

Microbes and Infectious Diseases

Journal homepage: https://mid.journals.ekb.eg/

Original article

Potassium competitive acid blocker based sequential therapy in treatment of naïve and previously treated patients with *H.pylori* infection

Ahmed Abo Zaid Teima¹, Randa Mohamed sedeek ¹, Zeinab Abdelaziz Kasemy², Noran Talaat Abo El Ghair³, Kalid Abd El Ati⁴, Housam Ahmed Helmy⁵, Ahmed Shabaan⁵, Heba Mostafa El Hagary* ¹

- 1-Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
- 2 Public Health and Community medicine department, Faculty of Medicine, Menoufia University, Egypt
- 3 Clinical Pathology department, Faculty of Medicine, Menoufia University, Egypt
- 4 Internal Medicine Department, Gastroentrology Unit, Faculty of Medicine, Alexandria University, Egypt
- 5 Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebin El-Kom, 32511, Egypt

ARTICLE INFO

Article history: Received 28 November 2024 Received in revised form 16 December 2024 Accepted 7 January 2025

Keywords:

P-CAB based sequential therapy *H. pylori* LOAD therapy traditional therapy.

ABSTRACT

Background: Helicobacter pylori (H. pylori) colonize the gastric lining and cause gastrointestinal disorders. Treatment of H. pylori has developed lately to improve eradication rates. Our objective was to evaluate potassium competitive acid blocker based sequential therapy in treatment of naïve and previously treated patients with H-pylori infection. Methodology: Prospective cohort study included 180 patients diagnosed with H. pylori infection either naïve or previously treated were divided into 4 groups. Group I included naïve patients received traditional therapy (PPI 40 mg once daily, clarithromycin 500 mg twice daily & metronidazole 500 mg twice daily) for 14 days, group II included naïve patients on P-CAB based sequential(5 days of vonaprazan 20mg twice daily, moxifloxacin 400 mg once daily, nitazoxanide 500 mg twice daily, followed by 5 days of vonaprazan 20mg twice daily, levofloxacin 500mg once daily & metronidazole 500mg twice daily), group III included previously failed treatment patients received P-CAB based sequential, and group IV included previously treated patients on LOAD therapy(10 days of omeprazole 40mg once daily, levofloxacin 500mg once daily, nitazoxanide 500mg twice daily, & doxycycline 100mg twice daily). H.pylori stool antigen test done at the time of diagnosis and after 4-6 weeks after end of treatment. **Results:** The cure rate among the studied groups was higher in GII (93.3%) followed by GIII (88.9%), then GIV (71.1%) and the least response is GI (62.2%). Conclusion: P-CAB based sequential regimen was the highest eradication rate and least side effects in comparison with traditional and LOAD therapy.

Introduction

Helicobacter pylori (H. pylori) infection remains a considerable world health challenge, affecting over 50% of the global inhabitants [1]. This gram-negative, spiral-shaped bacterium

colonizes the human stomach lining, where it can persist for years, causing chronic inflammation that may lead to a variety of gastrointestinal disorders. *H. pylori* infection is connected to many diseases, such as chronic gastritis, peptic ulcer disease, and

DOI: 10.21608/MID.2025.339992.2370

^{*} Corresponding author: Heba Mostafa

gastric adenocarcinoma, as well as mucosaassociated lymphoid tissue (MALT) lymphoma, and also linked with nongastrointestinal diseases as idiopathic thrombocytopenic purpura (ITP), and iron-deficiency anemia (IDA) [1] making it a significant contributor to global morbidity and mortality [2]. Huge worldwide prevalence and rising rate of resistance to antibiotics directed the World Health Organization to consider *H pylori* as a pathogen of high- priority in 2017. [3]

Investigating this organism is classified into nonendoscopic and endoscopic. Nonendoscopic tests as serology, *H. pylori* stool antigen& urea breathe test and endoscopic biopsy for histopathological examination, culture and rapid urease test. [3]

Choosing the treatment regimen for *H. pylori* should provide high eradication rate over 90%. During choosing the appropriate regimen for *H. pylori* treatment, some considerations should be taken, as antibiotics previously taken, regional antibiotic-resistance type, eradication rates, allergy to any antibiotic and adherence to treatment. These considerations influence the success of the treatment. [4]

