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ABSTRACT: The upper Messinian Abu Madi reservoir present a challenge in their effective gas and production in the
onshore Nile Delta exploration, development and production, through recognition and understanding of the reservoir
distributions and sand delineation during the exploration and development phase. The key to build reservoir model and define
hydrocarbon potential through accurate prediction of reservoir properties and dynamic flow capacity by estimated porosity,
water saturation and permeability. Estimation of reservoir characterization using core data and log data are primary process
for identification of rock flow units, vertical and horizontal heterogeneities. Using core analysis reduces uncertainty in reservoir
evaluation by providing data representative of reservoir at in-situ conditions to build a realistic reservoir model.
Characterization of porosity and permeability of the reservoir is an important control on reservoir petrophysics and reservoir
productivity. In the area of study the reservoir flow units identification and prediction of permeability became available from
the integration between core and wireline logs data for selected wells covering Abu Madi reservoir. An inter-disciplinary
workflow was followed in order to characterize the Abu Madi reservoir. The workflow combined, core data evaluation,
description, and flow-units classification. Petrophysical reservoir properties and permeability prediction, based on their
vertical distribution and association. The identified facies are grouped into main major facies groups, each facies group is
described in terms of its main characteristics, and flow-units, which acted as a main driver for the properties distribution away
from the wells and constructing a 3D Geomodel. Finally the proper understanding and interpretation of the Abu Madi sand
reservoir deposition including the paleo-depositional environment and flow units distribution are a key issue in assessing upper
Messinian reservoir quality of the Onshore Nile Delta.

INTRODUCTION

The main objectives of core evaluation are to
characterize the reservoir units in order to understand the
geology and describe reservoir properties to build
reservoir model which represent and explain the
performance of different reservoir units.

The goal of any reservoir characterization is to
understand the reservoir Petrophysical parameters, such
as porosity (Phi), permeability (K) and water saturation

(Sw) which is controlled by pore sizes and their
distribution and interconnection.

This paper provides and discusses the methods of
evaluation of core data and classification of different rock
types which is critical for decision-making in mature
fields for facies, reservoir parameter distribution and
optimizing production. Various rock-typing techniques
as Leverett’s (1941) reservoir quality index (RQI),
(Winland R35 (1972), flow zone indicator (FZI)
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Fig. 1: Location Map North Nile Delta on Study area.

(Amaefule, 1993) are used to define the reservoir into
different hydraulic flow units (HFU), and predict
reservoir permeability. The study area for this reservoir
characterization is located in the Nile Delta in Egypt

(Fig 1).
The area of the study is covered by 11 wells with

E- logs, three wells of them with cores (two for L. Abu
Madi formation and one for U. Abu Madi formation).

Upper Abu Madi formation: the main reservoir
composed of well-defined fluvial sandstone channels
with shale and silt inter bed facies. Reservoir quality in
the channels is very good. Lower Abu Madi formation:
main reservoir composed of sandstone with shale and silt
inter bed facies. Reservoir quality is variable due to the
inter-fingering transgressive marine shales with more
silty deltaic deposits.

Core analysis:

Conventional rock-core porosity and permeability
measurements, are used to determine rock types and flow
units in the cored key wells in el Wastani field, El
Wastani -4, el Wastani -6 wells for Lower Abu Madi
reservoir and El Wastani E-2 well for upper Abu Madi
reservoir

Core Porosity:

The porosity of a rock is a measure of the storage
capacity (pore volume) that is capable of holding fluids.

Quantitatively It is represents the measurement of the
effective porosity

The core porosity is represented by the different
values which are related to different facies types and
shale content

Core Permeability:

Permeability is generally defined as the ability of
rock porous media to allow the passage of fluid
(Friedman, 1977). Permeability is determined by the
dimensions of the connected pores, and measures the
flow capacity of the formation to transmit fluids. The
rock permeability (k) is a very important rock property
because it controls the directional movement and the flow
rate of the reservoir fluids in the formation. The
distribution of permeability ranges of the core samples
represents a wide range between 0.1 md and 1000 md

Core depth correction:

The natural Gamma radiation of the cores was
measured and the maximized smoothed Gamma emission
intensity of cores and the spectral gamma are plotted
against core depth to detect core depth shift.

