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Abstract

In this article, we study a new extension of the log-logistic model called
the Kumaraswamy alpha-power log-logistic (KAPLL) distribution, an
extension of the log-logistic model. It investigates some of their mathematical
and statistical properties, including reliability properties (survival function,
hazard rate function (HRF), moments, quantile functions (QF), and moment
generating functions), emphasizing their utility in modeling diverse aging and
failure criteria. One key advantage of the KAPLL distribution lies in its
capacity to represent its density as a blend of log-logistic densities, offering
both symmetric and asymmetric shapes for greater modeling flexibility. The
estimation of KAPLL parameters is achieved through maximum likelihood
estimation (MLE), a widely used statistical method. The study presents
comprehensive simulation results to assess the effectiveness of the proposed
estimation technique. Furthermore, a practical application on real-world data
IS conducted to showcase the adaptability and versatility of the KAPLL
distribution when compared with other extensions of the log-logistic model.

Keywords: Kumaraswamy alpha-power class; log-logistic distribution.
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1. Introduction

The quality of the procedures in a statistical analysis depends heavily on the
assumed probability distribution. Hence, considerable efforts have been
expended for developing generalized classes of distributions along with
relevant statistical methodologies. In practice, probability distributions are
applied in many fields including the actuarial science and insurance, risk
analysis, investment, market research, business and economic research,
reliability engineering, chemical engineering, medicine, sociology,
demography, among others.

The statistical literature contains several new generated classes of univariate
continuous distributions by introducing additional shape parameter(s) to a
baseline model. The extended distributions have attracted several statisticians
to develop new models due to their flexibility and ability to model monotone
and non-monotone real-life data. Some notable classes include the Marshall-
Olkin-G (MO-G) [16], Kumaraswamy Marshal-Olkin-G (KMO-G) [3],
Weibull Marshall Olkin-G [14], Marshall-Olkin alpha power-G (MOAP-G)
[19], and Kumaraswamy alpha power-G (KAP-G) [17], among others.

The log-logistic (LL) distribution is also known as the Fisk distribution in the
income distribution literature [8, 10, 22]. Additionally, Arnold [4] referred to
it as the Pareto type Il distribution and included an additional location
parameter to it. Furthermore, the LL distribution is a special case of the Burr-
X1 distribution [5], and Kappa distribution [18], which have been applied to
stream flow and precipitation data. Further details about the LL model can be
found in[13].
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Several authors have studied different generalized forms of the LL distribution
to improve its capability and flexibility. The LL model can be considered the
probability distribution of a random variable whose logarithm has a logistic
distribution, and it is an alternative to the log-normal distribution since it
presents a hazard rate function (HRF) that increases initially and decreases
later. Some improved versions of the LL model include the alpha power
transformed-LL [1], beta-LL [15], MO-LL [11], extended-LL [2], Zografos-
Balakrishnan LL [20], and odd Lomax LL distributions [7]. This article
investigates a new extended form of the LL distribution called the
Kumaraswamy alpha-power log-logistic (KAPLL) distribution, which can
provide more flexibility in modeling reallife data than other competing LL
models. The proposed model is obtained using the KAp-G family [17]. The
motives of the KAPLL distribution including the following: (i) The KAPLL
model is capable of modeling increasing, J-shape, decreasing, reversed J-
shape, bathtub, modified bathtub, and unimodal HRF shapes; (ii) the KAPLL
distribution can be viewed as a suitable model for modeling skewed real-life
data, which may not be properly modeled by other known distributions; (iii) it
can be applied in different fields including survival analysis, public health,
industrial reliability, biomedical studies, reliability, and engineering; and (iv)
The KAPLL distribution outperforms many well-known LL distributions with
respect to real-life data examples.

The rest of the paper is organized into seven sections. The KAPLL
distribution is investigated in Section 2. In Section 3, some key properties of

the KAPLL distribution are explored. Inference about the KAPLL parameters
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Is presented In Section 4. Section 5 provides a simulation study. A real-life

data application is presented in Section 6. Section 7 gives some conclusions.

2. The KAPLL Distribution

The KAPLL model and its special cases are presented in this section. The
cumulative distribution function (CDF) of the two-parameter LL model has

the form
A _1
G(x)=<1+x—ﬂ> x> 0,48 >0, 1)
where A and f are the scale and shape parameters, respectively.

The LL probability density function (PDF) reduces to
-2

= ABx~P~1(1 A 2
9() = 4px 0 (1+2;) @)
The KAPLL distribution is constructed based on the KAP-G family, which is

specified by the CDF
b

af® — 1] ,
F(X): 1—{1—[ﬁ] } 1foc,a,b>0,a¢1' (3)
G(x) ifa=1,
where a,a and b are shape parameters.

