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Abstract

Data augmentation is a crucial technique for enhancing the generalization of deep learning registration models,
especially in the medical imaging domain, where high-quality and diverse multimodal data are often scarce. Prior
multimodal registration approaches faced multiple limitations, such as intricate implementation processes and overfitting,
which reduce the generalizability of the models and impact registration accuracy. These limitations underscore the need
for improved methodologies to enhance the effectiveness of medical image analysis by advancing the progressive GAN
framework that synthesizes high-quality multimodal medical images. In this study, we propose an approach based on
Generative Adversarial Networks (GANs) to improve the quality and diversity of multimodal medical images. Our
methodology includes preprocessing steps, real-time modifications during GAN training, and post-processing techniques
to enhance the generated images. The results demonstrate that the proposed method outperforms traditional registration
techniques, achieving a mean Dice Similarity Coefficient of 0.78, indicating a significant improvement in registration
accuracy. These findings support the potential application of our approach in clinical settings, enhancing the effectiveness
of medical image analysis.

Keywords: Gan Augmentation, Image Registration, Multimodal Images, Unsupervised Learning, Medical Image
Analysis.

1. Introduction

Data augmentation is a technique used to increase the diversity of the training dataset by applying various
transformations to the original images, such as rotation, scaling, and adding synthetic images [1] ,which helps improve the
robustness, accuracy, and generalization capabilities of deep learning models in medical image analysis This
technique broadens the model's ability to identify a wide array of features within augmented datasets, as opposed to
relying on a limited feature set for object recognition in images In medical image registration, there are several
challenging issues; a prevalent problem in this domain is the scarcity of normal data, as hospital-collected datasets
predominantly consist of abnormal cases. Additionally, the propensity for overfitting caused by excessively complex
models limits their ability to generalize to new data. Furthermore, problems such as inadequate training datasets, lack of
accurate ground truth annotations, and susceptibility to adversarial attacks present considerable hurdles Given these
challenges, there is a pressing need for data augmentation, particularly concerning paired multimodal medical images, as
the limited diversity and quantity of such images severely constrain the effectiveness of contemporary deep learning
techniques

Synthesized data holds potential for enhancing classification, segmentation, and registration tasks

involving multimodal MRI images In the medical field, the rarity of images related to uncommon
diseases restricts the training capabilities of neural networks, thereby adversely affecting classification
outcomes. Therefore, there is an urgent need for research focused on improving augmented and coherent data,

establishing necessary evaluation standards, and increasing access to larger annotated datasets Data
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augmentation addresses these issues by significantly enhancing the clarity and resolution of medical images,
thereby reducing blurriness in CT and MRI scans , resulting in better outcomes at lower costs. This paper
is based on integrating traditional augmentation techniques with GAN which can significantly improve the
generation of synthetic images. This can be achieved through three main approaches: First, preprocessing
augmentation involves applying methods such as rotation, scaling, and upsampling to the training dataset,
enhancing input diversity. Second, augmentation incorporates real-time modifications during GAN training,
including random cropping to focus on various image segments, adding Gaussian noise to introduce
variability [9], and applying elastic transformations to simulate realistic deformations in medical images.
Finally, post-processing augmentation enhances the generated synthetic images through traditional
techniques, thereby increasing their variability and robustness. This research aims to synthesize high-quality
and clinically meaningful multimodal medical images, ensuring that GANSs learn from a diverse dataset and
achieve improved generalization across different conditions for better registration.

The paper is organized as follows: Section 2 describes related work, Section 3 presents the proposed
work, Section 4 introduces experimental results, and Section 5 concludes the paper.