Core data to reservoir condition correction:

In order to estimate valid reservoir parameters from
the well logs they first have to be calibrated to the
available core data. The most important parameter that
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affects the porosity and permeability of any reservoir is
the net of overburden pressure (NOBP). It is the
difference between overburden and internal pore
pressure. The relations between the core porosity values
at reservoir condition 4000 psi NOBP and ambient
condition (200 psi) are given in (Fig. 2).
The relations resulted into the following equations:
y =0.915 x (Upper Abu Madi Res.) 1)
y =0.919 x (Lower Abu Madi Res.) 2)
Where y= core porosity at reservoir condition at 4000psi
X = core porosity at ambient condition at 200psi

The relation between the core permeability values
at reservoir condition 4000 psi NOBP and ambient
condition (200 psi) as shown in (Fig. 2).

The relation resulted into the following equation:

y =0.772 x (Upper Abu Madi Res.) 3
y = 0.646 x (Lower Abu Madi Res.) (4)

Where y = (core permeability at reservoir condition at
4000psi)

X= (core permeability at ambient condition at 200psi)
Rock Facies, Textural Characteristics and Porosities:

The first stage of the study is consists of defining
rock types by relating geological framework, Lithofacies,
and petrology to porosity, permeability

Upper Abu Madi formation:

The cored intervals of the Upper Abu Madi
Formation in El Wastani east - 2 well comprise
dominantly vertically stacked sequences of pebbly
locally conglomeratic sandstones and argillaceous
laminated finer grained sandstones with minor sandy
siltstone facies. Detailed sedimentary facies analysis
reveals a total of three facies types in the cored intervals

(Fig. 3)
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Lower Abu Madi formation:

The cored intervals of the Lower Abu Madi
Formation in El Wastani - 6 and 4 wells comprise
dominantly vertically stacked sequences of pebbly
locally conglomeratic sandstones and argillaceous
laminated finer grained sandstones and silty and sandy
mudstones. Detailed sedimentary facies analysis reveals
a total of three facies types in the cored intervals (Fig. 4)

Based on their vertical distribution and association,
the identified facies are grouped into two major facies
group.

Rock Types classifications:

The rock typing is a process for reservoir rock
classification into units

Characterized by a unique set of petrophysical
properties e.g. porosity - permeability relationship, and
electric properties.

Porosity and permeability data available from the
core analysis

Several semi-empirical equations have
subsequently been proposed to improve the estimation of
rock permeability subjected to various loading conditions
(Panda and Lake, 1994; Bernabé et al., 2003; Costa,
2006; and some modified KC models are listed here.

Bayles et al. (1989) proposed a porosity-
permeability relationship based on the fractal pore cross-
sectional area, which can be formulated as

K=c¢?/(1- ¢y ©)
Where ¢ is a constant to determine permeability,
and z is an exponent parameter for porosity. A similar

permeability formulation based on fractal pore space
observations developed by Costa (2006) is written as

K=c¢?/(1-¢) (6)
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(R35) (Winland):

Winland of Amoco established an empirical
relationship between porosity, permeability and pore
throat radius from mercury intrusion tests, using the data
to obtain net pay cut-off values in some clastic
Reservoirs.

Winland define Flow unit as reservoir unit with
uniform pore throat size distribution and similar flow
performance, and determined by R35 (Winland 1972).

The Winland equation was used and published by
Kolodzie (1980)

log R35=0.732 + 0.588 log Ka — 0.864 log ¢ core  (7)

Where R35 is the pore aperture radius corresponding
to the 35th percentile of mercury saturation, Ka is air
permeability (md), and ¢ is porosity (%).

In Winland’s empirical relationship the highest
statistical correlation (Gunter et al., 1997) was at the pore
throat size corresponding to the 35th percentile of the
cumulative mercury saturation curve. The concept
behind the use of R35 is that, once different flow unit
types have been identified and quantitatively
characterized, then the wells are subdivided into smaller
units having predictable flow characteristics solving for
R35, we get

R35 =10~ (0.732 + 0.588 log Ka — 0.864 log )  (8)

The ranges of R35 have distinguished five petrophysical
flow units.

