Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 28(6): 2505 – 2529 (2024) www.ejabf.journals.ekb.eg

Exploration of Marine Fish Biodiversity in the Bay of Bengal: A Comparative Study on Fish Landing Centers in Bangladesh

Md. Mahmudul Hasan¹, Newton Saha², Pranta Saha³, Abdullah-Al- Hasan⁴, Tania Tabassum⁵, Md. Sazedul Hoque⁵, Suprakash Chakma^{5*}

¹Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh
 ²Department of Fisheries Management, Patuakhali Science and Technology University, Bangladesh
 ³Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh

⁴Department of Marine Fisheries and Oceanography, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh

⁵Department of Fisheries Technology, Patuakhali Science and Technology University, Bangladesh *Corresponding Author: sup.fst@pstu.ac.bd

ARTICLE INFO Article History:

Received: Nov. 4, 2024 Accepted: Dec. 13, 2024 Online: Dec. 31, 2024

Keywords:

Fish landing centers, Marine fish species, Exploration, Fish availability, Bay of Bengal

ABSTRACT

This study investigated the availability of marine fish and shellfish species in various fish landing centers in Bangladesh from the Bay of Bengal, focusing on the coastal districts notably Chattogram, Patuakhali, and Borguna regions. Face-to-face interviews were conducted with a total of 330 (110 from each three landing centers) respondents for different aspects of fish biodiversity issues. The secondary data were also obtained from the manager, Upazila Fisheries Officer in proximity of the respective fish landing centers. The results observed that a total of 152 species were found, comprising 144 marine fish and 8 shellfish species, including 30 orders and 69 families dominating Perciformes (56%), Clupeiformes (12%) and Scombriformes (11%), highlighting the rich biodiversity of the marine ecosystem. More than 68% of all marine fish were categorized as Least Concern, with roughly 14% classified as Near Threatened and 6% as Vulnerable. The research examined the factors influencing the presence of these species, including type, availability, commercial status, consumer preferences, economic variables, and income levels. Notably, the highest demand species, hilsa (Tenualosa Ilisha), was found to be closely linked to their availability, while less conventional species like octopus and shrimp exhibited erratic consumer demand despite their value. The study underscored the importance of understanding catching compositions and market dynamics in the fisheries sector, referencing the IUCN red list to address concerns regarding species under threat of extinction. Thus, the findings aim to inform sustainable management practices and enhance the economic viability of the fisheries industry in Bangladesh.

INTRODUCTION

Indexed in

Scopus

Bangladesh comprises a substantial delta region, bordered to the south by the Bay of Bengal. In Bangladesh, the fishing industry is vital to the agro-based economic growth, poverty reduction, and creating employment of the nation. Moreover, fish is considered a highly healthy food due to its high protein content, complete amino acids, low saturated

ELSEVIER DO

IUCAT

fat, abundant omega-3 fatty acids, essential minerals, and dietary vitamins that benefit consumers' health (Chakma et al., 2022; Chakma et al., 2024). Furthermore, it serves as a vital source of animal protein and contributes substantially to the country's foreign currency earnings. Bangladesh is domicile to 260 freshwater and 475 marine fish species with approximately 12 exotic species currently being cultivated within its boarder (DoF, **2022**). It emerged as a global leader in fish production, achieving a total output of 47.59 lakh MT in the FY 2021–2022. Aquaculture contributed 57.39% to the total fish production, benefiting from Bangladesh's vast water resources (DoF, 2022). The Bay of Bengal in Bangladesh is known to host diverse marine life, encompassing 25 species of shrimp/ prawns, 15 types of crabs, and 5 varieties of lobsters and 50 cartilaginous species (Hossain, 2001). In addition, Bangladesh's exclusive economic zone is home to over 400 marine fish species, among which 33 are categorized as threatened in various ways (Hoq, **2014**). For example, certain marine fish species, such as the giant grouper (*Epinephelus*) lanceolatus), classified as Threatened, the yellow seahorse (Hippocampus kuda), also listed as Threatened, the large-tooth sawfish (Pristis microdon), categorized as Endangered, and the knife-tooth sawfish (Anoxtaypristis cuspidate), also classified as Endangered (Hoq, 2014).

There are numerous fish landing centers scattered across Bangladesh, strategically positioned to support country's vibrant fishing industry. A fish landing center functions as a central location where a variety of fish and fisheries products gathered from different sources such as rivers, beels, haors, ponds, ghers, estuaries and the sea (Ali *et al.*, 2004; Hanif *et al.*, 2015). The regions where marine fish are caught and brought ashore in Bangladesh are situated in south and south-eastern parts of the country (Raisa *et al.*, 2022). Among these, the Chattogram Fish Landing Center at Fishery ghat, Pathorghata, Chattogram; the Patuakhali Fish Landing Center at Mohipur, Patuakhali; and the Barguna Fish Landing Center are notable for their size and significance in the local economy. Various types of fish are consistently brought to these landing centers from a variety of boats, trawlers, and fishing ships. These centers boast a wide range of fish species, encompassing both brackish and marine varieties, making them comprehensive hubs for fish trading and distribution. These fish landing sites are vital for supporting local economies and supporting livelihoods across the region they serve.

The abundancy of fish in the selective study areas are greatly attributed by many reasons such as, seasonal variation in fishing yields, fluctuation in consumer demand, market prices, and the geographical location of the fish market. As an illustration, the annual capture of marine finfish, which accounts for 75% of the demersal capture in Bangladesh's sea waters (Lamboeuf, 1987), typically results in higher abundance of these species at marine fish landing center compared to unconventional marine fishes (such as, octopus, cuttlefish and squid), despite the latter having significant economic value for export (Siddique *et al.*, 2016). This discrepancy underscores how catch volume influences the distributions and availability of different types of marine species in local

market. In addition, the concepts of conventional and non-conventional can differ based on geographical location and country-specific contexts (**Raisa** *et al.*, **2022**).

The study aimed to comprehensively document and analyze the presence of diverse fish species, including marine fishes, and shellfish in the landing center. It sought to identify the dominant orders of marine fishes and shellfish to gain insights into their composition and distribution patterns. Additionally, the study evaluated the conservation status of marine fishes, categorizing them based on the IUCN Red List criteria (e.g., Least Concern, Near Threatened, Vulnerable). It also investigated consumer demand for different fish species, including both conventional and non-conventional shellfish. The study further observed the seasonal availability of large fishes like sharks and rays during winter and monsoon periods. By providing insights into the current situation of marine species (fish and shellfish) availability across three landing centers, the study aimed to contribute valuable information for sustainable management and conservation efforts.

MATERIALS AND METHODS

Selection of the study area

The purpose of this study was for insight into the abundance of fish and shellfish species at the Chattogram Fish Landing Center at Fishery Ghat, Pathorghata, Chattogram, the Patuakhali Fish Landing Center at Alipur and Mohipur, Patuakhali, and the Borguna Fish Landing Center, involving availability of species, catch composition, customer demand degrees, period, and extinction threat status. Because these landing centers were adjacent to the Bay of Bengal, an extensive variety of brackish and marine water fish species were common (Fig. 1). All the data were collected from July 2023 and February 2024.

