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Abstract 

In this article, we study a new extension of the log-logistic model called 

the Kumaraswamy alpha-power log-logistic (KAPLL) distribution, an 

extension of the log-logistic model. It investigates some of their mathematical 

and statistical properties, including reliability properties (survival function, 

hazard rate function (HRF), moments, quantile functions (QF), and moment 

generating functions), emphasizing their utility in modeling diverse aging and 

failure criteria. One key advantage of the KAPLL distribution lies in its 

capacity to represent its density as a blend of log-logistic densities, offering 

both symmetric and asymmetric shapes for greater modeling flexibility. The 

estimation of KAPLL parameters is achieved through maximum likelihood 

estimation (MLE), a widely used statistical method. The study presents 

comprehensive simulation results to assess the effectiveness of the proposed 

estimation technique. Furthermore, a practical application on real-world data 

is conducted to showcase the adaptability and versatility of the KAPLL 

distribution when compared with other extensions of the log-logistic model. 

Keywords: Kumaraswamy alpha-power class; log-logistic distribution. 
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1. Introduction 

The quality of the procedures in a statistical analysis depends heavily on the 

assumed probability distribution. Hence, considerable efforts have been 

expended for developing generalized classes of distributions along with 

relevant statistical methodologies. In practice, probability distributions are 

applied in many fields including the actuarial science and insurance, risk 

analysis, investment, market research, business and economic research, 

reliability engineering, chemical engineering, medicine, sociology, 

demography, among others. 

The statistical literature contains several new generated classes of univariate 

continuous distributions by introducing additional shape parameter(s) to a 

baseline model. The extended distributions have attracted several statisticians 

to develop new models due to their flexibility and ability to model monotone 

and non-monotone real-life data. Some notable classes include the Marshall-

Olkin-G (MO-G) [16], Kumaraswamy Marshal-Olkin-G (KMO-G) [3], 

Weibull Marshall Olkin-G [14], Marshall-Olkin alpha power-G (MOAP-G) 

[19], and Kumaraswamy alpha power-G (KAP-G) [17], among others. 

The log-logistic (LL) distribution is also known as the Fisk distribution in the 

income distribution literature [8, 10, 22]. Additionally, Arnold [4] referred to 

it as the Pareto type III distribution and included an additional location 

parameter to it. Furthermore, the LL distribution is a special case of the Burr-

XII distribution [5], and Kappa distribution [18], which have been applied to 

stream flow and precipitation data. Further details about the LL model can be 

found in[13]. 
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Several authors have studied different generalized forms of the LL distribution 

to improve its capability and flexibility. The LL model can be considered the 

probability distribution of a random variable whose logarithm has a logistic 

distribution, and it is an alternative to the log-normal distribution since it 

presents a hazard rate function (HRF) that increases initially and decreases 

later. Some improved versions of the LL model include the alpha power 

transformed-LL [1], beta-LL [15], MO-LL [11], extended-LL [2], Zografos-

Balakrishnan LL [20], and odd Lomax LL distributions [7]. This article 

investigates a new extended form of the LL distribution called the 

Kumaraswamy alpha-power log-logistic (KAPLL) distribution, which can 

provide more flexibility in modeling reallife data than other competing LL 

models. The proposed model is obtained using the KAp-G family [17]. The 

motives of the KAPLL distribution including the following: (i) The KAPLL 

model is capable of modeling increasing, J-shape, decreasing, reversed J-

shape, bathtub, modified bathtub, and unimodal HRF shapes; (ii) the KAPLL 

distribution can be viewed as a suitable model for modeling skewed real-life 

data, which may not be properly modeled by other known distributions; (iii) it 

can be applied in different fields including survival analysis, public health, 

industrial reliability, biomedical studies, reliability, and engineering; and (iv) 

The KAPLL distribution outperforms many well-known LL distributions with 

respect to real-life data examples. 

The rest of the paper is organized into seven sections. The KAPLL 

distribution is investigated in Section 2. In Section 3, some key properties of 

the KAPLL distribution are explored. Inference about the KAPLL parameters 
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is presented In Section 4. Section 5 provides a simulation study. A real-life 

data application is presented in Section 6. Section 7 gives some conclusions. 

2. The KAPLL Distribution  

The KAPLL model and its special cases are presented in this section. The 

cumulative distribution function (CDF) of the two-parameter LL model has 

the form 
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where   and   are the scale and shape parameters, respectively. 