Although several treatment options are available, primarily consisting of combinations of antibiotics and acid-suppressing agents, resistance is increasingly leading to treatment failures and decreasing eradication rates. [5] New treatment protocols, often referred to as "new triple therapy" (NTT), have been introduced. These approaches include various strategies, such as using higher doses or prolonged durations of PPIs, adding different antibiotics, or incorporating bismuth-based compounds in combination with triple therapy. Sequential, concomitant, and quadruple therapies are also emerging as alternatives, aiming to overcome resistance patterns and enhance treatment success. [3]

Potassium-competitive acid blockers (P-CABs) are a newer class of medications designed to suppress gastric acid secretion as they directly inhibit the H+/K+ ATPase enzyme, also known as the proton pump, in a potassium-competitive and reversible manner. One of the promising applications of P-CABs is in the treatment of *H. pylori* infections. Traditionally, *H. pylori* eradication therapy relies on a combination of PPIs with antibiotics to create an optimal pH environment that enhances antibiotic stability and activity, but

PPI-based therapies can vary in effectiveness due to delayed acid suppression onset and genetic polymorphisms affecting PPI metabolism [6], while, P-CABs like vonoprazan offer more rapid and sustained acid suppression, which can improve the efficacy of H. pylori eradication regimens, particularly in populations with antibiotic resistance in a high rate. [7] Recent studies have shown that vonoprazan-based triple therapy, combining the P-CAB with antibiotics can achieve higher eradication rates than traditional PPI-based therapies [8]. This evidence suggests that P-CABs may serve as a valuable alternative or adjunct to PPIs in H. pylori treatment, potentially overcoming limitations associated with current regimens and improving treatment outcomes for affected patients globally

Nitazoxanide is primarily an antiprotozoal agent, and has shown activity against H. pylori, especially in resistant strains. Studies suggest that when combined with other antibiotics, it can improve eradication rates. [9] Moxifloxacin and Levofloxacin, Both are fluoroquinolones, with levofloxacin widely studied for *H. pylori* treatment as part of triple or quadruple therapy. Moxifloxacin, though less commonly used, yet it has been studied as an alternative in cases where resistance to other antibiotics is present. [10] Metronidazole is known for its broad-spectrum activity against anaerobic bacteria, and it remains a key agent in various H. pylori regimens. However, resistance can be an issue, leading to the exploration of combining it with other drugs to counteract this limitation. [11]

Subjects and methods

Study design and study population

Current work is multicentric prospective cross-sectional included 180 patients diagnosed with *H-pylori* infection taken from tropical medicine department, Menoufia University hospital, Liver institute, Menoufia University and internal medicine department, Alexandria University hospital during the period from July 2023 to June 2024. The study was approved by the institutional review board with an approval number (8/2024 TROP 3). Informed written consent was taken from every patient before participation in the present study.

The patients included were classified into four groups; **GI:** naïve patients (not previously treated with any specific eradication therapy for *H. pylori*) with positive H. Pylori stool Ag, received traditional treatment with (Omeprazole 40mg once daily,clarithromycin500mg twice daily and

metronidazole 500mg twice daily)for 14 days. GII: naïve patients with positive H. Pylori stool Ag, received P.CAB based sequential therapy (5 days of vonaprazan 20mg twice daily, moxifloxacin 400 mg once daily, nitazoxanide 500 mg twice daily,, followed by 5 days of vonaprazan 20mg twice daily, levofloxacin 500mg once daily and metronidazole 500mg twice daily), GIII: retreated patients after failed treatment with any traditional therapy for H. pylori, will receive P.CAB based sequential therapy with (5 days of vonaprazan 20mg twice daily, moxifloxacin 400 mg once daily, nitazoxanide 500 mg twice daily, followed by 5 days of vonaprazan 20mg twice daily, levofloxacin 500mg once daily and metronidazole 500mg twice daily), and GIV: retreated patients after failed treatment with any traditional therapy, received LOAD therapy with (10 days of omeprazole 40mg once daily, levofloxacin 500mg once daily and nitazoxanide 500mg twice daily, and doxycycline 100mg twice daily).

The study included naïve patients complained of gastrointestinal symptoms (abdominal pain, epigastric pain, vomiting, anorexia, dyspepsia, headache and urticaria, hematemesis and melena), those asymptomatic who were discovered on routine checkup with stool Antigen (Ag), those with H. pylori complications and diagnosed as infected by positive Antigen stool test and, patients previously failed treatment of H. pylori with traditional or LOAD therapy with H. pylori Ag test positive.