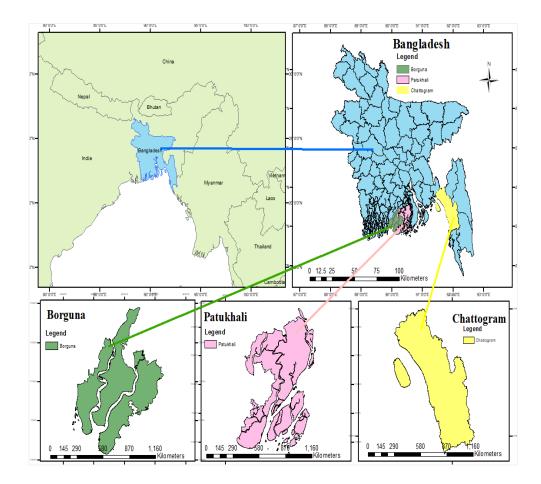


Fig. 1. Different colors indicate the location of three fish landing centers in Bangladesh

Procedural methods of data collection

The investigation focused on a fish landing center assessment that collected data from fish sellers, fishermen, operators (middlemen), and customers. Face-to-face interviews were conducted with a total of 330 (110 from each three landing centers) respondents for different aspects of fish biodiversity issues. The secondary data were also collected from the manager, respective fish landing centers along with the respective Upazila Fisheries Officer. To examine the diversity of fishes in the studied area, the study included trips to fish landing centers, photograph capture, interviews with local people, sampling, and secondary information collecting. The data were obtained using questionnaire-based conversations, participatory rural appraisals (PRA), and double-check discussions comprising significant informants. The questionnaire sheet was carried out by questioning the participants, aratdars (assemblers), and fishermen in the landing centers. All the collected information was evaluated, and the species identified at the landing sites were classified into several groups.

Collected sample identification

All fish and shellfish observed in the respective landing centers were carefully landed and documented. Important features including the local name, common name, picture, seasonal variability, and richness of all fishes were recorded for further evaluation and verification. Discussions and interactions were also conducted with local fishermen and commission agents to ask about seasonal fluctuation, availability, and customer requirement for the caught species. The species were subsequently recognized and thoroughly classified based on their morphometric and meristic traits. The varieties of fish found at the sampling sites were recognized employing morphometric and meristic features (Eschmeyer's Catalog of Fishes, California Academy of Sciences) (Hussain, 2010; Van der Laan *et al.*, 2014). Following identification, fish species were comprehensively categorized based on the approach of Bell (2006) and O'Hara *et al.* (2019).

Statistical data analysis

Following data collection, all the information was collected and coded in an MS Excel spreadsheet. The collected data were thoroughly reviewed and recorded cautiously before the actual tabulation. Finally, tables were generated in accordance with the current objectives. Data were provided in tabular format as it is straightforward to calculate, ordinarily utilized, and easy to comprehend. Following data gathering, it was validated to remove mistakes and ambiguity. Any discrepancies in the collected information were rectified and recorded. The data were analyzed and then evaluated by employing the tabular approach. Data from multiple appropriate approaches were formatted and put into a computerized method using Microsoft Excel 24 software.

RESULTS

Availability of fish species

The availability of fish species in three fish landing centers, especially in the three coastal districts obtained from the Bay of Bengal, Bangladesh is summarized in Table (1). A total of 152 species were documented, including 144 marine fish and 8 shellfish species. These species were categorized into 30 orders and 69 families, reflecting the rich diversity of the marine ecosystem. The predominant order of marine fish was Clupeiformes, comprising 18 species, closely succeeded by Siluriformes and Scombriformes, each with 18 and 16 species, respectively. In addition, several other significant orders, such as Eupercaria, Carangiformes, Cypriniformes and Gobiformes, each with 10 species, contributed substantially to the observed marine fish diversity. Moreover, some orders of fish were rarely found namely Decapoda (7 species), Acanthuriformes (5 species), Pleuronectiformes (4 species), Carangaria (4 species), and

Mugiliformes (6 species). The lowest orders were Beloniformes, Carcharhiniformes, Myliobatiformes, Tetraodontiformes, each with 3 species.

Conversely, certain orders exhibited lower species diversity, such as Beloniformes, Anguilliformes, Synbranchiformes, Anabantiformes, Aulopiformes, Salmoniformes, Osteoglossiformes, Perciformes, Syngnathiformes, Lophiiformes Ovalentari, Centrarchiformes, Cichliformes, Cyprinodontiformes, Myopsida each represented by only a few species. This detailed breakdown provides valuable insights into the abundance and distribution of marine fish and shellfish at the landing center. Furthermore, the predominant order of marine fish was Clupeiformes, comprising 18 species, followed closely by Siluriformes and Scombriformes, each with 18 and 16 species, respectively. In addition, several other significant orders, such as Eupercaria, Carangiformes, Cypriniformes and Gobiformes, each with 10 species, contributed substantially to the observed marine fish diversity. Besides, some orders of fish were rarely found namely Decapoda (7 species), Mugiliformes (6 species) Acanthuriformes (5 species), Pleuronectiformes (4 species), Carangaria (4 species) (Fig. 2).

SL No.	Local name	Local name Common name	Scientific name	Order	Availability of fish species			Demand	IUCN red list
					\mathbf{S}_1	S ₂	S ₃	-	status
			Fishes						
1	Balichata	Mottled loach	Acanthocobitis botia	Cypriniformes	-	-	+	High	LC
2	Kawa	Banded eagle ray	Aetomylaeus nichofii	Myliobatiformes	-	+	-	High	VU
3	Kartik	African pompano	Alectis ciliaris	Carangiformes	+	-	-	High	LC
4	Mola	Indian carplet	Amblypharyngodon microlepis	Cypriniformes	-	-	+	High	LC
5	Chacunda/ koiputi	Chacunda gizzard shad	Anodontostoma chacunda	Clupeiformes	+	-	-	High	LC
6	Bechi	Blue panchax	Aplocheilus panchax	Cyprinodontiformes	-	-	+	Medium	LC
7	Gagla	Gagora catfish	Arius gagora	Siluriformes	+	-	+	Low	NT
8	Ram kata	Spotted catfish	Arius maculatus	Siluriformes	+	-	-	Medium	NE
9	Gorala kata	Thickspined catfish	Arius nenga	Siluriformes	+	-	-	Medium	NE
10	Sia kata	Sona sea catfish	Arius sona	Siluriformes	+	-	-	Low	NE
11	Tak chanda	Cleftbelly travelly	Atropus atropus	Carangiformes	+	-	-	High	LC
12	Boma maitta	Bullet tuna	Auxis rochei	Scombriformes	+	-	-	High	LC
13	Maitta surma	Frigate tuna	Auxis thazard	Scombriformes	+	-	-	Low	LC
14	Bele	Scribbled goby	Awaous grammepomus	Gobiiformes	-	-	+	High	LC
15	Baila	Scribbled Goby	Awaous guamensis	Gobiiformes	+	-	-	High	LC
16	Kursha	Kalobans	Bangana dero	Cypriniformes	-	-	+	Low	LC
17	Hamiltoner koksha	Hamiltons barlia	Barilius bendelisis	Cypriniformes	-	-	+	Low	LC

Table 1. Availability of marine fish and shellfish species at three Fish Landing Centers in Bangladesh with their local name, common name, scientific name, order, demand and IUCN Red List status