The LL probability density function (PDF) reduces to 
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The KAPLL distribution is constructed based on the KAP-G family, which is 

specified by the CDF 
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where     and   are shape parameters. 

The corresponding PDF of the KAP-G class is expressed by 
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Further information about the KAP-G family can be explored in [17]. 

Inserting 1 in Equation 3, the CDF of the KAPLL distribution follows as 
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The PDF corresponding to Equation 5 takes the form 
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The HRF of the KAPLL distribution reduces to 
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Table 1 provides five important special sub-models of the new KAPLL 

distribution. Figure 1 shows some forms of the KAPLL PDF for some selected 

parameter values. Figures 2 displays the HRF plots of the KAPLL distribution 

for some parametric values. The density plots show that the KAPLL model 

can be symmetric and asymmetric density shapes. Furthermore, the HRF plots 

show the capability of the proposed model in modeling different failure rate 

shapes including both monotone and non-monotone shapes. 



107 
 

Table 1: Sub-models of the KAPLL distribution 

      a B Sub-model Authors 

      a 1 EAP-LL distribution Special case 

    1 a B K-LL distribution De Santana et al.     

    1 a 1 E-LL distribution Rosaiah et al.      

      1 1 AP-LL distribution Aldahlan [1] 

    1 1 1 LL distribution Fisk [10] 

  

 

Figure 1: Shapes of the KAPLL density for various parametric values 

 

Figure 2: Shapes of the KAPLL HRF for various parametric values 
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3. Properties of the KAPLL Distribution 

This section provides some key features of the KAPLL model. 

3.1 Linear Representation 

Mead et al. [17] provided a useful mixture representation of the PDF of the 

KAP-G class. According to [17], the KAP-G density reduces to 
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Using the PDF and CDF of the LL model and after some algebra, the KAPLL 

density takes the form 
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It can also be rewritten simply as follows 
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where                          is the exponentiated-LL density with 

power parameter and        , and 
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3.2 Quantile Function 

The quantile function (QF) of the KAPLL distribution follows by inverting 

Equation 5 as 
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},   follows the uniform (0,1) 

distribution. 

3.3 Moment 

The   th moment of   can be obtained from Equation 8 as 
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after calculating the integration, you get   
  as follows 
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3.4 Order Statistics 

Let            be a random sample of size   and let             be this 

associated order statistic. Then, the PDF of the   th order statistics, say,     , 

which is denoted by      
    is given by: 

     
    

      

            
                           

Substituting Equation 5 and Equation 6 in Equation 11 ,if    , the   th order 

statistic of the KAPLL distribution reduces 
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Or simply in the form 
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where                          is the exponentiated-LL density with 

power parameter        0 , and 
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4.  Estimation of the Parameters 

In this section, we use the maximum likelihood (ML) method to estimate the 

KAPLL parameter. 

Let            be a random sample from KAPLL distribution then the 

logarithm of the likelihood function    , becomes 
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To obtain the MLE of         and  , the first derivatives of   are obtained 

with respect to    ,     and  . These derivatives are 
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5. Simulation Analysis 

Now, we provided detailed simulation results to explore the performances of 

the ML estimation in estimating the parameters of the KAPLL model. We 

considered several sample sizes and different values of the parameters, that is, 

                       We generated        random samples using 

Equation 8. The behavior of the different estimates is compared with respect 

to their: average absolute biases                 
 

 
    

    ̂    , mean 

square errors (MSE),     
 

 
    

    ̂     , and mean relative errors 

(MRE), MRE  
 

 
    

    ̂      . The Tables 2 and 3 show the simulation 

results, average ML estimates of the parameters,       , MSE, and MRE, of 

the KAPLL parameters using different approaches. These results showed that 

estimates are very close to their true values and have small biases, MSE and 

MRE. The results illustrated that the biases, MSE, and MRE decrease as   

increases, showing that the introduced estimators are consistent. 

