10 15 10 15 

cracked 13 15 12 15 
 

class Non-class-based 

retrieval 

Class-based 

retrieval 

1-QSS 2+ QSS 1 QSS 2+ QSS 

dotted 15 15 9 11 

fibrous 13 13 9 9 

freckled 15 15 15 15 

honeycombed 15 15 14 15 

knitted 13 15 7 10 

Paisley 11 11 9 11 

pitted 3 8 1 5 
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1-QSS  

 

 
2-QSS  

Fig. 6 MQDIR Retrieval results for class crab using R. 

 

 

 

 

 

 

            

 

    Fig. 7 GHIM-10K Precision for different QSS.                     Fig. 8         and for             for all ISs. 

 

 
i. A 

 
ii. R  

  
iii. A: 1-QSS  

 
iv. A: 2+ QSS 

 
v. R: 1-QSS   vi) R: for 2+QSS  

 
vii. A 

 
viii. R 
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Fig. 9 MQDIR             

 

                                              Table 4. (Class-Based)         for NR=15. 

 

 

 

 

 

 

 

 

 

 

 

3.4. Discussion 

       Although there is no exact match for MQDIR, a 

detailed thorough comparison that highlights the main 

performance differences between MQDIR and current 

similar approaches are presented for context. In [23] a 

deep learning approach using FERET benchmark IS, the 

classification accuracy for ResNet18 and AlexNet are 

96.3% and 93.3%, respectively while using our approach 

reached 100% for 1-QSS and 2-QSS in R. In the case of 2-

QSS more images of class Faces than 1-QSS are retrieved 

where the query images include the first object in Fig. 

10.  

      In [24], with Caltech101 IS, the authors achieved an 

accuracy of 0.88 for the top ten retrieved images using 

VGG-16 and a similarity score. Considerable time was 

spent before training to construct a gravitational field 

model to add the similarity score label for each image. 

MQDIR with Caltech101 achieved             72% of 

classes gaining the maximum class percentage for the 

top fifteen class-based retrieved images, with many of 

these classes reaching 100% precision, as shown in Fig. 

4-(vi) and Table 4.  

 

 

 

 

 

       In [25], the models ResNet18 and SqueezeNet CNNs 

were used, with GHIM-10K reporting a 93% average 

precision using ResNet18. MQDIR achieved 85% of the 

GHIM-10K classes reach maximum precision in class-

based retrieval, which exceed 90% using non-class-

based retrieval. As shown in Fig. 7-(vi) and Table 4, 85% 

of the classes reached 100% precision in 2+QSS 

retrieval. In [26], features were extracted using block-

level DCT and GLCM, with other features computed by 

taking the difference between the original image plane 

and the DC coefficients based on the reconstructed 

image plane. The average precision for the top ten 

images was 77.50% for GHIM-10K. MQDIR using R 

reached a maximum precision of 85% for 2+QSS, with 

many classes reaching 100% precision. Regarding 

texture retrieval in [5], CNN features were extracted 

from diverse pre-trained models including ResNet50, 

ResNet101, and AlexNet, with SVM used as a classifier 

for texture classification. Performance was investigated 

using the KTH-TIPS and Flowers texture ISs, with claimed 

accuracy ranging from 85% to 95%. MQDIR (Table 4) 

achieved 100% precision for the Flowers IS and 85% for 

GHIM-10K using class-based retrieval, which increased 

with non-class-based retrieval. 

 

 

Kth_TIPS 

 

Flowers GHIM-10K Caltech101 DTD 

 

R A R A R A R A R A 

.4 .2 .8 .6 .5 .35 .47 .37 .34 .28 1-QSS 

.4 .5 .8 1 .75 .6 .56 .47 .34 .32 2-QSS 

.6 .3 1 1 .85 .75 .49 .43 .38 .32 3-QSS 

.6 .6 .8 1 .85 .75 .64 .64 .32 .3 4-QSS 

.7 .5 1 1 .85 .7 .72 .55 .45 .45 5-QSS 
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      For texture recognition, description, and 

segmentation, the research in [27] obtained classification 

accuracy of 58.8% using a deep CNN called VGG-M and 

62.9% using VGG-VD. MQDIR achieved a classification 

accuracy of 62.77% for DTD. In [28], SIFT features were 

fused with AlexNet features, accompanied by the MQ 

approach. They experimented with the Oxford (89%) 

and Paris (96.64%) ISs using 5-QSS. For GHIM-10K, 85% 

of classes reached maximum precision, and 100% for 

the Flowers IS. Assessing these results, MQDIR based on 

MQ approach demonstrates reliable retrieval 

performance compared to other methods.  

       MQDIR approach can be applied to any large ISs, 

however MQDIR will face computational difficulties. 

This can be accomplished utilizing more complex CNN 

with more layers and consequently will require larger 

computational resources so that the elapsed time in 

Table 2 may decrease while using larger patches, VF, 

and epochs. MQDIR is expected to perform better than 

the single query approach since it provides more 

information about the object through MQ, this would be 

helpful particularly in the context of noisy IS. 

 

 

 
1-QSS 

 
2-QSS 

 

Fig. 10 Caltech101 IS class Faces 1-QSS and 2-QSS using R. 

 

4. Conclusion 

     There are limited studies investigating the use of 

multi-query approach for deep learning in CBIR. This 

paper explores this approach introducing the MQDIR 

methodology which is experimented with various 

standard ISs of varying complexity and pretrained CNNs. 

The study demonstrates that the MQDIR approach is 

effective when using selected semantically related 

queries and class-based and non-class-based retrieval. It 

proved that the MQ approach outperforms the single-

query approach using deep features. Additionally, this 

study introduces a new precision-based measure for 

evaluating MQ retrieval performance with different ISs 

and CNNs. The findings suggest that future research 

could further explore the performance of more complex 

CNN architectures on different ISs (possibly 

heterogeneous datasets). For instance, R showed better 

classification accuracy and retrieval performance 

compared to A, highlighting its potential for improved 

CBIR systems.  
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