Hasan et al., 2024

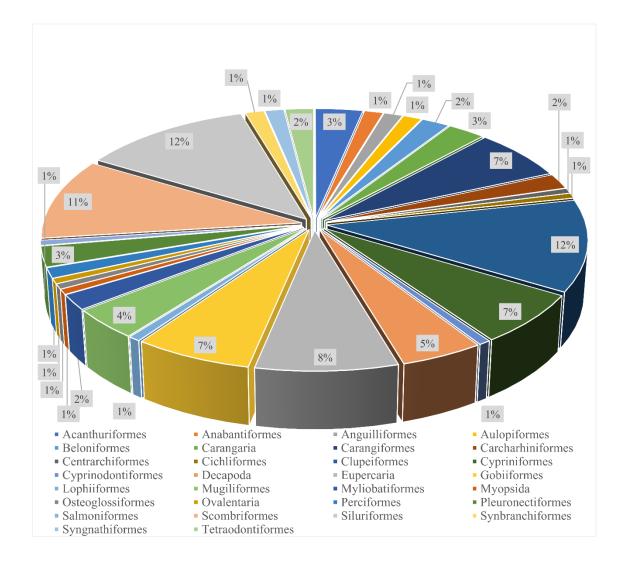
18	Katabukha	Beardless sea catfish	Batrachocephalus mino	Siluriformes	_	+	_	High	NE
19	Kaikka	Garfish	Belone belone	Beloniformes	+	+	_	Medium	NE
20	Danchoukka	Oriental sole	Brachirus orientalis	Pleuronectiformes	+	-	_	Low	LC
20 21	Kathal Pata	Pan sole	Brachirus pan	Pleuronectiformes	-	_	+	Low	LC
21	Nuna bele	Bumblebee goby	Brachygobius nunus	Gobiiformes	_	_	+	Medium	NE
22	Kuil	Duckbill sleeper	Brachygoolus nunus Butis butis	Gobiiformes		-+	т -	Low	LC
		-			+	Ŧ			
24	Hangor	Blacktail reef shark	Carcharhinus amblyrhynchos	Carcharhiniformes	+	-	-	Low	EN
25	Chaga	Squarehead catfish	Chaca Chaca	Siluriformes	+	-	-	Low	LC
26	Lambu	Elongate glass-	Chanda nama	Ovalentaria	+	-	+	Low	LC
		perchlet							
27	Potka	Milkspotted puffer	Chelonodon patoca	Tetraodontiformes	+	+	-	Low	LC
28	Korati chela	Dorab wolf-herring	Chirocentrus dorab	Clupeiformes	+	-	-	High	LC
29	Chitol	Clown knieffish	Chitala chitala	Osteoglossiformes	+	-	-	High	NT
30	Kaoa mach	Araucanian herring	Clupea bentincki	Clupeiformes	+	-	-	Low	LC
31	Olua	Goldspotted grenadier	Coilia dussumieri	Clupeiformes	+	+	+	High	LC
		anchovy							
32	Rekha	Finger fish	Coius quadrifasciatus	Anabantiformes	-	+	-	Low	LC
33	Kamila	Indian pike conger	Congresox talabonoides	Anguilliformes	-	+	-	High	LC
34	Kukurjiv	Malabar tonguesole	Cynoglossus	Pleuronectiformes	-	+	-	Low	VU
			macrostomus						
35	Moori	Hump-head	Cyrtocara moorii	Cichliformes	-	+	-	High	VU
36	Shapla pata	Pale edged sting ray	Dasyatis zugei	Myliobatiformes	+	-	+	Low	VU
	mach			-					
37	Nilambori	Redtail scad	Decapterus kurroides	Carangiformes	+	-	-	Medium	LC
38	Nilambori	Shortfin scad	Decapterus macrosoma	Carangiformes	+	-	-	Medium	LC
39	Nilambori	Japanese scad	Decapterus maruadsi	Carangiformes	+	-	-	Medium	LC
		-	*	5					

40	Ek thouta	Wrestling halfbeak	Dermogenys pusilla	Beloniformes	-	-	+	Medium	DD
41	Bish tara	Concertina fish	Drepane longimana	Acanthuriformes	+	-	-	Low	NE
42	Pan mach	Spotted Sickle fish	Drepane punctata	Acanthuriformes	+	-	-	Low	NE
43	Chela/ Oceanic	Rainbow sardine	Dussumieria acuta	Clupeiformes	+	-	-	High	LC
	chapila								
44	Kuli mach	Lutea sleeper	Eleotris lutea	Gobiiformes	+	-	-	Low	NE
45	Tailla mach	Four finger Threadfin	Eleutheronema	Carangaria	+	+	+	High	NE
			tetradactylum						
46	Bol poa	Brownspotted grouper	Epinephelus	Perciformes	+	-	-	High	LC
			chlorostigma						
47	Cuti Cuti	Conta Catfish	Erethistes pusillus	Siluriformes	-	-	+	Medium	LC
48	Oceanic moilla	White sardine	Escualosa thoracata	Clupeiformes	+	-	-	High	LC
49	Churi	Smallhead hairtail	Eupleurogrammus	Scombriformes	+	-	-	High	NE
			muticus						
50	Hature Hangor	Hammer head shark	Eusphyra blochii	Carcharhiniformes	-	+	-	High	EN
51	Bom maitta	Kawakawa	Euthynnus affinis	Scombriformes	+	-	-	High	LC
52	Nuna Baila	Puntang goby	Exyrias puntang	Gobiiformes	+	-	-	Low	LC
53	Thuitta mach	Red cornetfish	Fistularia villosa	Syngnathiformes	+	-	-	High	LC
54	Gang Tengra	Indian gagata	Gagata cenia	Siluriformes	-	-	+	High	LC
55	Dome mach	Whipfin silver-biddy	Gerres filamentosus	Eupercaria	+	-	-	Medium	LC
56	Ghagra bele	Masked Goby	Gobius personatus	Gobiiformes	-	+	-	High	DD
57	Chapila	Ganges river gizzard	Gonialosa manmina	Clupeiformes	+	-	+	High	LC
		shad							
58	Loitta	Bombey duck	Harpadon nehereus	Aulopiformes	+	+	+	High	NT
59	Ilish	Kelee shad	Hilsa kelee	Clupeiformes	+	-	-	High	LC
60	Shapla pata	Honeycomb stingray	Himantura uarnak	Myliobatiformes	-	+	-	High	EN
61	Chaukha	Coromandel ilisha	Ilisha filigera	Clupeiformes	+	-	-	High	DD

