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INTRODUCTION  

 

Aquaponics is an integrated system that combines a recirculating aquaculture system 

(RAS) with hydroponics (soil-less agriculture), where plant nutrients are provided by organic 

fish waste, with the assistance of nitrifying bacteria. The benefits of aquaponics are primarily 

its efficient use of resources. It contributes to water conservation by reducing water 

consumption by up to 90% compared to traditional agriculture (Rharrhour et al., 2022) and 

minimizes chemical use since fish waste serves as the main source of nutrients for plants. 

These quasi-closed systems offer a sustainable method of food production with significant 

potential to contribute to global food security (Rharrhour et al., 2024). They can also 

provide local food self-sufficiency, as they can be set up in virtually any location. 
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Aquaponics is a growing industry that combines intensive food 

production with waste-stream recycling and water conservation, offering 

alternative solutions to soil degradation and water scarcity. This technique 

can contribute to global food security but requires careful management. One 

of the key parameters in aquaponics is pH, which must be maintained to 

accommodate three different types of living organisms: fish, plants, and 

bacteria. In aquaponics systems, pH naturally decreases due to the 

nitrification process, making monitoring essential. To predict pH levels in a 

small-scale aquaponics system—consisting of three hydroponic techniques 

(DWC, media bed culture, and NFT) combined with a tilapia fish tank—

three machine learning models were proposed in this study. The results 

showed that the random forest regressor model can predict pH fluctuations 

over 12 days with a root mean square error (RMSE) of 0.0260 and a mean 

squared error (MSE) of 0.0006. The random forest model outperformed the 

MLP regressor and SVR models in terms of accuracy, suitability, and 

prediction error. Predicting pH is crucial for the stability of an aquaponics 

system. 
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Maintaining water quality is the biggest challenge that faces aquaponics systems. Given 

the fact that water is the matrix of nutrients exchange between aquaculture unit and 

hydroponic unit, water physicochemical parameters variation can impact positively or 

negatively this ecosystem’s biocenosis. pH is one of the important water parameters in 

aquaponics, it plays a crucial role in these systems by affecting the health and growth of both 

fish and plants and the efficiency of nitrifying bacteria. Fish, plants and bacteria share 

generally the same tolerance ranges for water parameters (Sommervile, et al., 2014) while 

their pH optimal ranges are different (Yep & Zheng, 2019). In general, for optimal plant 

growth, an acid pH is recommended (Bugbee, 2004) whilst nitrifying bacteria prefer neutral 

ranges (Goddek et al., 2015). Fish optimal pH range varies depending on fish species, in 

general, RAS systems maintain pH between 7.0 and 8.0 (Lennard & Goddek, 2019). 

Therefore, a neutral pH range of 7-9 is recommended for aquaponic systems (Rharrhour et 

al., 2022).  

Over time, pH in aquaponic systems naturally drops due to nitrification process 

(Lennard & Goddek, 2019); the conversion of fish waste ammonia to nitrate results in 

hydrogen ions production, which makes monitoring and adjustment of pH a necessity. 

Research in aquaponics water quality has shown that a decrease of pH impact negatively the 

well-being of fish, plants and bacteria, while an increase of pH leads to a decrease of 

phosphorus availability (Mori et al., 2021); results have proven significant correlations 

between pH and other water quality parameters (Rharrhour et al., 2024). 

          In a nutshell, pH balance is very crucial in aquaponics for the proper conditions meeting 

the fish, plants, and bacteria need. Regular testing of pH and slight adjustments will make the 

system increasingly stable and productive. The main objective of this research was to predict 

pH in two environments (i.e. hydroponics unit and fish tank) using three machine learning 

supervized regression models: The multi-layer perceptron, random forest, support vector 

based on a small-scale aquaponic system. 

MATERIALS AND METHODS  

 

1. Experimental design 

        This experiment was conducted to predict variation of pH values in a small-scale closed-

loop aquaponics system. The present aquaponics systems were monitored over a period of 8 

weeks in BIOECOGEN laboratory of the Faculty of Sciences of Rabat, MED V University. 

2. Materials 

• Fish: The Nile tilapia (Oreochromis niloticus) specimens were selected for the 

experiment, with an initial stocking density of forty-six juveniles with an initial average 

weight of 4.48g and an average length of 6.5cm. 