2. Related works

2.1. GANSs in Data Augmentation

In recent years, several papers have explored the use of Generative Adversarial Networks (GANs) for
medical image augmentation and synthesis, each presenting unique advantages and disadvantages. For
instance, DAGAN, proposed in , primarily focuses on data augmentation for medical imaging. While it
successfully generates synthetic images, it faces challenges regarding the quality of these images.
Additionally, its evaluation scope is limited, which may restrict its effectiveness across diverse medical
applications. In a biomedical data augmentation method using GANs has been demonstrated, generating
high-quality biomedical images. However, its focus is predominantly on brain images, limiting the diversity
of the data and potentially hindering the generalizability of its findings to other modalities. Similarly, the
authors in addressed medical image synthesis and data augmentation utilizing public datasets for image
generation. While this method offers some benefits, relying on such datasets may restrict the diversity of the
generated images, which is essential for training robust models across different medical imaging tasks. In

a study on generative adversarial networks for medical imaging provided practical code
implementations, showcasing the accessibility of GANs for generating synthetic medical images, though it
might face challenges in terms of generalizability to different medical imaging tasks. In the context of few-
shot learning, the authors in proposed a Few-shot 3D multimodal medical image segmentation using
generative adversarial learning, effectively handling multimodal segmentation tasks. However, it risks
overfitting due to the limited number of training samples, which may affect its performance on unseen

data.The research on introduced 3D conditional GANs for PET image estimation, providing high-quality
estimations of PET images while reducing radiation exposure. However, it is heavily dependent on
conditional inputs, which may limit its flexibility in practical applications. The study in addressed

bimodal medical image synthesis using semi-supervised GANSs, offering high-quality synthetic images but
being complex to implement, which may hinder its adoption in clinical settings and lead to challenges in
generalizability across different datasets. The Vox2Vox method in targeted enhancing training data for
brain tumor segmentation but did not extensively address the evaluation metrics, which could impact the
assessment of model performance. The research in introduced multi-contrast MRI images, providing
enhanced data diversity but facing challenges in evaluation metrics and the complexity of multi-contrast
imaging.

2.2. GANs in Multimodal Registration Techniques

The application of GANs extends beyond augmentation to multimodal medical image registration.
Recent advancements have introduced various techniques aimed at improving registration accuracy. For
example , The introduction of 3D-StyleGAN in allowed for high-quality 3D image generation but was
computationally intensive and had limited practical application examples. Despite their potential, artificial
data often loses its physiological structure, especially in ultrasound images. Various techniques have been
developed to address these challenges, such as using Radon Transform to synthesize CT datasets (low-dose x-
ray tomography through a deep convolutional neural network), employing autoencoders for PET image
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reconstruction (deep reconstruction model for dynamic PET images), and implementing stochastic
discriminator augmentation to prevent overfitting when training with limited data (training generative
adversarial networks with limited data) Recent methods like the Progressive Generative Adversarial
Method (PGAM) and Progressive Texture Generative Adversarial Network (PTGAN) focus on maintaining
structural integrity while generating medical images, providing solutions for lesion repair and synthesis
through mask-reconstruction strategies. The study in proposed progressive GANs that improved model
training for structurally inadequate datasets but had a complex training process and a risk of mode collapse.
To overcome these limitations, this paper presents a strategy that addresses the challenges associated with
augmentation, seeking to achieve improved results in multimodal image registration through the
incorporation and enhancement of data augmentation techniques.

3. Proposed Work

The related work in medical image augmentation and synthesis using Generative Adversarial Networks
(GANS) reveals several limitations, including challenges with the quality of synthetic images, a limited
evaluation scope focused on specific modalities, and complex implementation processes that hinder clinical
adoption. Additionally, reliance on public datasets restricts the diversity of generated images, while issues
like mode collapse and overfitting compromise the generalizability of models as mentioned in the
previous section. These limitations underscore the need for improved methodologies to enhance the
effectiveness of medical image analysis by advancing the progressive GAN framework that synthesizes high-
quality multimodal medical images, which improves the performance of multimodal medical image
registration, as illustrated in Fig. 1.