Hasan et al., 2024

62	Chapila	Bigeye ilisha	Ilisha megaloptera	Clupeiformes	+	-	-	High	LC
63	Sal fish	Indo-Pacific sailfish	Istiophorus platypterus	Carangiformes	+	-	-	Low	VU
64	Poa	Silver croaker	Johnius argentatus	Eupercaria	-	+	-	High	LC
65	Koitor	Coitor croaker	Johnius coitor	Eupercaria	+	-	-	Low	LC
66	Rickshaw mach	Skipjack Tuna	Katsuwonus pelamis	Scombriformes	+	+	-	High	LC
67	Med	Bigmouth sea catfish	Ketengus typus	Siluriformes	-	+	-	High	NE
68	Bata	Bata	Labeo bata	Cypriniformes	-	-	+	Medium	LC
69	Bhangan	Boga labeo	Labeo boga	Cypriniformes	-	+	+	High	LC
70	Rui	Roho labeo	Labeo rohita	Cypriniformes	-	-	+	Medium	LC
71	Koral/Vetki	Barramundi	Lates calcarifer	Carangaria	+	+	+	High	LC
72	Gutum	Annandale loach	Lepidocephalichthys annandalei	Cypriniformes	-	-	+	Low	LC
73	Churi	Savalai hairtail	Lepturacanthus savala	Scombriformes	+	_	_	High	NE
74	Somudra koi	Triple tail	Lobotes surinamensis	Acanthuriformes	+	+	_	High	LC
75	Lal koral	Yellowstreaked	Lutjanus lemniscatus	Eupercaria	+	-	-	High	LC
		snapper	5	1				U	
76	Tara baim	Lesser spiny eel	Macrognathus aculeatus	Synbranchiformes	+	-	-	High	LC
77	Kaowa mach	Torpedo scad	Megalaspis cordyla	Carangiformes	+	-	-	Medium	LC
78	Fattara mach	Humpback anglerfish	Melanocetus johnsonii	Lophiiformes	+	-	-	Low	LC
79	Kuirar Khil	Deocata pipefish	Microphis deocata	Syngnathiformes	-	-	+	Medium	NT
80	Parki mach	Flathead grey mullet	Mugil cephalus	Mugiliformes	+	+	-	High	LC
81	Kamila	Common pike conger	Muraenesox bagio	Anguilliformes	+	-	-	Low	LC
82	Ghulsha	Gangetic mystus	Mystus cavasius	Siluriformes	-	-	+	Medium	LC
83	Nuna Tengra	Long whiskers catfish	Mystus gulio	Siluriformes	+	-	+	High	LC
84	Tengra	Tengara catfish	Mystus tengara	Siluriformes	-	-	+	High	LC
85	Mat mach	Engraved catfish	Nemapteryx nenga	Siluriformes	+	-	-	High	NE
86	Batasi	Indian potasi	Neotropius atherinoides	Siluriformes	-	-	+	Medium	LC

87	Colombo	Pink salmon	Oncorhynchus gorbuscha	Salmoniformes	+	-	-	Medium	NE
88	Bamus	Bengal eel	Ophisternon bengalense	Synbranchiformes	-	-	+	Medium	LC
89	Poa mach	Pama croaker	Otolithoides pama	Eupercaria	+	-	+	High	DD
90	Foli chanda	Silver Pomfret	Pampus argenteus	Scombriformes	+	+	+	High	VU
91	Rupchanda	Chinese pomfret	Pampus chinensis	Scombriformes	+	+	-	High	NE
92	Pangas mach	Pangas catfish	Pangasius pangasius	Siluriformes	+	+	+	High	LC
93	Fhopa chanda	Himalayan glassy perchlet	Parambassis baculis	Perciformes	+	-	-	High	LC
94	Bashpata	Broad-mouthed mullet	Paramugil parmatus	Mugiliformes	+	-	+	Medium	LC
95	Kukur jeeb	Doublelined tonguesole	Paraplagusia bilineata	Pleuronectiformes	+	-	-	Low	LC
96	Kalo chanda	Black Pomfret	Parastromateus niger	Carangiformes	+	-	-	High	LC
97	Konkon	Eastern Pacific bonito	Pelamys chiliensis	Scombriformes	-	+	-	Medium	LC
98	Choukka	Indian pellona	Pellona ditchela	Clupeiformes	+	+	-	Low	LC
99	Kadi poa	Donkey croaker	Pennahia anea	Eupercaria	+	-	-	High	LC
100	Chikka mach	Longfin mojarra	Pentaprion longimanus	Eupercaria	+	+	-	High	LC
101	Parshe bata	Goldspot mullet	Planiliza parsia	Mugiliformes	+	-	-	Low	NE
102	Bata	Greenback mullet	Planiliza subviridis	Mugiliformes	+	-	-	High	LC
103	Gang Magur	Gray eel-catfish	Plotosus canius	Siluriformes	-	-	+	Medium	NE
104	Topshe	Paradise threadfin	Polynemus paradiseus	Carangaria	+	+	+	High	LC
105	Shada datina	spotted javelinfish	Pomadasys hasta	Eupercaria	+	+	-	High	NE
106	Boro kalo poa	Blackspotted croaker	Protonibea diacanthus	Eupercaria	+	-	-	High	NT
107	Chewa	Elongate mudskipper	Pseudapocryptes elongatus	Gobiiformes	+	-	-	High	LC
108	Chilik poa	Blotched tiger-toothed croaker	Pterotolithus maculatus	Eupercaria	+	-	-	High	LC


109	Mola punti	Glass-barb	Puntius guganio	Cypriniformes	-	-	+	High	LC
110	Kuna faissha	Raconda	Raconda russeliana	Clupeiformes	+	-	-	High	LC
111	Bhol	Trout brab	Raiamas bola	Cypriniformes	-	-	+	Medium	LC
112	Bora	Indian mackerel	Rastrelliger kanagurta	Scombriformes	+	+	-	High	DD
113	Khorsula	Corsula	Rhinomugil corsula	Mugiliformes	+	+	-	Low	LC
114	Rita	Rita	Rita rita	Siluriformes	+	-	-	High	LC
115	Jatrik mach	Indian oil sardine	Sardinella longiceps	Clupeiformes	+	-	-	Medium	LC
116	Bele	Greater lizard fish	Saurida tumbil	Aulopiformes	+	-	-	Low	LC
117	Dahuk	Walking goby	Scartelaos histophorus	Gobiiformes	+	+	+	Low	LC
118	Chitra.	Spotted scat	Scatophagus argus	Acanthuriformes	-	+	-	Medium	LC
119	Chapa mach	Barred queenfish	Scomberoides tala	Carangiformes	+	-	-	High	LC
120	Surma	King mackerel	Scomberomorus cavalla	Scombriformes	+	-	-	High	LC
121	Champa	Narrow-barred	Scomberomorus	Scombriformes	+	+	-	High	NT
		Spanish mackerel	commerson						
122	Maitta	Indo-Pacific king	Scomberomorus	Scombriformes	+	+	-	High	DD
		mackerel	guttatus						
123	Aila	Blackbanded trevally	Seriolina nigrofasciata	Carangiformes	+	-	-	Medium	LC
124	Faisa	Gangetic hairfin	Setipinna phasa	Clupeiformes	+	-	+	High	LC
		anchovy							
125	Phasa	Scaly hairfin anchovy	Setipinna taty	Clupeiformes	+	-	-	High	LC
126	Kachki	Yellowtail mullet	Sicamugil cascasia	Mugiliformes	-	-	+	High	LC
127	Java	Streaked spinefoot	Siganus javus	Acanthuriformes	-	+	-	Medium	LC
128	Tular dandi	Flathead Sillago	Sillaginopsis panijus	Eupercaria	+	-	+	High	NE
129	Tular dandi	Flathead sillago	Sillago domina	Eupercaria	-	+	-	High	NE
130	Darkuta	Sawtooth barracuda	Sphyraena putnamae	Carangaria	+	-	-	High	NE
131	Korati mach	Scoophead	Sphyrna media	Carcharhiniformes	+	+	-	Low	CR
132	Chunobele	Bearded worm goby	Taenioides cirratus	Gobiiformes	+	-	-	Medium	DD