The corresponding PDF of the KAP-G class is expressed by

abln a at® — 11" e — 11"
fG)=——F g(x)at® !ﬁ] {1 - [—] } (4)

a—1

Further information about the KAP-G family can be explored in [17].
Inserting 1 in Equation 3, the CDF of the KAPLL distribution follows as
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_ a-b
a(1+xi3) 1 -1

a—1

F(x)=1—-11- . (5)

The PDF corresponding to Equation 5 takes the form

1 -1 a—1
abABIna N (HL)‘l a(“x_ﬁ> -1
= yB-1 — B
f(x) a—1 x (1+xﬂ> @ a—1
e a-b-1
1 a<1+x_ﬁ) -1 6
The HRF of the KAPLL distribution reduces to
1 -1 a—1
abABIna A\ (1+L)_1 a<1+x_ﬁ) —1
— B-1 —_ B
h(x) a—1 (1+x/3> @ 7 a—1
Ayt ar~t
a(1+x_ﬁ) -1
1-— )
X p— (7)

Table 1 provides five important special sub-models of the new KAPLL
distribution. Figure 1 shows some forms of the KAPLL PDF for some selected
parameter values. Figures 2 displays the HRF plots of the KAPLL distribution
for some parametric values. The density plots show that the KAPLL model
can be symmetric and asymmetric density shapes. Furthermore, the HRF plots
show the capability of the proposed model in modeling different failure rate

shapes including both monotone and non-monotone shapes.
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Table 1: Sub-models of the KAPLL distribution

A B a B Sub-model Authors
A B a EAP-LL distribution Special case
A B a B  K-LL distribution De Santana et al. [9]
A B a 1 E-LL distribution Rosaiah et al. [21]
A B 1 1 AP-LL distribution Aldahlan [1]
A B 1 1 LL distribution Fisk [10]

" e ae am 58 Be & o

Figure 1. Shapes of the KAPLL density for various parametric values
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Figure 2: Shapes of the KAPLL HRF for various parametric values
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3. Properties of the KAPLL Distribution

This section provides some key features of the KAPLL model.

3.1 Linear Representation
Mead et al. [17] provided a useful mixture representation of the PDF of the
KAP-G class. According to [17], the KAP-G density reduces to

- —1)i*J (In @)**1 b—1\(a(l1+i)—1
£(x) = ab z o (D)™ (na) )g(x)(G(x))"( i )(a( +.l) )
i,j,k=0

a(l+ i) —j]7*(a — 1)+ J
Using the PDF and CDF of the LL model and after some algebra, the KAPLL

density takes the form

o0 (—1)i+j(1na)k+1[a(1+i)_j]k " 1 5
@ z k! (a — 1)e+) ApxF (1+—)

B
AN Eb—1y\ fa(l+10) -1
c(1e ) (TN,
xP i j
It can also be rewritten simply as follows
FE) =) diGen®,  ©®
k=0

where {1 (x) = (k + 1)g(x)(G(x))* is the exponentiated-LL density with
power parameter and (k + 1) > 0, and

- i (=D (Ina)** a1 + i) — j]* (b - 1> (a(l +i) — 1)
€=y (k + D! (a — 1)eG+D i i 7
i,j=0
3.2 Quantile Function
The quantile function (QF) of the KAPLL distribution follows by inverting

Equation 5 as
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-1

oo~ (- o

where ¢ = [(a -1) [1 -(1- u)llz]a}, u follows the wuniform (0,1)

distribution.

3.3 Moment

The r th moment of X can be obtained from Equation 8 as

W= Ex =Y d f X7 err (X)dx,
k=0

hence,

© k-2

=Z d Aﬁjmxr-ﬁ-l(ui) dx
k o x[g )

k=0

after calculating the integration, you get u,. as follows

z r r
o dk)tﬁr(l——>r<—+k+1) -

;o B) \B r
“r_z F(k+2) <t 19
k=0
3.4 Order Statistics

Let X3, X5, ... ... X, be a random sample of size n and let X;.,,, ..., X;,., be this
associated order statistic. Then, the PDF of the i th order statistics, say, X;.,,,
which is denoted by f,.. (x) is given by:

__ nfk)
frin ) = G D1 = D1

Substituting Equation 5 and Equation 6 in Equation 11 ,if « # 1, the i th order
statistic of the KAPLL distribution reduces

[FEOI 1 = FO)]™" . #(11)
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abApn! Ina(a — 1) _p-1
(n—0!@i—1)

-1
where d; = (1 + x%) andn; = (% —1)/(a — 1).

l

diz Zadin?_l[l _ nlq]b(n—i+1)—1,

frin(X) =

ra= 2, 3
><(";1)(”("+k—ji+1)—1)(ao+n1)—1).