Table 2: The AEs, MSE, BIAS and MRE of the KAPLL parameters for 

different values of the parameter and   
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Table 3: The AEs, MSE, BIAS and MRE of the KAPLL parameters for 

different values of the parameter and   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Real Data Application 
In this section, we present a real-life data application to show the importance 

of the KAPLL distribution. The data set is studied by [24] and it represents set 

consists of 40 observations of time to failure        of turbocharger of one 

type of engine. The data are as follows: 1.6, 3.5, 4.8, 5.4, 6.0, 6.5, 7.0, 7.3, 7.7, 
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8.0, 8.4, 2.0, 3.9, 5.0, 5.6, 6.1, 6.5, 7.1, 7.3, 7.8, 8.1, 8.4, 2.6, 4.5, 5.1, 5.8, 6.3, 

6.7, 7.3, 7.7, 7.9, 8.3, 8.5, 3.0, 4.6, 5.3, 6.0 , 8.7, 8.8, 9.0. 

The fits of the KAPLL distributions shall be compared with some rival 

distributions, namely: Log-logistic (LL), alpha power transformed log-logistic 

(APTLL) by [1], beta log-logistic (BLL) by [15], Kumaraswamy Marshall-

Olkin log-logistic (KMOLL) by [6], McDonald log-logistic (McLL) by [23], 

additive Weibull log logistic (AWLL) by [12]. 

To compare the fitted distributions, we consider some criteria namely: The 

Akaike information criterion (AIC), Kolmogorov-Smirnov (KS) and p value 

(PV). The R program is used to obtain the numerical results in this section. 

Table 4 list the goodness-of-fit measures of the competing models and The 

MLEs and SEs for the data. It is observed, from Tables that the KAPLL 

distribution have the lowest values for goodness-of-fit criteria among all fitted 

models. So, it could be chosen as the best model for the analyzed data set. 

Table 4: The ML estimates, SEs, and goodness-of-fit criteria for time to 

failure data 
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Figure 3: The fitted functions of the KAPLL model for time to failure data. 

7. Conclusions 

In this paper, we introduce a new five-parameter distribution called the 

Kumaraswamy alpha power log-logistic (KAPLL) distribution. The 

mathematical properties of the KAPLL model are derived. Further, the 

KAPLL parameters are estimated by the maximum likelihood method. A 

simulation study is conducted to explore the performance of the maximum 

likelihood method. Finally, the practical importance of the KAPLL 

distribution is studied by analyzing a real-life data set. Goodness-of-fit 

statistics for the analyzed data set showed that our KAPLL distribution 

provides a better fit in comparison with other rival distributions. 
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 :الملخص العربى

في ىزه انًمانت، نذسط ايتذادًا خذيذًا ننًٌرج انهٌغاسيتى انهٌخستي يسًَ تٌصيع انهٌغاسيتى انهٌخستي 

، ًىٌ ايتذاد ننًٌرج انهٌغاسيتى انهٌخستي. ًيبحث في بعض (KAPLL)  نفا كٌياساسٌاييبمٌة أ

 دانت انبماء، ًدانت يعذل انخطش) خصائصو انشياضيت ًالإحصائيت، بًا في رنك خصائص انًٌثٌليت

(HRF)ًانعضًو، ًًظائف انكًياث ، (QF)يع انتأكيذ عهَ فائذتيا في ( ، ًًظائف تٌنيذ انعضًو ،

في لذستو  KAPLL يعاييش انشيخٌخت ًانفشم انًتنٌعت. تكًن إحذٍ انًضايا انشئيسيت نتٌصيعنًزخت 

عهَ تًثيم كثافتو كًضيح ين انكثافاث انهٌغاسيتًيت انهٌخستيت، يًا يٌفش أشكانًا يتًاثهت ًغيش يتًاثهت 

، (MLE) ٍين خلال تمذيش الاحتًانيت انمصٌ KAPLL نًضيذ ين يشًنت اننًزخت. يتى تمذيش يعهًاث

ًىي طشيمت إحصائيت يستخذيت عهَ نطاق ًاسع. تمذو انذساست نتائح يحاكاة شايهت نتمييى فعانيت تمنيت 

انتمذيش انًمتشحت. علاًة عهَ رنك، يتى إخشاء تطبيك عًهي عهَ انبياناث في انعانى انحميمي لإظياس 

 ٌرج انهٌغاسيتى انهٌخستي.عنذ يماسنتو بايتذاداث أخشٍ ننً KAPLL لابهيت انتكيف ًتنٌع تٌصيع

 انتٌصيع انهٌخستي. ،لٌة أنفا ،كٌياساسٌاييالكلمات الدالة : 

 