Data Preprocessing:
2 —— (PGAN) Data Augmentation.
1.Normalizing.
—> 2.Resampling. )
3.Classic Augmentation f
(Rotation-Scalling-Upsampling)
4.Segmentation using RDNN
Image Registration using UNET

Registered Image

Mri (T2)

Fig. 1 Proposed Multimodal Medical Image Registration Approach

3.1 Data Pre-processing

This paper used the IXI dataset , Which includes 1,100 MRI images of a single patient in both T1
and T2 modalities, and the RIRE dataset which consists of multimodal (PET-MRI-CT) images from a
single patient, for the testing stage. Data preprocessing consists of four steps, each described in detail below.

Normalizing MRI images is the first step to ensure consistent intensity values across the dataset, as
shown in Equation 1:

Inorm=(I—-p)/c @

where I is the original image,  is the mean intensity, and ¢ is the standard deviation of the intensities.
Fig. 2 illustrates an example of image normalization.
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Fig. 2 Normalized MRI Image Enhanced Uniformity and Clarity of Anatomical Structures.
Resampling the images using B-spline interpolation is the second step. This is a crucial step to ensure

that the input to the RDNN (Recurrent Deep Neural Network) model is uniform. An example of image
sampling is illustrated in Fig. 3.
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Fig. 3 Image resampling which enhanced detail through B-Spline interpolation.

Classic augmentation is the third step. Classic augmentation methods, such as scaling, rotation, and
downsampling, are utilized on the 3D MRI and CT images, as demonstrated in Fig. 4.

Original Image Scaled Image Rotated Image Upsampled Image
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Fig. 4 Classic augmentation methods which enhancing dataset diversity for improved learning.



International Journal of Computers and Information Vol. 12-2 (2025) 47-59

Segmentation is the fourth step. Extracting anatomical and functional details from the IXI dataset is
performed using RDNN (Recurrent Deep Neural Network) due to its effectiveness in extracting functional
and anatomical information from complicated medical datasets, including the IXI and MRI datasets.

The ability of RDNNSs to recognize complex patterns and characteristics in the data is essential for
precisely identifying various structures in medical imaging. Because of this feature, RDNNs are a good
option for the proposed work in this study. The RDNN takes 3D medical images as input, and the input size is
specified as (160 x 192 x 224 x 2). The loss function used in training can be defined by Equation 2:

L, y) = — ZiL; yilog() @)

where y is the true label and y is the predicted label. Fig. 5 shows an example of image segmentation by
RDNN.
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Fig. 5 Example of image segmentation by RDNN.

RDNNSs maintain past inputs, known as the hidden state, which allows the network to consider the
context of previous inputs, retaining crucial information within the image.

Input Layer
Output Layer

Fig. 6 Recurrent Deep Neural Network (RDNN) Architecture.
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3.2 Synthetic Data Augmentation with PGAN

Progressive Growing of GANs (PGGANS) is a new technique for training GANSs. It involves gradually
increasing the resolution of both the generator and discriminator networks. This process starts with low-
resolution images and then adds layers to capture finer details as training continues, contributing to the
creation of more realistic medical images, as shown in Fig. 7.

Latent Space Latent Space Latent Space
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Fig. 7 PGAN architecture for synthetic image generation.

After extracting anatomical and functional details from the 1XI dataset using RDNN, data augmentation
is applied using PGAN. The RDNN's output, in the form of segmented images, will serve as a reference for
the PGAN's augmentation process. The PGAN leverages these segmented outputs and uses them with the
same output size to generate new synthetic images that preserve the anatomical structures identified by the
RDNN. By learning from these segmented outputs, the PGAN produces synthetic samples that are consistent
with the underlying anatomical features, thereby enriching the diversity and quality of the training dataset for
subsequent medical image analysis tasks, as shown in Fig. 8.