1. Megaport: Flow unit with R35 ranging above a
threshold of 10 microns.

2. Macroport: Flow unit with R35 ranging between 2 to
10 microns.

3. Mesoport: Flow unites with R35 ranging between 0.5
and 2 microns

4. Microport: Flow units with R35 values in the range of
0.5 to 0.2 microns

5. Nanoport: Flow units with R35 values less than 0.2
microns

From Porosity-permeability plot,

We have tried to distinguish three flow units in
cored interval of Upper Abu Madi Fm (Fig. 5)

With Mesoport (1-2 mic.), Macroport (2-10 mic.),
and Megaport (10-20 mic.). While in Lower Abu Madi
Four flow units (Fig 6), Microport (0.2-0.5 mic.),
Mesoport (0.5-2 mic.), Macroport (2-10 mic.) and
Megaport (10-20 mic.). Based on Winland flow unit
classification four rock units can be characterize

Stratigraphic modified Lorenz Plot (SMLP):

The best way to assess the minimum number of
flow units in a reservoir uses a graphical technique based
on a stratigraphic modified Lorenz plot (SMLP) (Gunter
et al., 1997; Tiab, D and Donaldson, 1996).

Constructing SMLP method is a plot of the percent
of flow capacity (% Kh) versus percent of storage
capacity (%dh) the partial sums are computed and totals
are normalized to 100%., and arranged in stratigraphic
order. The slope of the segments on these plots is
indicative of the flow performance. As shown in
(Fig.7&8) the shape of the SMLP curve reflects the flow
performance of the reservoir units. Segments with steep
slopes are associated with a high percentage of reservoir
flow capacity, and therefore, a high production potential.

On the other hand, segments with flat behavior
have storage capacity but little flow capacity and are
typically reservoir baffles. Segments with neither flow
nor storage capacity are considered seals (Salazar Luna
2004), (Gunter et al, 1997). Preliminary flow units are
interpreted by selecting changes in slope or inflection
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points in the SMLP curve. Using this method, the main
flow units are illustrated in their correct stratigraphic
position. Segments with steep gradients have a greater
percentage of flow capacity relative to storage capacity,
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and by definition, have a high reservoir process speed.
They are referred to as “speed zones”. For example
segment 3, 4, 8 and 9 in well El Wastani E-2 (Fig.7A),
segments 7, 8, 9 and 10 in well EI Wastani -4 (fig 8A).

ST./FL. Capacity

0.0 01 02 03 04 05 06 0.7 08 09 10
45.00

50.00

55.00

60.00

65.00

70.00

Flow Capacity

Storage capacity

ST. /FL. Capacity X-Plot

1.00
0.90
0.80
0.70
0.60
0.50
040
0.30
020
0.10

0.00
0.00 010 020 030 040 050 060 0.70 0.80 090 1.00

Fig. 7: EWE-2 well (A) stratigraphic modified Lorenz Plot, (B) modified Lorenz Plot sorted by porosity.
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Table 1: Summary of Winland rock types.

Upper Abu Madi Lower Abu Madi
R35 (mic) PHI (%0) KH (MD) | R35 (mic) PHI (%) KH (MD)
Megaport 10-20 20 -25 250 - 600 10-20 25-31 300 -1500
Macroport 2-10 9-25 10 - 300 2-10 15-30 10 -300
Mesoport 1-2 15-21 2-10 05-2 7-25 0.7 -20
Microport X X X 0.2-05 5-18 01-1
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Based on these plots, the studied intervals in each
well can be divided into reservoir units with different
flow and storage capacity ,units can be repeated and to
resume similar unite performance and define reservoir to
main different flow unit MLP presented (Fig.7B & Fig
8B) In porosity order as ascending order. Reservoir can
be divided into 5 main Flow units (1-5) and one baffle
assigned by (0)

Reservoir Quality Index RQI:

Reservoir Quality Index (RQI) Rock typing
classification and flow properties prediction method
based on Kozeny-Carmen equation and the concept of
mean hydraulic radius (Carmen, 1937). Derivative of
RQI equation is based on assumption that porous medium
can represented by a bundle of capillary tubes. Kozeny
model (Kozeny, 1927) one of the earliest model proposed
to estimate permeability from effective porosity and
other relevant parameters by the following equation.

