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Abstract 

Data augmentation is a crucial technique for enhancing the generalization of deep learning registration models, 

especially in the medical imaging domain, where high-quality and diverse multimodal data are often scarce. Prior 

multimodal registration approaches faced multiple limitations, such as intricate implementation processes and overfitting, 

which reduce the generalizability of the models and impact registration accuracy. These limitations underscore the need 

for improved methodologies to enhance the effectiveness of medical image analysis by advancing the progressive GAN 

framework that synthesizes high-quality multimodal medical images. In this study, we propose an approach based on 

Generative Adversarial Networks (GANs) to improve the quality and diversity of multimodal medical images. Our 

methodology includes preprocessing steps, real-time modifications during GAN training, and post-processing techniques 

to enhance the generated images. The results demonstrate that the proposed method outperforms traditional registration 

techniques, achieving a mean Dice Similarity Coefficient of 0.78, indicating a significant improvement in registration 

accuracy. These findings support the potential application of our approach in clinical settings, enhancing the effectiveness 

of medical image analysis. 

Keywords: Gan Augmentation, Image Registration, Multimodal Images, Unsupervised Learning, Medical Image 

Analysis. 
 

1. Introduction 

 
         Data augmentation is a technique used to increase the diversity of the training dataset by applying various 

transformations to the original images, such as rotation, scaling, and adding synthetic images [1] ,which helps improve the 

robustness, accuracy, and generalization capabilities of deep learning models in medical image analysis [2]. This 

technique broadens the model's ability to identify a wide array of features within augmented datasets, as opposed to 

relying on a limited feature set for object recognition in images [3]. In medical image registration, there are several 

challenging issues; a prevalent problem in this domain is the scarcity of normal data, as hospital-collected datasets 

predominantly consist of abnormal cases. Additionally, the propensity for overfitting caused by excessively complex 

models limits their ability to generalize to new data. Furthermore, problems such as inadequate training datasets, lack of 

accurate ground truth annotations, and susceptibility to adversarial attacks present considerable hurdles [4]. Given these 

challenges, there is a pressing need for data augmentation, particularly concerning paired multimodal medical images, as 

the limited diversity and quantity of such images severely constrain the effectiveness of contemporary deep learning 

techniques [5]. 

Synthesized data holds potential for enhancing classification, segmentation, and registration tasks 

involving multimodal MRI images [6]. In the medical field, the rarity of images related to uncommon 

diseases restricts the training capabilities of neural networks, thereby adversely affecting classification 

outcomes. Therefore, there is an urgent need for research focused on improving augmented and coherent data, 

establishing necessary evaluation standards, and increasing access to larger annotated datasets [7]. Data 
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augmentation addresses these issues by significantly enhancing the clarity and resolution of medical images, 

thereby reducing blurriness in CT and MRI scans [8] , resulting in better outcomes at lower costs. This paper 

is based on integrating traditional augmentation techniques with GAN which can significantly improve the 

generation of synthetic images. This can be achieved through three main approaches: First, preprocessing 

augmentation involves applying methods such as rotation, scaling, and upsampling to the training dataset, 

enhancing input diversity. Second, augmentation incorporates real-time modifications during GAN training, 

including random cropping to focus on various image segments, adding Gaussian noise to introduce 

variability [9], and applying elastic transformations to simulate realistic deformations in medical images. 

Finally, post-processing augmentation enhances the generated synthetic images through traditional 

techniques, thereby increasing their variability and robustness. This research aims to synthesize high-quality 

and clinically meaningful multimodal medical images, ensuring that GANs learn from a diverse dataset and 

achieve improved generalization across different conditions for better registration. 

 

          The paper is organized as follows: Section 2 describes related work, Section 3 presents the proposed 

work, Section 4 introduces experimental results, and Section 5 concludes the paper. 

 

2. Related works  

 
2.1. GANs in Data Augmentation 

 

          In recent years, several papers have explored the use of Generative Adversarial Networks (GANs) for 

medical image augmentation and synthesis, each presenting unique advantages and disadvantages. For 

instance, DAGAN, proposed in [10], primarily focuses on data augmentation for medical imaging. While it 

successfully generates synthetic images, it faces challenges regarding the quality of these images. 

Additionally, its evaluation scope is limited, which may restrict its effectiveness across diverse medical 

applications. In [11] a biomedical data augmentation method using GANs has been demonstrated, generating 

high-quality biomedical images. However, its focus is predominantly on brain images, limiting the diversity 

of the data and potentially hindering the generalizability of its findings to other modalities. Similarly, the 

authors in [12] addressed medical image synthesis and data augmentation utilizing public datasets for image 

generation. While this method offers some benefits, relying on such datasets may restrict the diversity of the 

generated images, which is essential for training robust models across different medical imaging tasks. In 