• Plants: In this experiment, we chose to grow four species of leafy vegetables: sweet basil 

(Ocimum basilicum), two lettuce (Lactuca sativa) varieties (madrilene and sucrine), 

spinach (Spinacia oleracea) (Viroflay) and cabbage (brassica oleracea) (Copenhagen 

Market). The seeds of these plants were bought from local market, cultivated in potting 

soil ten (10) days before transplantation to the hydroponic unit using plastic net cup pots. 
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• Aquaponics systems: The system consisted of a square glass aquarium (48 × 51 × 53cm, 

L, W, H) fish tank filled with 71L of water, 3 plastic basins of 35cm long, 25cm wide, and 

22.5cm high, each with an area of 0.0875m2 and a volume of 0.02m3, one of them filled 

with volcanic gravel (Pozzolan) as the growing medium, the others were used as deep 

water culture systems equipped each by an air pump of 3W and a maximum flow of 

3.5l.min-1, 4’’ PVC pipes and a submersible pump with an electrical power of 25W and a 

maximum flow rate of 1750 l/h for continuous water circulation between the fish tank and 

the grow bed. The aquarium was equipped with a heater of 300W, two mechanical internal 

filters and an air pump with an electrical power of 3W and a maximum flow of 3.5l.min-1. 

• Water quality testing: Water parameters such as pH, temperature, total dissolved solids 

(TDS), and electrical conductivity (EC) values were measured daily using a 

multiparameter instrument “Hanna HI9814”. Salinity was estimated from conductivity 

and temperature using the formula of Aminot and Kérouel (2004). 

• Fish feed: The fish were fed once-daily a commercial floating pellet feed made up of 37% 

crude protein; the feed was hand-delivered at a ratio of 2% of the total fish weight. 

3. Methods 

3.1.  System setup 

       We adopted the fluid and drain system (Fig. 1), in which water was recirculated between 

the fish tank and grow beds in a continuous loop. Water was pumped from fish tank to a 

filtration system consisted of hand-made filter and biofilter, then flows into the hydroponic, 

while gravity takes the water back to the fish tank. We used a hand-made bell siphon in the 

media bed culture to ensure good oxygenation and water flow.  

3.2.  Fish feeding and growth monitoring 

  Fish were fed once a day at 2% of their body weight. The amount of feed was adjusted 

weekly based on the weight of the fish, which was measured every ten days. Fish were 

individually weighed using a digital balance (±0.01g accuracy). 

3.3.  Plant growth measurements 

  Plants were grown for 8 weeks. Plant initial height and weight were measured, while 

daily height was recorded. At the end of the experiment, the plants were harvested, and the 

fresh weight (g) was measured for each plant. 
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Fig. 1. Sketch of aquaponic system used in experiment 

3.4. Water quality monitoring 

  In addition to pH, water samples were taken daily to measure temperature, electrical 

conductivity, and total dissolved solids (TDS) levels using a portable multiparameter 

instrument “Hanna HI9814”. Salinity values were calculated automatically using the formula 

of Aminot and Kérouel (2004). Table (1) provides the optimal ranges of the mentioned water 

quality parameters; fish parameters ranges were defined based on rearing tilapia as fish 

species in experiment, while the plant parameter ranges were established as general optimal 

ranges for growing four different plant species. 

Table 1. Water quality parameters optimal ranges in aquaponics 

(Rakocy et al., 2006; Resh, 2012; Sommervile et al., 2014; Goddek et al., 2015) 

 Temperature (°C) pH EC (ppt) TDS (ppt) Salinity (ppt) 

For fish 22 - 28 6.5 – 7.5 0.5 - 2 200 - 2000 0.5 - 2 

For 

plants 
18 - 24 4.5 - 6 1 - 3 500 - 2000 0.5 – 2 

3.5. Statistical analysis 

There are several essential steps for implementing the models followed in this process. 

We began by collecting and preparing the data, then the dataset was split into a training set 

(80% of the data) and a testing set (20%). Afterward, the model's performance was evaluated 

using metrics on the testing dataset, in addition to generating predictions and visualizing the 

models' outputs in order to compare their performance. 

The multi-layer perceptron (MLP) regressor: In the context of supervised learning, we 

employed this neural network model to make predictions, as it can determine how inputs 
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influence the outputs. Neurons in the input layer are connected to those in the hidden layer, 

and each neuron in the hidden layer is linked to the output layer, as shown in Fig. (2). 

 

Fig. 2. Simplified schematic structure of the MLP regressor 

In fact, the input layer transmits the input values to the neurons in the hidden layer, 

which compute weighted sums and apply activation functions. The output layer produces the 

final predictions, typically containing a single neuron that represents the predicted continuous 

value. The overall process in an MLP regressor relies on forward propagation and 

backpropagation. During forward propagation, the predicted vector of the MLP regressor 

model is generated. 

mn xn + Bm 

Where, xn is the input to the neuron coming from the previous layer; wmn is the weight 

connecting the neuron to the neuron m; and bm is the bias associated with the neuron m. 