K=92""/g, (Kozeny,1927) )
Where K: permeability in md, t: tortuosity,

r=radius of capillary tubes in um

t and r in equation (9) used by Kozeny and Carmen
for realistic porous media and equation was modified in
the generalized form by Carmen, 1937 as:

3
k= (l/fs.tz. Szgv) « P /(1 — )2
(Carmen, 1937) .... (10)

Where: K in um”2, fs: shape factor, t: tortuosity, @ in
fraction, S%gv specific surface area of unit grain volume
in um

RQI addresses variable Kozeny constant and S2gv
term by Flow zone indicator (FZI)

Which includes all major geological and
geometrical characteristics of porous media?

FZI = 1/ Vfs.t"2. S?gv (11)
@3 2

K= /(1 _ gy * FZI (12)

VK/@=[@ /(1—-@)]*FZI (13)

If permeability expressed in mille Darcie’s then
RQI define as follows:

RQI (um) = 0.0314V K/ @ (Leverett, 1941) (14)
NCRQI:

Based on RQI normalized cumulative rock quality
index NCRQI calculated as Eq. (13) (Siddiqui et al.
2003) for each data point and plotted against depth (Fig
9).
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Fig. 9: NCRQI calculated for each data point and plotted against depth.
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Shey (B
NCRQI = == I (15)

n [Ki

*=1 [ 0i

Where, n is the total number of the data and i is the
number of data points at sequential steps of calculation.
Change in the slope of the NCRQI-depth curve is an
indication of different flow zone. (Gomes et al., 2008).
Results of applying NCRQI Show vertical change in flow
units within core intervals

Hydraulic flow units:

Hydraulic flow unit (HFU) is Defined as a
representative reservoir volume practically possess
consistent petrophysical and fluid properties (Amaefule
etal., 1993)

Hydraulic Unit concept used to divide a reservoir
into distinct petrophysical types, each of which has a
unique flow zone indicator (FZI) value (Al-Ajmi and
Holditch, 2000). The hydraulic flow unit (HFU) concept
provides a probabilistic approach for combing the
geological environments units with an available
petrophysical data to delineate the reservoir into “units”
with similar fluid flow characteristics

Hydraulic flow units are used to rank dynamic
rock-fluid properties including saturation-dependent
capillary pressure and relative permeability. Hydraulic
units are characterized by the following:

a) Geological attributes of texture (which includes
mineralogy, sedimentary structure, bedding contacts,
and permeability barriers).

b) Petrophysical properties of porosity, permeability and
capillary pressure.

Amaefule et al., (1993) presented the method for
the use of hydraulic flow units (HFUs) to divide rock
facies as a result of the considerable variation of
permeability even in well-defined rock type, and used the
concept of bundle of capillary tubes and gave an equation
which was re-arranged to isolate the variable that is
constant within a hydraulic flow unit (HFU).

According to Amaefule et al., Guo et al. (2005) the
flow units in reservoir are determined using flow zone
indicators (FZI) and reservoir quality index (RQI) as
follow:

0.5
RQI = 0.0314 (g) (Leverett, 1941 (16)

rzi = RO/

@z = fZ’/(1 o (18)

Where K: Permeability md, @: Porosity fraction
and @z: normalized porosity.

The relationship between RQI and @z is used to
show that samples with similar FZI values lie close
together on a log plot of normalized porosity versus
permeability (Amaefule et al., 1993).

Log RQI = Log @z + Log FZI (19)

Fig. 10 shows a plot of RQI versus @z for data
from all cored intervals Equation (19) yields a straight

(Amaefule et al., 1993) (17)

line on a log-log plot of RQI versus @z With a unit slope.
The intercept of this straight line at @z = 1 is the flow
Zone indicator.

The FZI calculated using Eq. (16) and Eq. (17 after
calculation of RQI, where the corrected conventional
core analysis data for porosity and permeability is used
in the calculation of RQI, then define FZI flow unit from
the normal distribution of FZI values with the cumulative
FZI values (Fig.11).