The training set consists of 2,400 images, the validation set contains 800 images, and the test set
includes 800 images. The augmentation process achieves 4,000 pairs of T1 and T2 modalities.
Generating New Samples: Use the generator part of PGAN to create new MRI images based on the learned
distribution of the training data.
Progressive Growing: Start training with low-resolution images and progressively increase the resolution,
which helps stabilize the training process. The generator can be defined as in equation 3:

G(2)=ConvTranspose(z) 3

where z is the latent vector sampled from a Gaussian distribution.
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Fig. 8 PGAN generating synthetic detailed medical images output.

By combining synthetic and classic data augmentation techniques, this approach demonstrates superior
performance in medical imaging, enabling a more robust training process. Furthermore, when trained on a
dataset that maintains the important segmented features, PGAN can generate images suitable for medical
image registration tasks, producing highly realistic, high-resolution images that surpass the limitations of
earlier GAN models.

By employing a multi-stage training approach, PGGANs gradually increase image resolution, leading
to more stable training and significantly improved image quality. This ability to create realistic images,
especially in fields like medical imaging, is invaluable for applications such as image registration.

3.3 Image Registration using UNET

The proposed registration architecture, illustrated in Fig. 9, is inspired by U-Net. It utilizes an encoder-
decoder design with skip connections, allowing flexibility in input dimensions, although the experiments use
a specific input size of (160 x 192 x 224 x 2). Both encoder and decoder stages employ 3D convolutions with
a 3x3 kernel and a stride of 2, followed by Leaky ReL U activations. The encoder reduces spatial dimensions
to capture global deformations, akin to traditional image pyramid techniques. The decoder combines
upsampling, convolutions, and skip connections to integrate encoded features, refining the spatial scale for
accurate anatomical alignment.

Skip Connection

( Skip Connection w

‘ sk Connecton )
( 1
"I 10l === 1 “I
{ J L

Encoder Decoder

Encoder and Decoder

Fig. 9 UNet architecture for medical image segmentation: A dual pathway model utilizing encoder-decoder
structure with skip connections for enhanced feature extraction and high-resolution reconstruction.
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Loss Function
The loss function for training the network is formulated as:
L(Ig Im, §)) = Lsim(lg, I, ¢) + R(P) (4)

Here, Lgin measures the similarity between the deformed moving image (I,,,) and the fixed image (I;),
while R is a regularization term that enforces smoothness in the deformation field.

To ensure realistic and smooth deformations, regularization terms are added. Diffusion Regularization
(R) and Bending Energy are two examples presented in equations 7 and 8 where Vu(p) is Gradient of the
deformation field at position p.

Ratruson () = ) Va1 (5)
PEQ
Ricniing (@) = ) I72u(p)II ©)
pPEQ

When anatomical segmentations are available, an additional loss function L4 quantifying the overlap
between segmentations is incorporated as shown in equation 9 as y ., (Sr—m,®): Auxiliary penalty term.

L(If' Im’ ¢) = Lsim (If’ Im' ¢) + R(¢) + yseg (Sf'Sm' ¢) (7)

The method extends to include Bayesian uncertainty through Monte Carlo dropout, allowing the
estimation of predictive variances for both transformation and appearance uncertainties as shown in equations
10 and 11 as Ut Transformation output at sample T and u™ Mean of the transformation outputs across T
samples and o7 is the Variance of the transformation, indicating the uncertainty in the

transformation

transformation parameters.

Gtransformatlon = TZ (ut u)z (8)

appearance = Z (I - If)z (9)

The U-Net method integrates advanced deep learning architectures with traditional image registration
techniques, providing robust and reliable registration with uncertainty quantification. The equations outlined
above encapsulate the mathematical foundation upon which the registration framework operates, ensuring
both accuracy and smoothness in the deformation fields generated during the process.