The study excluded non-compliant patients, recent antibiotic use within 4 weeks Pregnancy or lactation and Patients with history of allergy to any medication that included in the study. Full history taking from all patients was done including gastrointestinal symptoms e.g. epigastric pain, nausea, vomiting, hurt burn, regurgitation, hematemesis or melena and clinical examination (General and abdominal) were done.

Laboratory investigations included complete blood count (CBC), liver enzymes (ALT and AST), serum creatinine level, random blood sugar (RBS) and *H. pylori* antigen detection was done at time of diagnosis and 4 weeks after completing the full course eradication regimen by enzyme-linked immunosorbent assay (ELISA). The test was done using Premier Platinum HpSA stool Ag ELISA kits (Meridian Bioscience). The steps done by collecting the samples in clean stool container, sample preparation by weighing the

sample. Diluting the sample in the stool extraction buffer then setting up the ELISA plate by adding the specific volume of the prepared stool extract to each well of the ELISA plate. Incubation at 37c for 60 minutes. Washing the wells multiple times and add the enzyme substrate solution to each well then incubate for 30 minutes. Stopping the reaction by adding the stopping solution then using an ELISA plate reader to measure the optical density (OD) and comparing it with the cut-off value (620nm). Positive results meant that OD value was above 620nm and negative results meant that the OD value was less than 620nm.

Upper endoscopy was done by (Olympus endoscope dip0230, Olympus Company, Tokyo, Japan) to selected patients with alarm symptoms (Anemia, weight loss, persistent vomiting or epigastric pain, and melena). Sedation used was midazolam. The starting dose was 1 to 2 mg. Adequate time between repeat dosing have been recommended 3-5 minutes after fasting for 6hrs.

Statistical analysis

The study data analysis was done using SPSS (Statistical Package for Social Science) version 23 (SPSS Inc., Chicago, IL, USA). the quantitative data were described as mean, standard deviation (SD) and range while the qualitative type was described as frequency and percentage, regarding comparison between the studied groups, ANOVA test for comparing the quantitative normally distributed data, the qualitative data was compared by Chi square test in between the studied groups while McNemar Chi square test was the test of comparing the frequencies in pretreatment and post treatment assessment. P value was significant when equal or less than 0.05.

Results

The study evaluated 180 patients having H. pylori infection for their response to P.CAB treatment and (LOAD& traditional) regimens, showing the patient's age ranging from 18 to 63 with Mean \pm SD 31.21 \pm 10.04 with female predominance by 55.6% to 44.4 to the males. No statistical significant difference among the studied groups according to the age and gender (P. value 0.25 & 0.91 respectively). Laboratory investigations were (CBC, ALT, AST, RBS and creatinine showing relative alterations in CBC, liver enzymes.

For the endoscopic findings in the cases that underwent upper endoscopy showed that for

gastroduodinitis percent in GI, II, III, and IV (83.3%, 100%, 42.9%&100%) respectively.

GERD was found in GI,III,IV(16.6%,28.6%,75%) respectively while hiatus hernia found in GI,II,III(16,7%,80%,28.6%) respectively. For histopathological findings, the cases with *H pylori* associated gastritis in GI,II,III,IV (83.3%,100%,71.4%,75%) respectively while adenocarcinoma in GI,III,IV(16.7%,28.6%,25%) respectively.

Stool antigen done 4 weeks after treatment for all the patients with positive stool antigen for *H pylori* before treatment showed highly significant increase in negative cases in GII than GI(P value <0.001) and, significant increase in negative cases in GIII than GIV. The percent of improvement in GI, II, III, IV was (62.2%, 93.3%, 88.9%, 71.1%) respectively.

The cure rate among the studied groups was higher in GII (93.3%) followed by GIII (88.9%), then GIV (71.1%) and the least response is GI (62.2%).

Different side effects from treatment were highest in GI (31.1%), while dropped in GIII (2.2%). Bitter taste, galactorrhea, nausea, insomnia, fatigue were absent in GIII, while galactorrhea is absent in GII&GIII.

The presenting symptoms in the studied groups (epigastric pain, abdominal pain, dyspepsia, anorexia, vomiting, headache, itching, urticaria& weight loss) were highest in GI, while they were absent in GIII&GIV. Epigastric pain was the commonest complain in GI (28.9%) and in GII (13.3%). The cases discovered by *H-pylori* stool antigen in routine checkup were in GI&GII (20%, 57.8%). Melena founded only in 1 case in GIII (2.2%) and 1 case in GIV (2.25).