Or simply in the form

A,Bx‘ﬁ‘ldf“

fln(x) = z dshs+1(x);
s=0

where hg,1(x) = (s + 1)g(x)[G(x)]® is the exponentiated-LL density with

power parameter (s + 1) > 0, and

i-1

d. = i ab(ln 0()5+1(_1)k+j+m[a(j + 1) _ m]S (l _ 1)
S k=0 jm=0 Biin-i+n(s + ! (a — 1)aU+D) k

x(b(n+k—'i+1)—1>(a(j+1)—1).

] m

4. Estimation of the Parameters

In this section, we use the maximum likelihood (ML) method to estimate the
KAPLL parameter.
Let x;, x5, ..., X, be a random sample from KAPLL distribution then the

logarithm of the likelihood function (#), becomes
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Ina
? = [lna+1nb+ln/1+1nﬂ]+nln(a

)+(B— 1)2 In(x,) —
AZ xﬁ+1n(a)zd +(a—1)zln(m)+(b—1)zln(1 %),

-1
where d; = (1 + x%) andn; = (% —1)/(a — 1).

To obtain the MLE of a, b, a, A and (3, the first derivatives of £ are obtained

with respect to a, b, a, A and . These derivatives are

af
F_n + Z In(ny) — (b — 1) z &1 —nH™* In(ny),

z In(1 —nf),

0¢ nfa—1-aln(a)] 1 (a — Dd;a% 1 — (a% —1)
da  a(a— Din(a) + EZ dit+(a- DZ l (@ —1D(a% - 1)

@Iz

o L [(a@ = 1)d;a% 1—(al—l)
—a(b—l)zn 11— e
R SR = d, d2a dln(a) d2a%n® " In(a)
ﬁ‘?‘;"f _ln(a)zl 7_@_1)2 a7 )Z Fla- -0
and

% 2+21n(x1) AZ ﬁln(x>+1n<a)z 2d?xPInG) +

Ad?aIn(a) Inx; Ad; *a% In(a) InCe)ni ™"
(“‘1)2 xP (ati — 1) _a(b_l)z x{ (@ =D =P
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5. Simulation Analysis

Now, we provided detailed simulation results to explore the performances of
the ML estimation in estimating the parameters of the KAPLL model. We
considered several sample sizes and different values of the parameters, that is,
n = {50,100,250,500,750} We generated N = 1000 random samples using

Equation 8. The behavior of the different estimates is compared with respect

to their: average absolute biases (|BIAS]),|BIAS| =%Z’i"=1|é—9|, mean
square errors (MSE), MSE=%2§V:1(9A—6)2, and mean relative errors

(MRE), MRE = %Z?’=1|é —6|/6. The Tables 2 and 3 show the simulation

results, average ML estimates of the parameters, |BIAS|, MSE, and MRE, of
the KAPLL parameters using different approaches. These results showed that
estimates are very close to their true values and have small biases, MSE and
MRE. The results illustrated that the biases, MSE, and MRE decrease as n

increases, showing that the introduced estimators are consistent.

Table 2: The AEs, MSE, BIAS and MRE of the KAPLL parameters for
different values of the parameter and n

mn a=0.5 A=L15 A=0.75, a=0.6, b=0.3
50 21728 135561 10,0240 4.2151 3.7464 GGT.02T1 06764 832329566 63.1576 BS417.5848
100 0.9903 1.3400 09144 21318  0.5661 13.3704 04209 06706  16.1204 0.6286
250 AEs 06076 1.36G19 0.9303  1.0080 0.3919 | MSE 24015 0.1918 04558 1.6152 00577
500 0.4796  1.4246 09180 0.7292  (.3427 0.0703 01028 03060 01672 0.0170
7ol 0.4904  1.4257 0.8695 (.6G839 0.3298 0.0545 00678 0.1913 0.0752 0.0081
50 21098 06897 9.7455 37046 3.5305 4.2196 0.4598 12.9941 6.3243 11.7683
L0 0.8430  0.5314 0.4917 1.6829 0.3292 LGRGO  0.3543 06556 2.8049 1.0974
250 BIAS| (0.3796  0.3400 0.3747  0.5104 0.1329 | MRE 0.7581 02267 0.4996 0.8507 0.4431
500 0.2007  0.2299 02849 02230  0.0757 0.4013 0.1533 0.3799  0.3717 0.2523
Ta0 (L1G6T  (.1816 0.2192  0.1659 (L0560 0.3335 01211 0.2922 0.2764 0. 1866
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Table 3. The AEs, MSE, BIAS and MRE of the KAPLL parameters for