133	Ilish	Hilsa shad	Tenualosa ilisha	Clupeiformes	+	+	+	High	LC
134	Chandona ilish	Toli shad	Tenualosa toli	Clupeiformes	+	+	+	Low	VU
135	Barguni	Jarbua terapon	Terapon jarbua	Centrarchiformes	-	+	+	High	LC
136	Thapa	Ocellated puffer fish	Tetraodon cutcutia	Tetraodontiformes	-	-	+	Low	LC
137	Potka	Green pufferfish	Tetraodon fluviatilis	Tetraodontiformes	-	-	+	Low	LC
138	Madhu faissha	Longjaw thryssa	Thryssa setirostris	Clupeiformes	+	-	-	High	LC
139	Tuna	Yellowfin tuna	Thunnus albacares	Scombriformes	-	-	+	High	LC
140	Tuna	Bigeye tuna	Thunnus obesus	Scombriformes	+	-	-	High	VU
141	Churi	Largehead hairtail	Trichiurus haumela	Scombriformes	-	+	-	High	LC
142	Chuna kholisa	Honey gourami	Trichogaster chuna	Anabantiformes	-	-	+	Medium	LC
143	Boal	Wallago	Wallago attu	Siluriformes	-	-	+	High	VU
144	Kakila	Freshwater garfish	Xenentodon cancila	Beloniformes	-	-	+	Medium	LC
			Shellfish						
1	Golda chingri	European lobster	Homarus gammarus	Decapoda	+	+	-	High	LC
2	Maya mach	Cuttle fish/Squid	Loligo vulgaris	Myopsida	+	+	-	Low	DD
3	Golda Chingri	Giant freshwater	Macrobrachium	Decapoda	+	+	+	High	LC
		prawn	rosenbergii						
4	Loilla Chingri	Yellow shrimp	Metapenaeus	Decapoda	+	-	-	High	LC
			brevicornis						
5	Guraicha	Karnafuli shrimp	Palaemon karnafuliensis	Decapoda	+	-	-	High	LC
6	Lobster	Mud Spiny Lobster	Panulirus polyphagus	Decapoda	-	-	+	High	LC
7	Shada icha	Indian prawn	Penaeus indicus	Decapoda	+	+	-	High	LC
8	Bagda chingri	Giant tiger prawn	Penaeus monodon	Decapoda	+	+	+	High	LC

Note: S1: Chattogram Fish Landing Center, Chattogram; S2: Alipur and Mahipur Fish Landing Center, Patuakhali; S3: Pathorghata Fish Landing Center,

Borguna; + = present; - = absent; LC= Least Concern; NE= Not Evaluated; NT= Near Threatened; VU= Vulnerable and DD= Data Deficient.

Fig. (2) also indicates that the lowest orders of species are notably, Beloniformes, Myliobatiformes, Tetraodontiformes, each with 3 species. Carcharhiniformes, Conversely, certain orders exhibited lower species diversity, such as Beloniformes, Anabantiformes, Anguilliformes, Synbranchiformes, Aulopiformes, Perciformes, Osteoglossiformes, Lophiiformes, Syngnathiformes, Salmoniformes, Ovalentari, Centrarchiformes, Cichliformes, Cyprinodontiformes, Myopsida each represented by only a few species. This detailed breakdown provides valuable insights into the abundance and availability of marine fish and shellfish in the landing center.

Fig. 2. Total percentage of available marine fish and shellfish in various orders in the fish landing center

In the Chattogram Fish Landing Center, a notable presentation of 104 species was documented, encompassing 97 marine fish species and 7 shellfish species. The Patuakhali sites exhibited a total of 48 species, inclusive of 43 marine fish species and 5 shellfish species (Fig. 3). Lastly, the Borguna Fish Landing Center featured an array of 53 species, including 50 marine fish species and 3 shellfish species. The highest percentage of fish diversity was the highest observed in all three fish landing centers than shellfish species. These highest percentage indicated that the sea going fishers catch bulk compositions of fish species rather than shellfish. This cause may be due to the different factors like market demand, ease to icing and handling in the sea, among others.

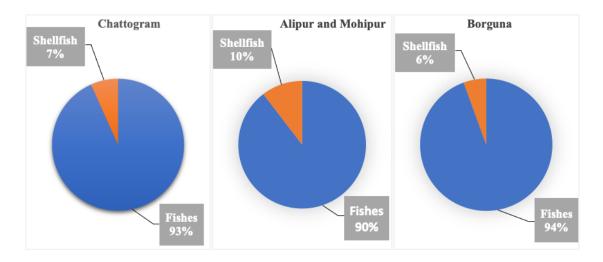
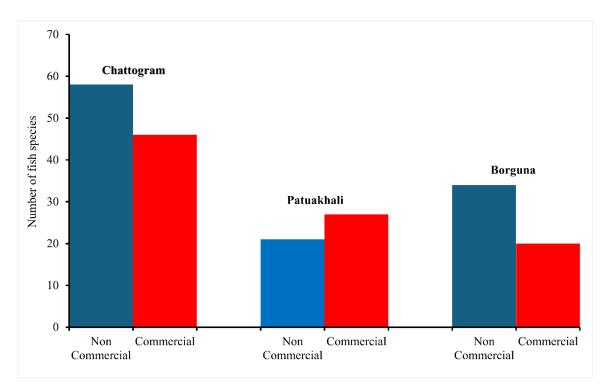
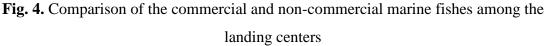




Fig. 3. Comparison of fish and shellfish availability of three fish landing centers in Bangladesh

Availability of commercial and non-commercial fish

Fig. (4) reveals that the availability of fish species observed from three different fish landing centers were categorized based on their commercial values. Across these centers, a total of 55 species were recognized as commercially significant including *Tenualosa Ilisha, Lates calcarifer, Pampus argenteus, Pangasius pangasius, Polynemus paradiseus, Harpadon nehereus, Coilia dussumieri, Eleutheronema tetradactylum, Macrobrachium rosenbergii, and Penaeus monodon, while 97 species were categorized as non-commercial. Specifically, in the Chattogram Fish Landing Center, 46 commercially important species and 58 non-commercial species were recorded. In the Patuakhali Fish Landing Center, 27 species were deemed commercially important, and 21 were non-commercial. Lastly, in the Borguna Fish Landing Center, 20 species were identified as commercially important, and 34 were labeled as non-commercial.*

IUCN red list status

The global IUCN Red List was categorized into seven (7) types, and the recorded marine species observed in the three-landing center demonstrated that 68% species were dominated as Least Concern, 14% were Not Evaluated, 4% were Near Threatened, 5% were Data Deficient and 6% were Vulnerable, 1% were Critically Endangered, 2% were Endangered (Fig. 5). The Near Threatened species were *Arius gagora, Chitala chitala, Harpadon nehereus, Microphis deocata, Protonibea diacanthus* and *Scomberomorus commerson*, while the Vulnerable species were *Aetomylaeus nichofii, Thunnus obesus, Dasyatis zugei*, and *Pampus argenteus*.