Table 1. Base line demographic data and laboratory characteristics of studied groups

	The studied groups					
	Group I	Group II	Group III	Group IV		
Age						
Mean ±SD	33.64±10.64	30.89±9.47	29.44±10.43	30.84±9.40	0.25	
Range	18 – 60	10 – 50	18 – 63	18 – 55		
Sex						
Male	20 (44.4)	18 (40.0)	21 (46.7)	21 (46.7)	0.91	
Female	25 (55.6)	27 (60.0)	24 (53.3)	24 (53.3)		
Anemia	4 (8.9)	1 (2.2)2	2 (4.4)	1 (2.2)	0.37	
Leukocytosis	0 (0.0)	0 (0.0)	1 (2.2)	0 (0.0)	0.39	
Elevated AST	2 (4.4)	3 (6.7)	1 (2.2)	0 (0.0)	0.33	
Elevated ALT	2 (4.4)	3 (6.7)	1 (2.2)	2 (4.4)	0.79	
High RBS	1 (2.2)	7 (15.6)	3 (6.7)	2 (4.4)	0.08	
High Creatinine	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		

SD (Standard Deviation) N (number) RBS (Random Blood Sugar)

AST (Aspartate Transaminase) ALT (Alanine Transaminase)

Table 2. Endoscopic findings and histopathology among the studied cases

	The studied groups				
	Group I	Group II	Group III	Group IV	
Endoscopic findings	N = 6 (13.3)	N=5(11.1)	N=7 (15.6)	N = 4 (8.9)	
Gastroduodenitis	5 (83.3)	5 (100.0)	3 (42.9)	4 (100.0)	
GERD	1 (16.7)	0 (0.0)	2 (28.6)	3 (75.0)	
НН	1 (16.7)	4 (80.0)	2 (28.6)	0 (0.0)	
Histopathology					
H pylori associated with	5 (83.3)	5 (100)	5 (71.4)	3 (75.0)	
gastritis					
adenocarcinoma	1 (16.7)	0 (0.0)	2 (28.6)	1 (25.0)	

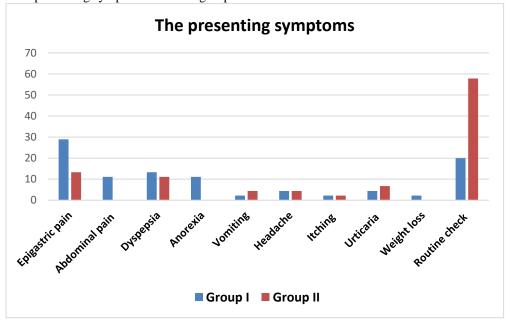
GERD = Gastroesophageal reflux disease

HH=Hiatus hernia

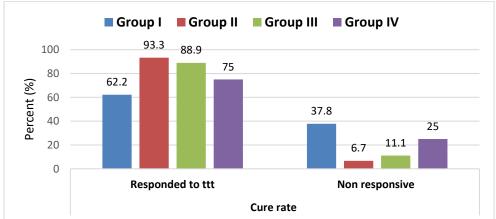
Table 3. Stool antigen results before and 4 weeks after treatment

	The studied groups				Test	P value
	Group I	Group II	Group III	Group IV		
Stool antigen (pretreatment)						
Positive						
Negative	45 (100)	45 (100)	45 (100)	45 (100)		
	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		
Stool antigen (post-treatment)						
Positive	17 (37.8)	3 (6.7)	5 (11.1)	13 (28.9)	12.60	< 0.0011
Negative	28 (62.2)	42 (93.3)	40 (88.9)	32 (71.1)	4.44	0.035^2
Mc Nemar Chi square	40.65	78.75	72.0	49.66		
(p value)	< 0.001	< 0.001	< 0.001	< 0.001		
Percent of improvement	62.2%	93.3%	88.9%	71.1%		

1= comparing group 1 and group 2, 2 = comparing group 3 and group 4


Table 4. Side effects detected from each treatment modality in the studied groups