4. Experimental Results

The proposed method was implemented using PyTorch and trained on a PC with NVIDIA GPUs and 16
GB of RAM. All models were trained for 500 epochs using the Adam optimizer with a learning rate of 1 x
10—4 and a batch size of 1. Data augmentation techniques, such as random flipping, were applied to the brain
MRI dataset. The proposed U-Net architecture is compared against several important registration methods,
such as:

1. SyN4 Employed mean squared difference (MSQ) as the objective function for inter-patient and
atlas-to-patient brain MRI registration, with default Gaussian smoothing and iteration parameters. For XCAT -
to-CT registration, cross-correlation (CC) was used as the objective function.
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2. NiftyReg [28]: Utilized the sum of squared differences (SSD) as the objective function and bending
energy as a regularizer. Regularization weights and iteration parameters were empirically determined for each
registration task.

3. VoxelMorph [29]: Employed two variants, VoxelMorph-1 and VoxelMorph-2, with varying numbers of
convolution filters.

4. DAGAN [10] : This method outlines various augmentation techniques, including conventional methods
such as image flipping, rotation, shifting, brightness adjustment, and zooming, alongside elastic distortion to
address non-rigid deformations of imaged organs. These strategies aim to enrich training datasets, thereby
improving the model's robustness and performance during the learning process. However, challenges remain
regarding the quality of synthetic images and the limited scope of evaluation.

Registration performance was evaluated using the Dice score, which quantifies the volume overlap
between anatomical and organ segmentations. The average Dice scores across all anatomical and organ
structures were compared among the different methods, as illustrated in Equation 10.

Importance of using Dice Similarity Coefficient (DSC)
Sensitivity to Class Imbalance: The Dice Similarity Coefficient is effective in medical imaging,
addressing class imbalances where the area of interest is small.

|sfn(she®)
[sfl+Iskea]

Dice(sf, sX, o ¢)=2 (10)

It measures the overlap between predicted and true positive voxels, where sfksfk is the segmentation of
the fixed image, smksmk is the segmentation of the moving image (to be aligned), and ¢¢ is the transformation
function applied to the moving image's segmentation.

Deep Learning Integration: The proposed work utilizes the Dice Similarity Coefficient to enhance
segmentation accuracy.

Fig. 10 shows an example of a T1 magnetic resonance (MRI) slice and a T2 MRI slice. The first two

columns show input pairs, the third column shows the results obtained with ANTS SyN (CC), and the fourth
column shows the proposed results.

T1 (MRI) T2 (MRI) ANTs SyN (CC) Proposed Work

Fig. 10 Comparison of T1 and T2 MRI scans with registration results: evaluating the effectiveness of
traditional ANTs SyN Method versus the proposed technique.

Scope Of Accuracy: The proposed method was evaluated using the Dice Similarity Coefficient (DSC) as the
primary metric for assessing registration accuracy. The results, summarized in Table 1, indicate that the
proposed method achieved a mean DSC of 0.787 (x 0.132), outperforming the benchmark methods: SyN4
(0.776), NiftyReg (0.776), VoxelMorph (0.766), and DAGAN (0.780) which is visualy illustrated in Fig. 11.
This improvement in accuracy highlights the effectiveness of our approach in achieving precise alignment of
medical images.
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Table 1. Performance comparison: evaluating Dice scores of traditional
methods versus the proposed Approach for T1 and T2 MRI scans

Method Dice Score (Mean % Std Dev)
SyN4 0.776 (0.130)
NiftyReg 0.776 (0.132)
VoxelMorph 0.766 (0.133)
DAGAN 0.780 (0.130)
Proposed Method 0.787 (0.132)
Proposed work DAGAN

Fig. 11 Comparison of proposed work and DAGAN in medical image registration.

4.1. Generalization Accuracy

This proposed work conducts a comprehensive cross-validation analysis to evaluate the effectiveness of
the proposed approach against traditional registration techniques. The RIRE dataset was used, comprising a
total of 1,000 images, including both T1-weighted and T2-weighted MRI images, as well as standard CT
scans of the same anatomical regions. To ensure uniformity across the dataset, all images were standardized
to a resolution of 256 x 256 pixels.