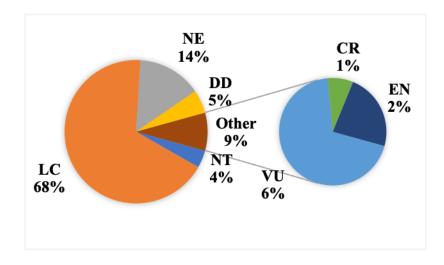


Fig. 5. Different colors indicate the percentage of the IUCN Red List status from the present study

Common fish and shellfish species

In three fish landing centers, two common shellfish species were found: *Macrobrachium rosenbergii* and *Penaeus monodon*, as shown in Fig. (6). On the other hand, the ten common fish species were *Coilia dussumieri*, *Eleutheronema tetradactylum*, *Harpadon nehereus*, *Lates calcarifer*, *Pampus argenteus*, *Pangasius pangasius*, *Polynemus paradiseus*, *Scartelaos histophorus*, *Tenualosa ilisha*, and *Tenualosa toli*.

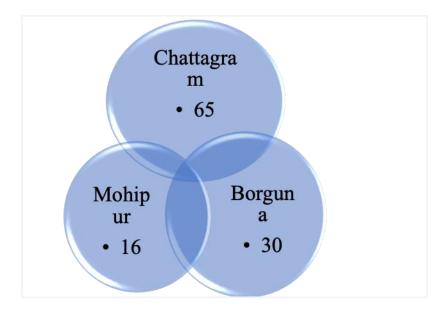


Fig. 6. Common fish and shellfish species in three fish landing centers, Bangladesh

Consumer demand

The study conducted in three fish landing centers revealed that 41% of the marine fish species were classified as having a high demand, 32% were considered to have a medium demand, and 27% were categorized as having a low demand (Fig. 7). The high demand category comprised 46 different fish species including *Tenualosa Ilisha, Lates calcarifer, Pampus argenteus, Pangasius pangasius, Polynemus paradiseus, Harpadon nehereus, Macrobrachium rosenbergii,* and *Penaeus monodon.* The medium demand category included 36 species, and the low demand category encompassed 30 species. In addition, all the recorded shellfish including saltwater shrimp and prawn were highly demanded by the consumers.

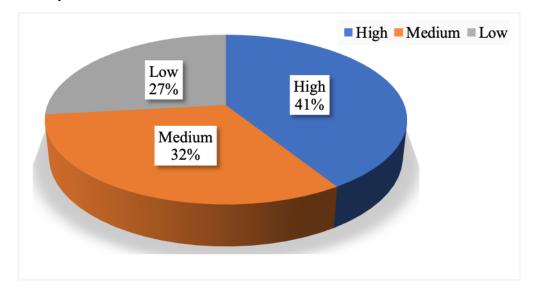


Fig. 7. Different colors indicate the consumer demand of marine fish and shellfish species

DISCUSSION

The studied fish landing center recorded a total of 152 marine species, comprising 144 marine fish species and 8 shellfish species. The current study strongly corroborates the findings of **Ahsan** *et al.* (2014), who highlighted the abundance of fish diversity in the Patuakhali landing centers, Bangladesh. They reported a total of 138 fish species at the Patuakhali fish landing center. Although, **Roy** *et al.* (2020) found a total of 60 species from Shibsa River, Paikgachha, Bangladesh. In addition, **Islam** *et al.* (2015) reported 114 fish species belonging to 12 orders, 36 families were collected and identified in Payra River, Patuakhali, Bangladesh. The vicinity of the Patuakhali fish landing center, located near the confluence of the Payra River and the Bay of Bengal, revealed a total of 61 species, comprising 56 finfish and 5 shellfish species, belonging to 22 families and 11 orders (**Rahat** *et al.*, 2022). Additionally, a total of 138 freshwater, brackish, and marine fish and shellfish species were reported, of which 126 were finfish and the remaining 12

were crustaceans (Siddique *et al.*, 2016). In contrast, Kamal *et al.* (2022) recorded a total of 54 species in the Cox's Bazar BFDC landing center in Bangladesh, consisting of 42 marine fish species and 7 shellfish species. The predominant orders were Perciformes (56%), Scombriformes (17%), and Clupeiformes (10%), a result which is lower than the finding of the present study. The current findings also differ from those of **Rahman** *et al.* (2019), who recorded only 33 fish species at Basurabad Beel in Bangladesh. These discrepancies may be attributed to factors such as fishing seasons, species availability, the duration of fishing trips, fishing gear used, and other variables.

The IUCN (2021) categorized marine fish and shellfish species observed in the landing centers as follows: Least Concern, Not Evaluated, Near Threatened, Data Deficient, Vulnerable, Critically Endangered, and Endangered. Notable species in the Near Threatened category include Arius gagora, Chitala chitala, Harpadon nehereus, Microphis deocata, Protonibea diacanthus, and Scomberomorus commerson. The Vulnerable category includes Aetomylaeus nichofii, Thunnus obesus, Dasyatis zugei, and Pampus argenteus. The current study revealed that, of 152 fish species from 69 families, 106 were least concerned, 22 were not evaluated, 8 were data deficient and vulnerable, and 6 were neatly threatened. These findings are more significant compared to those of **Rubel** et al. (2022), who reported on the fish biodiversity in Galachipa River, Bangladesh. Although Kamal et al. (2022) found that higher than 56% of the total fish diversity were categorized as Least Concern, nearly 10% were classified as Near Threatened and 2% were marked Vulnerable. These findings are consistent with the present findings. Furthermore, **IUCN** (2021) indicates that while the overall production of the Bombay duck (Harpodon nehereus) has doubled over the past twenty years, its proportion of the total fish production has experienced a slight decline. Specifically, it decreased from 1.79% in the period of 2002–2003 to 1.55% in 2018–2019.

The landing center study observed 3 endangered species, accounting for 2% of the total observed species, demonstrating a high level of conservation concern. In addition, 9 vulnerable species, making up 6% of the observed species, were noted, highlighting the need for proactive conservation efforts. The study also recorded 103 least concerned species, comprising 68% of the observed species, indicating a relatively stable population. Furthermore, 6 near threatened species, representing 4% of the observed species, and 22 species that have not been evaluated, accounting for 14% of the observed species, were documented. Notably, the IUCN Red List status of **Bangladesh (2000)** identifies three species as endangered, and these species were found in substantial quantities at the fish landing center. This finding underscores the urgent need for conservation measures, as these species are declining due to overexploitation. Comparative analysis revealed that the study conducted by **Rahman** *et al.* (2015) reported 7 endangered, 7 vulnerable, and 2 critically endangered species in the Rabnabad channel, indicating a lower count compared to the present study. Similarly, the research by **Galib** *et al.* (2013) documented 10 endangered, 6 critically endangered, and 10

vulnerable species from the Choto Jamuna River, highlighting a higher count than the current study. These comparisons provide valuable insights into the availability and IUCN status of endangered and vulnerable species across different locations.