	The studied groups				Test	P value
	Group I	Group II	Group III	Group IV		
	No (%)	No (%)	No (%)	No (%)		
Cure rate						
Responded to treatment	28 (62.2)	42 (93.3)	40 (88.9)	32 (71.1)	12.60	< 0.0011
Non responsive	17 (37.8)	3 (6.7)	5 (11.1)	13 (28.9)	4.44	0.035^2
Side effects						
Negative	31 (68.9)	39 (86.7)	44 (97.8)	36(80.0)	4.11	0.04^{1}
Positive	14 (31.1)	6 (13.3)	1 (2.2)	9 (20.0)	7.20	0.007^{2}
The type of side effects	N= 14	N= 6	N= 1	N= 9		
Gastric upset	3 (21.4)	1 (16.7)	1 (100)	2 (22.2)	7.30	0.20^{1}
Bitter taste	1 (7.1)	1 (16.7)	0 (0.0)	0 (0.0)	2.59	0.46^{2}
Galactorrhea	3 (21.4)	0 (0.0)	0 (0.0)	3 (33.3)		
Nausea	2 (14.3)	1 (16.7)	0 (0.0)	2 (22.2)		
Insomnia	1 (7.1)	3 (50.0)	0 (0.0)	0 (0.0)		
Fatigue	4 (28.6)	0 (0.0)	0 (0.0)	2 (22.2)		


1= comparing group 1 and group 2,

2 = comparing group 3 and group 4

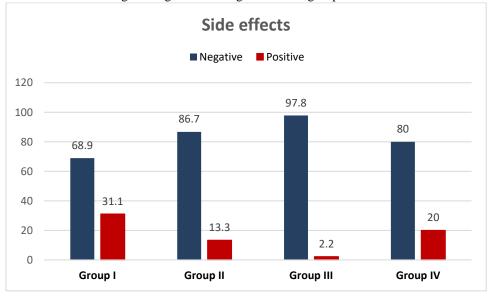

Figure 1. The presenting symptoms between group I&II.

Figure 2. The cure rate among the studied groups.

Figure 3. The side effects to the given regimens among the studied groups.

Discussion

Treatment of *H. pylori* infection has become increasingly complex as antibiotic resistance rates continue to rise worldwide, making the eradication more challenging. Due to the link of *H. pylori* to chronic gastritis, peptic ulcer, and gastric malignancies, this makes its eradication important for preventing these conditions. Treatment typically involves a combination of antibiotics and acid-suppressing medications to effectively eradicate the bacterium, but the standard approaches ended to emerging of antibiotic resistance. [12]

The current study evaluated 180 patients infected with H. pylori for their response to P.CAB sequential therapy and two other established regimens, showing the patient's age ranging from 18 to 63with mean± SD (31.21±10.04). Malaty et al reported that the new cases of *H. pylori* infections occurred before the age of 10 years and by age 18-23 years; the prevalence of the infection was 24.5% [13] and during 2014–2020, the prevalence of infection in children and adults was higher in lowincome and middle-income countries. There were predominance of H. pylori infection in older individuals compared with children and the explanation is that most of H. pylori infections happened in childhood and persisting throughout life more than the risk of infection at older age. [14] Female predominance 55.6% was reported in our study, disagreeing with Ferro et al, who reported that there was no gender effect on the prevalence of H. pylori infection, [15] while Abdulrazak et al, demonstrated male predominance of H. pylorirelated infection. [16] This may be related to methodology factors, geographical and cultural variations. [17] No statistical significant difference among the studied groups according to the age and sex (P. value 0.25 & 0.91 respectively) was found in the present study.

Laboratory investigations showed relative alterations in CBC(anemia & leukocytosis) and liver enzymes elevation in some patients of our study agreeing with **Francois et al.**, who reported changes in CBC in patients infected with *H. pylori* [18] and **Fujimoto et al.**, demonstrated metabolic disturbances, sometimes showing mild liver enzyme elevations in chronic cases. [19]

The presenting symptoms in the studied groups (epigastric pain, abdominal pain, dyspepsia, anorexia, vomiting, headache, itching, urticaria&

loss of weight) were highest in GI, while they were absent in GIII&GIV. The commonest complain in GI was Epigastric pain (28.9%) and in GII (13.3%). (20%, 57.8%) of GI, GII respectively were asymptomatic and diagnosed when *H. pylori* routine checkup was done.

Gastrointestinal symptoms are obvious in naive H. pylori patients than in those experienced a recurrence or treatment failure. In naive patients newly infected, the bacterial load is typically high, and the immune response is often acute, leading to more intense symptoms, by contrast, patients who experience treatment failure or reinfection might have a lower bacterial load or a partially adapted immune response that reduces the acute inflammatory response thus less or absent symptoms. [20]

In the present study, the cure rate among the studied groups was higher in GII (93.3%) followed by GIII (88.9%), then GIV (71.1%) and the least response is GI (62.2%) showing high efficacy of P.CAB based sequential therapy over the LOAD therapy and confirming the low efficacy of traditional based clarithromycin therapy.