The proposed method achieved the highest mean Dice Similarity Coefficient of 0.789 with a standard
deviation of + 0.003, indicating both high accuracy and consistency across different folds, as shown in Table
2.

Table 2. Proposed work generalization accuracy compared to previous methods.

Method Fold 1 Fold 2 Fold 3 Fold4 | Fold5 | Mean DSC (+ Std Dev)
NiftyReg 0.775 0.770 0778 | 0772 | 0.774 0.774 (+ 0.002)
VoxelMorph 0.770 0.765 0.772 0.769 | 0.771 0.769 (+ 0.002)
SyN4 0.776 0.774 0.778 | 0.775 | 0.777 0.776 (+ 0.002)
DAGAN 0.780 0.775 0.782 0.779 | 0.781 0.779 (£ 0.002)
Proposed Work 0.790 0.785 0.792 0.788 | 0.791 0.789 (+ 0.003)

The cross-validation analysis, conducted over five folds, revealed that the proposed method achieved a
mean DSC of 0.789 (+ 0.003), with scores ranging from 0.790 to 0.785 across the folds. This consistency
across different subsets of the dataset underscores the robustness of the proposed approach. In contrast, the
benchmark methods exhibited more variability, with NiftyReg showing a mean DSC of 0.774 (+ 0.002) and
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VoxelMorph at 0.769 (x 0.002). The lower variability in the proposed method suggests that it generalizes
well across different imaging scenarios.
The superior performance of the proposed method can be attributed to several factors:
o Model Architecture:

The U-Net architecture utilized in the proposed method is particularly well-suited for medical image
segmentation tasks due to its ability to capture both local and global features effectively. This architectural
choice likely contributed to the improved accuracy observed in the results.

e Data Augmentation Techniques:

The application of data augmentation techniques, such as random flipping, enhanced the diversity of the
training dataset. This not only improved the model's ability to generalize but also helped mitigate overfitting,
which is a common challenge in medical imaging tasks.

e Training Parameters:

The choice of the Adam optimizer and the specific learning rate were critical in ensuring that the model
converged effectively during training. The training duration of 500 epochs allowed the model to learn
intricate patterns in the data, further enhancing its performance.

e Implications of Findings:

The results of this study have significant implications for clinical applications in medical imaging. The
higher accuracy and robustness of the proposed method suggest that it could be effectively utilized in
scenarios requiring precise image alignment, such as in pre-surgical planning or longitudinal studies where
consistent image registration is crucial.

The consistent performance across folds suggests that the method is robust and generalizes well to
different datasets, making it a promising approach for clinical applications in medical imaging. Future work
will focus on further refining the model and exploring its applicability across diverse imaging modalities.

5. Conclusion

In this paper, we successfully integrated a Progressive Generative Adversarial Network (PGAN)
with enhanced classic augmentation techniques for multimodal medical image registration. Our findings
indicate that this approach significantly improves the quality and diversity of synthetic medical images,
achieving a mean Dice Similarity Coefficient of 0.78, which demonstrates enhanced registration accuracy
compared to traditional methods. The contributions of this study extend to both academic and practical
realms. Academically, it provides a robust framework for data augmentation in medical imaging, addressing
the critical issue of data scarcity. Practically, it offers a solution that can be implemented in clinical settings to
improve diagnostic accuracy and decision-making. The proposed solution presents several advantages,
including improved robustness to noise, adaptability across various imaging modalities, and enhanced
generalization capabilities. However, it also has limitations, such as the need for extensive computational
resources and potential challenges in training the GAN effectively. Future work should focus on validating
the proposed method across diverse datasets and clinical scenarios to further assess its generalizability.
Additionally, exploring hybrid approaches that combine GANs with other machine learning techniques could
yield even more effective solutions for medical image registration.
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