To improve model performance and to quantify the error, we used the mean-squared error 

(MSE) as the cost function, which measures the deviation between the predicted output 

and the actual value z. For M total number of observations, the MSE is defined by: 

MSE = i – zi)
2 

When the error between the output value and the expected output is large, we proceed 

with backpropagation. This process involves adjusting the weights and biases using 

gradient descent, which determines the direction and magnitude by which the weights 

and biases need to be changed to minimize the error. The update is performed as follows: 

η .  

 
With η the rate learning which is the controller of the magnitude of change in that direction. 

The random forest regressor creates multiple independent decision trees using a statistical 

technique called bootstrap sampling, which involves sampling with replacement from the 
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original data to generate multiple subsamples corresponding to the trees. Each tree makes a 

prediction, and these predictions are then averaged to obtain the final prediction. This 

aggregation process helps stabilize the model by reducing the impact of random fluctuations 

captured by each tree, which in turn reduces the variance of the final model (Fig. 3). 

 

Fig. 3. Simplified schematic structure of the random forest regressor 

For defining ntrees as the total number of trees and i as the prediction of the i tree 

corresponding to the x observation, the subsequent formula was applied: 

 

SVR (Support Vector Regression): it reposed on the margin  is the selected area around the 

target function f(x) = wT.x + b in which w is the weight factor, furthermore  is considered as 

tolerance for the error between f(x) and y the sample value. Errors are ignored within the 

margin , however the error is outside this margin, a penalty C is added to the cost function:   

 

Where, ξi and  are the variables which measure the deviation of predictions outside the 

margin  and C is the penalty coefficient. 

For evaluating the performance and the effectiveness of these models, each model was 

evaluated based on the following evaluation indicators: Mean squared error (MSE), root mean 

squared error (RMSE) and mean absolute percentage error (MAPE) to assess its effectiveness 

and accuracy. The metrics were calculated as follows, where  is the true value,  is the 

predicted value and N is the number of test samples: 
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RESULTS AND DISCUSSION  

 

1. Hydroponic unit 

The density distributions of the water quality parameters measured in the hydroponic unit, 

along with the safe ranges for these variables and the percentage of data points within those 

ranges, are presented in Fig. (4). The results show that only temperature and pH had values 

outside the tolerance range for plant species, as defined in Table (1). Only 1.5% of the 

measured temperature values fell within the healthy range, with the water temperature in this 

experiment being set based on the fish species. pH values showed considerable fluctuations, 

with 12.1% of the values falling outside the safe range. For EC, TDS, and salinity, these 

parameters generally exhibit a strong correlation (Rharrhour et al., 2024), which explains 

their similar fluctuations. Notably, 100% of the measured values for these parameters 

remained within the healthy ranges. 

   

  
Fig. 4. Water quality parameters distribution in hydroponics unit 

Density plots of daily measurement temperature “T°” (°C), electrical conductivity “EC” (ppt), salinity (ppt), pH, 

and total dissolved solids “TDS” (ppt), the upper and lower bounds for the safe range of each parameter are 

indicated with the vertical blue dashed lines. 
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Table (2) provides a summary of the descriptive analysis of water quality parameters in the 

hydroponic unit. The results reveal that the average pH in the hydroponic component is 5, 

with a standard deviation of 0.53. The standard deviation is slightly above 10% of the mean, 

which indicates weak deviation, suggesting that the pH values had low dispersion. As defined 

in Table (1), the pH values fall within the safe range for plants. Regarding temperature, the 

results show very weak dispersion of its values (with standard deviation < 10% of the mean), 

which can be explained, as mentioned earlier, by the use of a heater that helps maintain the 

temperature within the desired range. EC, TDS, and salinity showed considerable variations, 

but since these parameters are strongly correlated, their minimum and maximum values 

remained within the safe ranges for the plant species used in the experiment. 