Four main hydraulic flow units (HFU’s) control
reservoir performance are defined for the cored intervals
in EI Wastani wells (Fig. 12).

HFU-1: average FZI ranged from 0.2 to 0.55 (low
quality sand stone)

HFU-2: average FZI ranged from 0.55 to 0.9
(moderate quality sand stone)

HFU-3: average FZI ranged from 0.9 to 2.95 (good
quality sand stone)

HFU-4: average FZI ranged from 2.95 to 8.0 (Very
good quality sand stone)

HFU’s data summary as table no 3
Permeability predication

The next step to predict the permeability for each
HFU depending on FZI curve value or the average FZI
values using the following equations

K =1014FZI* x @3/ (1 — @)? (20)
Using average FZI related to HFU zones as follows (Fig
13):

K_HFU#1 = 1014 % 0.16 » @3/ (1 — @#)* For average

FZI=0.4 (21)

K_HFU#2 = 1014 = 0.56 » @3/ (1 — @)? For average

FZI=0.75 (22)
— 3 _ 2

K_HFU#3 = 1014 x4 x @3/ (1 — @) For average

FZI=2 (23)

K_HFU#4 = 1014 * 25 * @3/ (1 — @)?

For average
FZI=5 (24)

Stratigraphic distribution of the calculated HFU
intervals is plot with core data (Fig.14 & 15) .

R35 VS RQI & FZI:

The three core-derived quantities have been widely
used for hydraulic rock typing. Although these quantities
originated from different authors using different
approaches (experimental vs empirical & analytical),
they bear more similarities than differences owing to the
common underlying petrophysical property that they
intend to quantify - pore-throat size or hydraulic radius.
The three quantities are functions of porosity and
permeability measured with routine core analysis.

Correlations between each pair of quantities on a
logarithmic scale are consistently close to 0.9. (Fig. 16)
and indicates that the key to hydraulic rock typing for
reservoir characterization support the basis of reservoir
distribution parameters of the three core-based quantities
and use to map them accurately into the well-log domain.
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Fig. 12: PHI Vs KH X-plot super imposed on
FZI lines and define HFU

Table 2: Summary of Hydraulic Flow unit (HFU’s).

Fig. 13: PHI Vs KH X-plot super imposed on average
FZI lines define HFU and permeability Equation.

Fm Upper & Lower Abu Madi
Reservoir Quality HFU (FZI) PHI (%) KH (MD)
Very good quality sand stone 2.95-8.0 16 -31 40 - 1300
good quality sand stone 0.9 -2.95 10-29 3-400
moderate quality sand stone 0.55-0.9 10 -24 0.8-20
low quality sand stone 0.2 -0.55 9-22 0.1-6
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Fig. 14: Hydraulic Flow unit for cored interval in EW-4well.
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Neural network:

Neural network technique was used to reduce
multidimensional data sets to lower dimensions for
analysis. This technique can be useful in Petrophysics
and geology as a preliminary method of combining

Fig. 15: Hydraulic Flow unit for cored interval in EW-6 well.

multiple logs in to a single or two logs without losing
information.

This method statistical in nature but its results are
seen to be geologically consistent

Statistical modeling using Effective porosity
(PHIE), Shale Volume (VWCL) and Photo electric
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curves (PEFZ) to predict FZI curve using FZI_C
calculated within cored intervals. Correlation of predict
FZI and calculated one against cored intervals till similar
response and high correlation between curves then apply

S.E. MAHMOUD et al.

it in to other logged wells and predict FZI in the uncored
intervals and other wells (Fig 17).

Predicted FZI curve used to calculate Permeability
by using Equation (20) as shown in (Fig 18).
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Fig. 16: Numerical testing of the correlation between Leverett’s RQI, Winland R35 values.
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Fig. 17: Distribution of the FZI and HFU within el Wastani field using a geostatistical approach.
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CONCLUSION

The Detailed core description and building reliable
Geological Model with Litho-facies interpretation act as
the key for the Integration between the Non cored and
cored wells inside reservoir
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