Clinical studies have demonstrated that P-CAB-based regimens achieve high rate of *H. pylori* eradication compared to PPI-based therapies; particularly in populations with high antibiotic resistance rates thus better healing of *H. pylori* induced gastritis and peptic ulcer. [21] Moxifloxacin has shown effectiveness against *H. pylori*, especially in patients with prior treatment failures. [22] **Marcus et al.** confirmed increasing the prevalence of resistant *H. pylori* strains to clarithromycin and treatment efficacy has significantly declined, which has led to bacterial adaptations and subsequent failure of the therapy. [23]

Clarithromycin-based triple therapy frequently fails to reach adequate eradication, so untreated or inadequately treated *H. pylori* infections are associated with major incidence of peptic ulcer disease, chronic gastritis, and gastric cancer.

Different side effects from treatment in the current study were highest in GI (31.1%), while dropped in GIII (2.2%). Bitter taste, galactorrhea, nausea, insomnia, fatigue were absent in GIII, while galactorrhea is absent in GII&GIII. Fatigue was the highest in GI (28.6%) while insomnia (50%) in GII and galatorrhea (33.3%) in GIV. **Furuta et al.**, concluded that P-CABs have been associated with fewer side effects and improved patient compliance

due to their rapid symptom relief, [24] while Tahara & Arakawa, showed that despite P-CAB are generally well-tolerated; they have been associated with insomnia. This effect, although relatively uncommon but is notable. [25] For fatigue which was the highest in GI; it may be related to clarithromycin. It is relatively common with it and the mechanism is related to the effect of clarithromycin on cytokine production and mitochondrial function, in addition it may cause gastrointestinal upset leading to the fatigue. Galactorrhea was high in GIV as those patients previously experienced one or more regimen of Hpylori treatment including proton pump inhibitors (PPIs). Galactorrhea was documented that it is one of the main side effects of PPIs. [26]

Conclusions

From our results and observations we concluded that the P-CAB based sequential regimen that we experienced in the present study had the highest eradication rate and least side effects making it more promising in *H.pylori* eradication either in naïve or previously treated patients

Limitations of the study

Noncompliant patients

Patients didn't tolerate the side effects of the drug regimens

Patients who refused upper endoscopy

Recommendations

More studies on larger numbers

Longer duration to follow up the response after treatment.

Funding statement

None

Conflict of interests

The authors declare no conflict of interest.

Data availability

All data generated or analyzed during this study are included in this puplished article.

Authors' contribution

All authors made significant contributions to the work presented, including study design, data collection, analysis, and interpretation. They also contributed to the article's writing, revising, or critical evaluation, gave final approval for the version to be published.

References

- Alba C, Blanco A, Alarcón T. Antibiotic resistance in Helicobacter pylori. Curr Opin Infect Dis 2017; 30:489-497.
- 2- Crowe SE. Helicobacter pylori infection. New Eng J Med 2019; 21: 380(12):1158-65.
- 3- Chey WD, Leontiadis GI, Howden CW, Moss SF. ACG clinical guideline: treatment of Helicobacter pylori infection. Off J Am Coll Gastroenterol 2017; 112(2):212-39.
- 4- Fallone CA, Chiba N, van Zanten SV, Fischbach L, Gisbert JP, Hunt RH, et al. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology. 2016 Jul 1; 151(1):51-69.
- 5- Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E. Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterology. 2018 Nov 1; 155(5):1372-82.
- 6- Murakami K, Sakurai Y, Shiino M, Funao N, Nishimura A, Asaka M. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: a phase III, randomised, double-blind study. Gut. 2016 Sep 1;65(9):1439-46.
- 7- Li M, Oshima T, Horikawa T, Tozawa K, Tomita T, Fukui H, et al. Systematic review with meta-analysis: vonoprazan, a potent acid blocker, is superior to proton-pump inhibitors for eradication of clarithromycin-resistant strains of Helicobacter pylori. Helicobacter. 2018 Aug; 23(4):e12495.
- 8- Ashida K, Sakurai Y, Hori T, Iwakiri K, Kudou K, Kawai T. Randomized clinical trial: safety and efficacy of vonoprazan vs. lansoprazole after endoscopic submucosal