Table 2. Summary of descriptive analysis showing the mean and standard deviation (std) of 

water quality parameters in hydroponics unit 

 

Several studies have investigated water quality in aquaponics, showing that water 

quality parameters exhibit significant correlations (Rharrhour et al., 2024). Fig. (5) provides 

a correlation matrix of water quality parameters. There is a strong positive correlation 

between electrical conductivity (EC), total dissolved solids (TDS), and salinity, which makes 

sense since TDS measures the total amount of dissolved solids in water, while EC indicates 

the ability of these dissolved solids to conduct electricity. On the other hand, salinity measures 

the ions that come from salts. Additionally, there is a negative relationship between pH and 

fish feed, which is logic since the conversion of fish waste ammonia to nitrate results in the 

production of hydrogen ions. Therefore, the more fish are fed, the more the pH drops. The 

main outcome of this analysis is the negative correlation between pH and fish feed. On the 

other hand, it has been shown that pH strongly correlates with phosphates (Rharrhour et al., 

2024), being one of the limiting factors for plant growth. This explains the decreased growth 

observed in some lettuce heads at the end of the experiment. 
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Fig. 5. Correlation matrix of water quality parameters in hydroponic unit 

2. Aquaculture unit 

Fig. (6) shows the density distribution of water quality parameters and their healthy ranges 

for the aquaculture unit. In the hydroponic unit, temperature and pH values were outside the 

healthy range. As mentioned earlier, the water temperature in this experiment was set 

according to the needs of the fish species (Tilapia), which explains why 96.8% of the 

temperature values fell within the healthy range. The use of a thermo-regulator helped 

maintain optimal temperature values for the aquaculture unit. Regarding pH, a significant 

percentage of values (30.6%) were outside the optimal range for tilapia. No additional 

chemicals were used for pH stabilization during the experiment, as the goal was to keep fish 

feed as the only input to the system. This explains the considerable variation observed in pH 

levels. TDS and EC values remained within the optimal ranges, unlike salinity, where 39.3% 

of the values were below 0.5ppt. At different times, temperature levels became too high for 

proper plant health, and pH levels dropped too low for fish health. Overall, however, this 

system meets the criteria for a healthy aquaponics system. 
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Fig. 6. Water quality parameters distribution in aquaculture unit 

Density plots of daily measurement temperature “T°” (°C), total dissolved solids “TDS” (ppt), pH, electrical 

conductivity “EC” (ppt) and salinity (ppt). The upper and lower bounds for the safe range of each parameter are 

indicated with the vertical blue dashed lines 

Summary of descriptive analysis of water quality parameters in aquaculture unit is 

provided in Table (3). Results revealed that the average pH in fish tank is 6.82 with a standard 

deviation of 0.40, meaning that pH values present a very weak dispersion (min = 6.04; max = 

7.63). Temperature values are as well grouped around the mean (  = 27.32 °C; std = 0.61). 

EC, TDS and salinity standard deviations are slightly above 10% of the means, which reveal 

the weak dispersion of their values in the fish tank. In general, water quality descriptive 

analysis reveals that water in fish tank meets the criteria of healthy aquaponics system for 

tilapia.  

Table 3. Summary of descriptive analysis showing the mean and standard deviation (std) of 

water quality parameters in aquaculture unit 

 

The correlation matrix of water quality parameters in the fish tank is provided in Fig. (7). A 

strong relationship between electrical conductivity (EC), total dissolved solids (TDS), and 

salinity is evident in the figure. As for pH, this parameter shows a strong negative correlation 

with fish feed, EC, TDS, and salinity. As explained below, the more we feed the fish, the 

more excrement is produced, leading to increased mineralization, which causes a drop in pH. 

This, in turn, results in higher values of EC, TDS, and salinity. In contrast to the hydroponic 

unit, pH and temperature show a significant positive correlation in the fish tank. This explains 

why pH values fall below the safe range for the fish species. 
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Overall, however, the fish survival rate in this experiment was 100%, which demonstrates that 

this system operates within the parameters of a normal, healthy aquaponics system. 

 

Fig. 7. Correlation matrix of water quality parameters in aquaculture unit 

3. Simulation  

To verify the correlations between water quality parameters and those affecting pH, for 

practical application in predicting pH variations, this paper established three models for 

comparative analysis: MLP regressor, random forest regressor, and SVR. These models were 

based on water quality data collected from this experiment. Tables (4, 5) present the 

evaluation metrics—RMSE, MSE, and MAPE—for the aquaculture and hydroponic units, 

respectively. The pH prediction results based on the three models are shown in Figs. (8, 9, 

10). The dotted red curves represent the predicted pH values, while the blue curves indicate 

the measured pH values. 