In three fish landing centers, 41% were high demand of marine fish species, 32% were medium demand of marine fish species, and 27% were low consumer demand of marine fish species. The number of high demand fish species was 46 species, medium demand fish species was 36 and low demand fish species was 30. The demand for certain marine organisms (i. e., *Tenualosa ilisha*) from customers was relatively high all the year round. These demand for fish primarily depends on special aspects such as fish kind, quality, fish price, consumer income, and flavor (Dey et al., 2008; Rahman et al., 2012). Consumer demand for marine fishes is generally lower than for freshwater fishes, possibly due to higher pricing and reduced availability in domestic markets, while demand for hilsa is evermore significantly higher owing to its mouth-watering taste and traditional uses in our country (Kamal et al., 2022). Although, Barua et al. (2014) stated that due to the over exploitation of human, fishermen caught a total of 152 species as commercial important fish species, along with the by-catches species from the Bay of Bengal. The demand for fish is primarily triggered by some common factors, such as consumer income, incoming black fish in the market, paucity in the peak seasons, low catch compositions, etc. Dev et al. (2008) argued that the earnings flexibility of all fish kinds continuously declines as per capita family investments rises, even though none of the fish types become worse goods in the highest income quartile.

The presence of several commercially important species, such as the Wallago attu, *Tenualosa ilisha*, and *Penaeus monodon*, highlights the economic significance of these aquatic resources (Hossain, 2001). However, the study also identified several species with threatened conservation status, including the Vulnerable *Wallago attu* and *Tenualosa toli*, and the Endangered *Eusphyra blochii* (IUCN, 2021). The prevalence of threatened species underscores the need for effective management and conservation strategies to protect these vulnerable populations.

The observed differences in species availability and demand across the three sampling stations suggest spatial variations in habitat quality and anthropogenic pressures. For instance, the higher availability of species at Station 3 may be attributed to the relatively less disturbing nature of this location, which is situated in a more remote area compared to the other two stations. In contrast, the lower availability of species at Stations 1 and 2 could be linked to factors such as habitat degradation, overfishing, and pollution, which are common issues in more urbanized and industrialized areas (Hossain *et al.*, 2001).

CONCLUSION AND RECOMMENDATIONS

The present study noted that multiple elements, such as the type of fish, availability, commercial status, consumer tastes, and income levels, impacted the presence of marine fish in the landing centers. Conversely, the factors shaping consumer demand for fish included the variety of fish, cost, preferences, income, and flavor. Notably, the demand for certain key marine fish like hilsa was directly linked to their availability. However, this pattern did not hold for less conventional marine species like octopus and crab, which, despite their significant export value, saw erratic consumer demand. The research also referenced the IUCN Red List, which freaks a pivotal role in determining the conservation status of various common and large fish species, pinpointing those that are at risk of endangerment or vulnerability. The research underscores the urgent need for effective conservation strategies to protect vulnerable and endangered species, as identified by the IUCN Red List. It advocates for sustainable fishing practices, habitat restoration, and community involvement in conservation efforts to ensure the sustainable viability of fish availability. Furthermore, ongoing monitoring and research are essential to adapt management strategies to changing environmental and market conditions. Considering consumer tastes and the market's valuation, as well as the broader goal of preserving the diversity of fish species, it is imperative to safeguard these threatened species from extinction. Moreover, understanding the patterns of species availability can inform us about peak seasons, shifts in demand, and the necessary measures for effective conservation management of these marine beings. Overall, the study emphasizes the importance of balancing economic interests with ecological sustainability to preserve the rich biodiversity of marine resources in Bangladesh, ultimately contributing to food security and the livelihoods development of local communities.

Based on the study's findings and the conservation status of fish species in three Fish Landing Center, below are some management and conservation recommendations:

- 1. Specific regions within the south-central coastal district should be designated as protected zones to conserve the habitats of endangered and vulnerable fish species.
- 2. Enforce and improve existing environmental laws and regulations to prohibit unlawful activities including deforestation, sand mining, and pollution on riverbanks and in neighboring areas.
- 3. Encourage the use of sustainable fishing methods, such as controlled seasons, catch caps, and gear limitations.
- 4. Raise awareness among local people about the value of biodiversity and sustainable river management practices.
- 5. Develop climate change adaptation strategies that consider potential impacts on river biodiversity, such as altered water flow patterns and increased temperatures.

ACKNOWLEDGEMENTS

All authors are highly acknowledged to local fishers, fishermen, managers of respective BFDC, and the Upazila Fishery Officer for their cooperation throughout data collecting.

FUNDING STATEMENT

The current study received no specific grant, fund, or other financial assistance from any society, business, or non-profit supporting organization.

AUTHORSHIP CONTRIBUTIONS

Md. Mahmudul Hasan: Data collection, Formal analysis, Methodology, Writing-original draft, review & editing. **Newton Saha:** Formal analysis, Methodology, Writing-original draft, review & editing. **Pranta Saha:** Formal analysis, Writing-original draft, Writing - review & editing. **Abdullah-Al- Hasan:** Formal analysis, Writing-original draft, Writing - review & editing. **Tania Tabassum:** Formal analysis, Writing-original draft, Writing - review & editing. **Md. Sazedul Hoque:** Investigation, Writing- original draft, writing- review & editing. **Suprakash Chakma:** Conceptualization, Investigation, Methodology, Formal analysis, Writing-original draft, Writing- review & editing.

DECLARATION OF INTEREST

The authors declare no conflicts of interest in the current study.

ETHICS APPROVAL STATEMENT

This research work has been approved by Patuakhali Science and Technology University's Institutional Ethical Committee (IEC) with the number PSTU/IEC/2023/73. Participants in this study were informed about the research goal, data utilization, and potential risks. They were given the option to ask questions and could withdraw at any time. Before inclusion, we received written informed consent. Privacy rights were scrupulously enforced, and acquired data were anonymized to prevent individual identity. Confidentiality and security procedures were implemented to protect the data.