different values of the parameter and n

e a=045, A=L15 A=0.75, =06, =5
Sl 2O6BIT 1261 Jodiks1 3.20HE 2 Wb SELAEES 1. OIS DN 3 3AOEIT 2ER OEhd
LMk 1. 1958 L3TRT 1.1114 1.7714 G145 18424 TREE] 5.ATE2
2510 AEx 1.7H6S 1.39% L5 (LBETS (662 | MSE n24e1 0Tl il .E0Es
L L5135 1240k L83 (LT3T .5643 .14 014 O6TI2 01285 0.0445
THlb IELEE 1.4241 1877 (LTiEd (.5482 .1252 0.1 05249 (IR 0231
all 20086 083250 Jo134h 5312 2E1T1 .55 117848 17854 62
LNk LOVIEF (L6445 L7147 L=tz 21415 0. 420G 04530 22431 1.7H48
250 | |BIAS| OADE: (L34l (LATS 02500 | MRE L1257 .2EE2 L.T255% O4Te1 L5LEL
Bl 03056 (L52sE (L2327 L1414 R | 02T [ | 57 O38TE D.2E32
Tk ILELGR 027 (Ldtiss  (L15s L1155 LRI1T 1ELT 06247 3180 02510
n =15, 5, a=1.3, b=lL3
all LA16ES LaASdsd  (LTEd 9.50=4 1.13#51 Nk 15 11916 257.0M4BE ST
Xk 0.TEZ1 13708 L7522 T I = 1559650 0. 40ET OGS 13558470 1611
2510 AEx I 1.6 3.7217 n.3e05 | MSE OTTE 11961 0.17s4% 12 GiTHl HNIEST
Bl (. AT L4117 20879 IR ISR 102 01071 H.T13E 0.01E2
Talb LABL3 1125 1. Ebtkd 35k 352 0. (Hats O (Wil 1.A0aT (.onie:
5l DALET  OLfES1 (LE11E 80550 (L5465 LEET4 R 08149 68801 1.154%
LNk GBS 05342 (LhsT  GdlG L2400=. 1306 A5 Ohls2 1674 1. =0EH
250 | |BIAS| 2R O054E LERT 2.0 0133 | MRE IR 2252 UL 24211 TS
Bl 1B 05551 (CAE (L5500 .O=0T L ks 01561 022TaT [ 0. 26R
Ty 01252 01741 (L1541 A1 (.05 Tk n11&1 055 [ 0.1tk
n a=05 H=15 A=1
all Ladlis 1741 117181 duGEeTH  (L8&d68 1154 3 ILTHER LaTa22  TT_diMedh 2 Y5225
Xk L2575 1HIG8  1IE3SH 2I1TIHE 055937 BAEN O.-22E3 LETEE  16ETATE 53473
20lp AEs AdE2lE LMt 121855 10412 039197 | MSE 181 018078 L5121 211487 L9
Sk 051814 L5122 LITAT6  OLTeliE  0.3500d 072511 O.10H0E2 LE5 164 MTTE .05
Talb 51525 1 43WE8 111587 [LER6R52 032986 D085 (LERE] (CAMIY (8561 [LI96s
Al LATHT (73413 Ls0585% 421671 (LGEReT 205014 045042 LLE .- | L= TARTES 2 MR
LNk LI1024% (53028 61146 1.71458  (L: L3 B O L6114k ZLE5TEL LOTSET
250 | |BIAS| | 026812 UE362T  0L440EE DSR2 013286 | MRE 053625 022418 (Lddizs ehlsod 044121
L 02242 (CERES 032168 02335 0074546 044842 015222 LE2LGED (LTS [ ol ]
Ty L1655 LITOZT 2273 0161 (L0SEE DE3EE 011351 LCEMTE  (CMGTED 15764
n a=045, A=15 A=1, a=l6, k=025
all 2.52TTH LALSES 511456 A lTd AASEET 228 97Nk LOFTE 21041973 350124 B24.d540
LNk LAy 138497 141674 1635 1.211s8 223101 OLh29E 2EUTEE GRS L ARSIEY
20lp AEs L B 1 T i ILBETY2 (L6665 | MSE BTRI2T 025117 1iIHTE  (GS4ET 3265
Sk OL5040T 142042 fhriad LGERLT D18516  O.153%E3 L1856 (h13l3s (M2
Tlb 0ADENE 141928 1E420E  D.T0E16 055005 DRG0 L5 (LTa861 (T LK
il 246873 (LE3AIR 4 THEE  RTEGE 293586 1.93716  (0.55625 1. THiGER N ER L 5855172
Lk LOT208 (bdddti  (LESTE 127285 (84778 214417 04200 O887TE 212130 L8555
250 | |BIAS| | 054621 0u40508  DUEBGLS  DLADEGSE 0.2501 | MRE LOMELE 027005 (LESGLS 0.51E2
L LR (LR4S  DEZEILE  2EED 015562 DGRETE  OL2N0G (LE2ELE ! 0277
Ty 031150 (CET4ES  05eH2T 189312 011618 D237 (.15258 LE62T  (LE21ET 023287