Table 4. Precision analysis of the prediction results for each model in aquaculture unit 

Model RMSE MSE MAPE 

MLP Regressor 4.7179 22.2594 0.6933 

Random Forest Regressor 0.0304 0.0009 0.0036 

SVR 0.0604 0.0036 0.0066 

 

Table 5. Precision analysis of the prediction results for each model in hydroponic unit 

model RMSE MSE MAPE 

MLP Regressor 4.4109 19.4561 0.8836 

Random Forest Regressor 0.0260 0.0006 0.0037 

SVR 0.1215 0.0147 0.0134 
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As shown in Fig. (8), the predicted pH values from the MLP model differed 

considerably from the actual values. The evaluation metrics—RMSE, MSE, and MAPE—of 

the MLP model were 4.41, 19.45, and 0.88, respectively, for the hydroponic unit, and even 

higher for the fish tank, as shown in Table (5). These values indicate a high prediction error. 

Generally, we rely on the RMSE rather than the MSE to avoid canceling out positive and 

negative errors and to make model training easier. RMSE provides insight into the magnitude 

of the disparity between predictions and actual values. 

On the other hand, MAPE represents the average absolute errors as a percentage of the 

actual values. As long as the percentage is low (less than 10%), the model's performance can 

be considered good. 

For both the hydroponic and aquaculture units, we observed a significant difference 

between the actual and predicted values, with the predictions diverging from reality. This 

suggests that the model is underperforming, which can be explained by the small dataset used. 

The MLP model requires at least 1,000 data points to make accurate predictions. In this case, 

the model is overfitting, making it excessively sensitive to random fluctuations in the training 

data, which results in poor performance. 

Support vector regression (SVR) has been widely adopted for both classification and 

regression tasks (Taboada et al., 2007). In this study, the SVR model achieved a balance 

between fitting the data and avoiding overfitting, which explains why the predicted pH values 

were closer to the actual values, as shown in Fig. (9). 

The random forest model is another straightforward, non-parametric model that can be 

used for classification or regression tasks (Rigatti, 2017). It uses randomization to create 

multiple decision trees, and the outputs of these trees are aggregated into a single prediction 

via voting. Both the SVR and random forest models showed low prediction errors, as 

indicated in Tables (4, 5). 

When compared with the evaluation metrics of the SVR model, the random forest 

model's RMSE, MSE, and MAPE values for the hydroponic unit decreased by 78, 95, and 

72%, respectively. For the fish tank, the random forest model’s RMSE, MSE, and MAPE 

values decreased by 49, 75, and 45%, respectively, compared to the SVR model’s evaluation 

metrics. 
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Fig. 8. pH prediction results based on MLP model for a) hydroponic unit and b) fish tank 

 

Fig. 3. pH prediction results based on SVR model for a) hydroponic unit and b) fish tank 

 

Fig. 4. pH prediction results based on random forest model for a) hydroponic unit and b) fish 

tank 

Based on the analysis above, the random forest regressor model demonstrated higher 

prediction accuracy than the SVR and MLP regressor models. This is logic since random 

forest regressor is better suited for small datasets compared to other machine learning models 

or linear regression, which typically require larger sample sizes. However, when dealing with 
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large datasets, random forest models may require more resources, such as memory and 

computational power, because they are generally more complex than linear regression models. 

As a result, other models may take longer to train compared to the random forest regressor. 

CONCLUSION  

 

Precise prediction of water quality parameters in aquaponics is essential for maintaining 

optimal and healthy conditions for the biocenosis. pH in an aquaponics system is significantly 

influenced by water quality, which is in turn affected by various physicochemical parameters. 

To address this issue, this paper proposed three machine learning models (MLP, SVR, and 

Random Forest) to predict fluctuations in pH values. 

In aquaponics systems, pH is strongly related to factors such as fish feed, temperature, 

electrical conductivity, and other water quality parameters. In the aquaculture unit, the 

correlation coefficients for temperature, electrical conductivity, fish feed, and TDS were 0.61, 

-0.80, -0.83, and -0.75, respectively, all of which were higher than 0.3, indicating a strong 

correlation with pH. The pH prediction models developed in this study incorporate these 

strongly correlated environmental parameters. The predicted values from the random forest 

regressor model closely matched the true values, demonstrating a better fit compared to the 

other models. In contrast, the MLP model showed significant drawbacks, such as high 

prediction error and low precision. 

The simulation results indicate that the RMSE of the proposed random forest model was 

0.026, the MSE was 0.0006, and the MAPE was 0.0037 for the fish tank. When compared to 

the SVR and MLP models, the random forest model demonstrated advantages in terms of low 

prediction error, high accuracy, and a better ability to capture the nonlinear relationships 

between environmental factors and pH in an aquaponics system. 

By accurately predicting pH, which directly impacts both fish and plant well-being in an 

aquaponics system, we can better understand pH trends and conditions. This provides a 

scientific basis for maintaining pH within healthy ranges, ultimately improving aquaponics 

productivity.  
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