REFERENCES

- Ahsan, M.E.; Siddik, M.A.B.; Sharker, M.R.; Islam, M.A.; Nahar, A. and Pattadar, S.N. (2014). Fish species availability in the fish landing center of Patuakhali, Bangladesh. International Journal of Science Technology Research, 3(2): 220–225.
- Ali, M.Y.; Salim, G.M.; Mannan, M.A.; Rahman, M.M.; Sabbir, W. and Murshida, A. (2004). Fish species availability observed in the fish landing centers of Khulna District in Bangladesh. Journal of Biological Sciences, 4(5): 575–580. <u>https://doi.or/10.3923/jbs.2004.575.580</u>
- **Barua, S.; Karim, E. and Humayun, N.M. (2014).** Present status and species composition of commercially important finfish in landed trawl catch from Bangladesh marine waters. International Journal of Pure and Applied Zoology, 2(2): 150-159.
- **Bell, M.A. (2006).** Fishes of the World. Fourth Edition. By Joseph S Nelson. Hoboken (New Jersey): John Wiley & Sons.
- Chakma, S.; Karim, M.R.; Kabir, M.A.; Saha, N.; Eftakhar, M.R.; Hoque, M.S. and Islam, M.S. (2024). Nutritional compositions of native mudskipper (*Apocryptes bato*) fish influenced by sex: a first report on nutritional profiling of mudskipper in Bangladesh. Journal of Agriculture and Food Research, 16(5):101191. https://doi.org/10.1016/j.jafr.2024.101191
- Chakma, S.; Rahman, M.A.; Mali, S.K.; Debnath, S.; Hoque, M.S. and Siddik, M.A.B. (2022). Influence of frozen storage period on the biochemical, nutritional, and microbial quality of Skipjack tuna (*Katsuwonus pelamis*) collected from the Bay of Bengal coast of Bangladesh. Food Chemistry Advances, 1: 100139. https://doi.org/10.1016/j.focha.2022.100139
- Dey, M.M.; Garcia, Y.T.; Kumar, P.; Piumsombun, S.; Haque, M.S.; Li, L.; Radam, A.; Senaratne, A.; Khiem, N.T. and Koeshendrajana, S. (2008). Demand for fish in Asia: a cross-country analysis. Australian Journal of Agricultural Resource Economics, 52: 321–338.
- **DoF** (**Department of Fisheries**), (2023). Yearbook of Fisheries Statistics of Bangladesh 2022–2023. Department of Fisheries, Ministry of Fisheries and Livestock, Bangladesh. pp. 148–152.
- Galib, S.M.; Naser, S.M.A.; Mohsin A.B.M.; Chaki, N. and Fahad, F.H. (2013). Fish diversity of the River Choto Jamuna, Bangladesh: Present status and conservation needs. International Journal of Biodiversity and Conservation, 5(6): 389–395. <u>https://doi.org/10.5897/IJBC2013.0552</u>
- Hanif, M.A.; Siddik, M.A.B.; Chaklader, M.R.; Nahar, A. and Mahmud, S. (2015). Fish diversity in the southern coastal waters of Bangladesh: present status, threats

and conservation perspectives. Croatian Journal of Fisheries, 73: 148-161. https://doi.org/10.14798/73.4.848

- Hoq, M.E. (2014). Bay of Bengal Bangladesh: Fish & Fisheries. Support to Sustainable Management of the BOBLME Project, Bangladesh Fisheries Research Institute, Bangladesh. SBOBLME Pub. /Rep. 10. pp. 48.
- Hossain, M.S. (2001). Biological aspects of the coastal and marine environment of Bangladesh. Ocean & Coastal Management, 44(3–4): 261–282. https://doi.org/10.1016/S0964-5691(01)00049-7
- Hussain, M.G. (2010). Freshwater fishes of Bangladesh: Fisheries, biodiversity and habitat. Aquatic Ecosystem Health & Management, 13(1): 85–93. https://doi.org/10.1080/14634980903578233
- Islam, M.A.; Hossain, M.M.; Ahsan, M.E. and Nahar, A. (2015). Status and current worries of fish diversity in the Payra River, Patuakhali, Bangladesh. International Journal of Fisheries and Aquatic Studies, 2(3): 160–165.
- IUCN (International Union for Conservation of Nature) of Bangladesh (2000). Red list of Bangladesh: Freshwater fishes. IUCN-The world conservation Union. pp. 3– 314.
- **IUCN (International Union for Conservation of Nature) (2021).** The IUCN Red List of Threatened Species. Version 2021–3. Accessed on 01 June 2021. <u>https://www.iucnredlist.org</u>
- Kamal, S.A.; Chad, N.A.; Hossain, J.; Ferdous, A. and Jahan, R. (2022). Availability of marine fishes in Cox's Bazar, Bangladesh: A case study on the BFDC landing center. Croatian Journal of Fisheries, 80(3): 133–140. <u>https://doi.org/10.2478/cjf-2022-0014</u>
- Lamboeuf, M. (1987). Bangladesh demersal fish resources of the continental shelf. FAO/BED. FE: DP/BGD/80/075. 26p. Marine Fisheries Resource Management and Development Project.
- O'Hara, C.C.; Villaseñor-Derbez, J.C.; Ralph, G.M.; Halpern, B.S. (2019). Mapping status and conservation of global at-risk marine biodiversity. Conservation Letters, 12(4): e12651. https://doi.org/10.1111/conl.12651
- Rahat, M.A.R.; Roy, N.; Manon, M.R.K.; Ullah, M.R.; Islam, M.M.; Rashid, M.T.; Hasan, K.R.; Chakma, S. and Rahman, M.A. (2022). Temporal distribution of fishery resources in Payra River: relationship with climatological changes, ecological assessment, and threat assessment. Heliyon, 8(9): e10584. https://doi.org/10.1016/j.heliyon.2022.e10584
- Rahman, M.A.; Alam, M.A.; Hasan, S.J. and Jaher, M. (2012). Hilsa fishery management in Bangladesh. Hilsa: Status of fishery and potential for aquaculture. pp. 40–60.
- Rahman, M.A.; Mandal, B.; Khamari, A.; Ullah, M.R.; Hoque, M.S.; Siddik, M.A. and Chakma, S. (2019). Ichthyofaunal diversity of Basurabad Beel in regards with

threat factors and conservation measures. Bangladesh. Arch. of Agri. and Environ. Sci., 4(4): 478-487. <u>https://dx.doi.org/10.26832/24566632.2019.0404015</u>

- Rahman, M.B.; Hoque M.S. and Hasan M.M. (2015). Selectivity of Fishing Gears and Their Effects on Fisheries Diversity of Rabnabad Channel of Patuakhali District in Bangladesh. Academic Research International, 6(6): 184–196.
- Raisa, T.R.; Sultana, T.; Ghosh, S.K.; Tamzi, N.N.; Shuchi, R.T. and Faisal, M., (2022). Market demand of conventional and non-conventional fish species and price comparison between BFDC landing center and two popular fish markets, the Baharchora and Borobazar, in Cox's Bazar, Bangladesh. Bangla. J. of Veter. and Ani. Sci., 10(2): 1–11. <u>https://doi.org/10.60015/bjvas/V10I2A1</u>
- Roy, P.; Chakma, S.; Nadia, Z.M.; Saha, N. and Rahman, M.A. (2020). Exploration of fishing gears and temporal distribution of fish species at Shibsa River, Paikgachha, Bangladesh. Journal of Bangladesh Agriculture University, 18(1): 157–164. https://doi.org/10.5455/JBAU.947556
- Rubel, M.R.I.; Pattadar, S.N.; Chakma, S. and Alam, M.R. (2022). Livelihood Status of Fishing Communities and Fish Biodiversity of Galachipa River in the Southern Coastal Area of Bangladesh. Egyptian Journal of Aquatic Biology & Fisheries, 24(3): 367-382. <u>10.21608/ejabf.2022.230378</u>
- Siddique, M.A.M.; Khan, M.S.K.; Habib, A.; Bhuiyan, M.K.A. and Aftabuddin, S. (2016). Size frequency and length weight relationships of three semi-tropical cephalopods, Indian squid *Photololigo duvaucelii*, needle cuttlefish Sepia aculeate, and spineless cuttlefish *Sepiella inermis* from the coastal waters of Bangladesh, Bay of Bengal. Zoology and Ecology, 26(3): 176–180. https://doi.org/10.1080/21658005.2016.1190523
- Van der Laan R.; Eschmeyer, W.N. and Fricke, R. (2014). Family-group names of recent fishes. Zootaxa, 3882(2): 1–230. <u>http://doi.org/10.11646/zootaxa.3882.1.1</u>