- dissection. Aliment Pharmacol Thera 2018; 47(8), 997-1005
- 9- Khalifa MM, Sharaf RR, Aziz RK. Helicobacter pylori: A poor man's gut pathogen? Gut Pathog. 2010;2(1):2
- 10- Gisbert JP, Calvet X. Review article: nonbismuth quadruple (concomitant) therapy for eradication of Helicobacter pylori. Aliment Pharmacol Therapy. 2011;34(6):604-17
- 11- Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut. 2015; 64(9):1353-67
- 12- American College of Gastroenterology (ACG) Guidelines. "Guidelines for the Management of H. pylori Infection." Am J Gastroenterol 2024; 119(4): 483-496.
- 13- Malaty HM, El-Kasabany A, Graham DY, Miller CC, Reddy SG, Srinivasan SR, et al. Age at acquisition of Helicobacter pylori infection: a follow-up study from infancy to adulthood. The Lancet. 2002 Mar 16; 359(9310):931-5.
- 14- Liou JM, Malfertheiner P, Lee YC, Sheu BS, Sugano K, Cheng HC, et al. Screening and eradication of Helicobacter pylori for gastric cancer prevention: the Taipei global consensus. Gut. 2020 Dec 1;69(12):2093-112..
- 15- Ferro A, Morais S, Pelucchi C, Dierssen ST, Martin V, Lopez CL, et al. Sex differences in the prevalence of Helicobacter pylori infection: an individual participant data pooled analysis (StoP Project). Eur J gastroenterol Hepatol 2019; 1: 31(5):593-8.
- 16- Ibrahim A, Morais S, Ferro A, Lunet N, Peleteiro B. Sex-differences in the prevalence of Helicobacter pylori infection in pediatric and adult populations: systematic review and meta-analysis of 244 studies.

- Digestive and Liver Disease. 2017 Jul 1; 49(7):742-9.
- 17- Alswat KA. Gender disparities in helicobacter pylori infection. Saudi J Gastroenterol 2019; 25(5): 241-247.
- 18- Francois F, Roper J, Joseph N, Pei Z, Chua K, Glickman J, et al. Association of Helicobacter pylori infection with iron deficiency: A systematic review and meta-analysis. J Infect Dev Countr 2017; 11(8): 649-656
- 19- Fujimoto K, Uemura N, Irahara M, Hata T, Yamamoto K, Takagi K, et al. Influence of H. pylori infection on liver function tests: A systematic review and meta-analysis. World J Gastroenterol 2016; 22(1): 129-138.
- 20- Graham DY, Dore MP, & Lu H. Understanding treatment guidelines with particular reference to the treatment of Helicobacter pylori infections. Gastroenterology Clinics of North America, 2014; 43(3), 493-517
- 21- Matsukawa J., Okamoto H., & Watanabe T. Pharmacology and clinical effectiveness of potassium-competitive acid blockers. World J Gastroenterol 2017; 23(26): 4567-4575.
- 22- Kang KK, Lee DH, Oh DH, Yoon H, Shin CM, Park YS, et al. Helicobacter pylori eradication with moxifloxacin-containing therapy following failed first-line therapies in South Korea. World J Gastroenterol 2014; 20(22):6932.
- 23- Marcus EA, Sachs G, Scott DR. Eradication of Helicobacter pylori infection. Current gastroenterology reports. 2016 Jul; 18:1-9.
- 24- Furuta T, Sugano K, Nakajima M, Karajima Y, Tanaka S, Kamada T, et al. Vonoprazan versus lansoprazole for first-line Helicobacter pylori eradication: A

- randomized trial. Gastroenterology, 2019; 156(5), 1588-1598.e3.
- 25- Tahara T, Arakawa T. Potassium-competitive acid blockers: Advanced therapeutic option for acid-related diseases. Digestion, 2015; 92(1), 1-4.
- 26- Khan R, Mayberry J. The effect of proton pump inhibitors on the hypothalamic-pituitary-gonadal axis and prolactin levels: A review. J Clin Pharmacol 2016; 56(5): 529–534.

Teima AA, Sedeek R, Kasemy Z, Abo El Khair N, Abdel Aty K, Helmy H, Shaban A, El Hagary H. Potassium competitive acid blocker based sequential therapy in treatment of naïve and previously treated patients with *H. pylori* infection. Microbes Infect Dis 2025; 6(4): 6392-6401.