6. Real Data Application
In this section, we present a real-life data application to show the importance

of the KAPLL distribution. The data set is studied by [24] and it represents set
consists of 40 observations of time to failure (103h) of turbocharger of one
type of engine. The data are as follows: 1.6, 3.5, 4.8, 5.4, 6.0, 6.5, 7.0, 7.3, 7.7,
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8.0,84,20,63950,56,6.1,65,7.1,7.3,7.8,8.1,84,26,45,5.1,5.8, 6.3,
6.7,73,7.7,7.9,8.3,85, 3.0,4.6,5.3,6.0, 8.7, 8.8, 9.0.

The fits of the KAPLL distributions shall be compared with some rival
distributions, namely: Log-logistic (LL), alpha power transformed log-logistic
(APTLL) by [1], beta log-logistic (BLL) by [15], Kumaraswamy Marshall-
Olkin log-logistic (KMOLL) by [6], McDonald log-logistic (McLL) by [23],
additive Weibull log logistic (AWLL) by [12].
To compare the fitted distributions, we consider some criteria namely: The
Akaike information criterion (AIC), Kolmogorov-Smirnov (KS) and p value
(PV). The R program is used to obtain the numerical results in this section.
Table 4 list the goodness-of-fit measures of the competing models and The
MLEs and SEs for the data. It is observed, from Tables that the KAPLL
distribution have the lowest values for goodness-of-fit criteria among all fitted
models. So, it could be chosen as the best model for the analyzed data set.
Table 4: The ML estimates, SEs, and goodness-of-fit criteria for time to

failure data

Distribution AIC KS PV Estimates
KAPLL 065%.12000  6.1048% 99978520000  0.43938  30.83448
. 167.85800 | 0.07307 | 0.98318
(a, B, \, a,b) e : 6823.38144  0.35084 680320770  0.11247 13.97041
LL 181.41330 | 0.14369 | 0.38072 18162 699647772
(8,0 Aoal | U2230T ) Hastn 070121  9447.15447
APTLL . 103202 5.82120 1.81336
183.39570 | 0.14407 | 0.37745 . oo ooy
(v, a,b) 5.62217 1.72831 0.69531
BLL 1067120 | 01261 | 054708 | 169351671 1.03733 6.98804  2322.50580
(a, B, a,b) =01 P DRI 9965.80606 0.44420 570121 2147.19265
KMOLL 9871171 22.67472 566345  0.68373  2087.31877
. 174.94480 | 0.10770 | 0.74232
(a. 8\ a,b) | " 94116458  984.37198 26.24854  3.16798  26900.79379
McLL tn.5530 | 01241 | oseerg | 983242 7711220 110483 79.95686 0.18127
(c, B, A, a,b) R Y 2.63637 3.15352 0.72072  51.18584 0.12886
AWLL 180384 41.17836 0.01666 473209  998.90351  2.04481
176.95100 | 0.10770 | 0.74231
(@ \abed | " 26.33612  341.11273 7460581 7626542 32032.35327 28.43361
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Figure 3: The fitted functions of the KAPLL model for time to failure data.

7. Conclusions
In this paper, we introduce a new five-parameter distribution called the
Kumaraswamy alpha power log-logistic (KAPLL) distribution. The
mathematical properties of the KAPLL model are derived. Further, the
KAPLL parameters are estimated by the maximum likelihood method. A
simulation study is conducted to explore the performance of the maximum
likelihood method. Finally, the practical importance of the KAPLL
distribution is studied by analyzing a real-life data set. Goodness-of-fit
statistics for the analyzed data set showed that our KAPLL distribution

provides a better fit in comparison with other rival distributions.
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