[13], a study on generative adversarial networks for medical imaging provided practical code 

implementations, showcasing the accessibility of GANs for generating synthetic medical images, though it 

might face challenges in terms of generalizability to different medical imaging tasks. In the context of few-

shot learning, the authors in [14] proposed a Few-shot 3D multimodal medical image segmentation using 

generative adversarial learning, effectively handling multimodal segmentation tasks. However, it risks 

overfitting due to the limited number of training samples, which may affect its performance on unseen 

data.The research on [15] introduced 3D conditional GANs for PET image estimation, providing high-quality 

estimations of PET images while reducing radiation exposure. However, it is heavily dependent on 

conditional inputs, which may limit its flexibility in practical applications. The study in [16] addressed 

bimodal medical image synthesis using semi-supervised GANs, offering high-quality synthetic images but 

being complex to implement, which may hinder its adoption in clinical settings and lead to challenges in 

generalizability across different datasets. The Vox2Vox method in [17] targeted enhancing training data for 

brain tumor segmentation but did not extensively address the evaluation metrics, which could impact the 

assessment of model performance.  The research in [18] introduced multi-contrast MRI images, providing 

enhanced data diversity but facing challenges in evaluation metrics and the complexity of multi-contrast 

imaging. 

 
2.2. GANs in Multimodal Registration Techniques 

 

        The application of GANs extends beyond augmentation to multimodal medical image registration. 

Recent advancements have introduced various techniques aimed at improving registration accuracy. For 

example , The introduction of 3D-StyleGAN in [19] allowed for high-quality 3D image generation but was 

computationally intensive and had limited practical application examples. Despite their potential, artificial 

data often loses its physiological structure, especially in ultrasound images. Various techniques have been 

developed to address these challenges, such as using Radon Transform to synthesize CT datasets (low-dose x-

ray tomography through a deep convolutional neural network), employing autoencoders for PET image 
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reconstruction (deep reconstruction model for dynamic PET images), and implementing stochastic 

discriminator augmentation to prevent overfitting when training with limited data (training generative 

adversarial networks with limited data)[20]. Recent methods like the Progressive Generative Adversarial 

Method (PGAM) and Progressive Texture Generative Adversarial Network (PTGAN) focus on maintaining 

structural integrity while generating medical images, providing solutions for lesion repair and synthesis 

through mask-reconstruction strategies. The study in [21] proposed progressive GANs that improved model 

training for structurally inadequate datasets but had a complex training process and a risk of mode collapse. 

To overcome these limitations, this paper presents a strategy that addresses the challenges associated with 

augmentation, seeking to achieve improved results in multimodal image registration through the 

incorporation and enhancement of data augmentation techniques. 

 

3.  Proposed Work  

 

The related work in medical image augmentation and synthesis using Generative Adversarial Networks 

(GANs) reveals several limitations, including challenges with the quality of synthetic images, a limited 

evaluation scope focused on specific modalities, and complex implementation processes that hinder clinical 

adoption. Additionally, reliance on public datasets restricts the diversity of generated images, while issues 

like mode collapse and overfitting compromise the generalizability of models [22] as mentioned in the 

previous section. These limitations underscore the need for improved methodologies to enhance the 

effectiveness of medical image analysis by advancing the progressive GAN framework that synthesizes high-

quality multimodal medical images, which improves the performance of multimodal medical image 

registration, as illustrated in Fig. 1. 

 

Fig. 1 Proposed Multimodal Medical Image Registration Approach 

 

3.1 Data Pre-processing 
        This paper used the IXI dataset [23], which includes 1,100 MRI images of a single patient in both T1 

and T2 modalities, and the RIRE dataset [24] which consists of multimodal (PET-MRI-CT) images from a 

single patient, for the testing stage. Data preprocessing consists of four steps, each described in detail below. 

        Normalizing MRI images is the first step to ensure consistent intensity values across the dataset, as 

shown in Equation 1: 

Inorm=(I−μ)/σ                                                                                        (1) 

        where I is the original image, μ is the mean intensity, and σ is the standard deviation of the intensities. 

Fig. 2 illustrates an example of image normalization. 
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Fig. 2 Normalized MRI Image Enhanced Uniformity and Clarity of Anatomical Structures. 

 

            Resampling the images using B-spline interpolation is the second step. This is a crucial step to ensure 

that the input to the RDNN (Recurrent Deep Neural Network) model is uniform. An example of image 

sampling is illustrated in Fig. 3. 
 

Fig. 3 Image resampling which enhanced detail through B-Spline interpolation. 

 

        Classic augmentation is the third step. Classic augmentation methods, such as scaling, rotation, and 

downsampling, are utilized on the 3D MRI and CT images, as demonstrated in Fig. 4. 
 

 

Fig. 4 Classic augmentation methods which enhancing dataset diversity for improved learning. 
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         Segmentation is the fourth step. Extracting anatomical and functional details from the IXI dataset is 

performed using RDNN (Recurrent Deep Neural Network) due to its effectiveness in extracting functional 

and anatomical information from complicated medical datasets, including the IXI and MRI datasets.  

         The ability of RDNNs to recognize complex patterns and characteristics in the data is essential for 

precisely identifying various structures in medical imaging. Because of this feature, RDNNs are a good 

option for the proposed work in this study. The RDNN takes 3D medical images as input, and the input size is 

specified as (160 × 192 × 224 × 2). The loss function used in training can be defined by Equation 2: 

L(y, ỳ) = − ∑  N
i=1 yi log(ỳi)                                                                             (2) 

        where y is the true label and ỳ is the predicted label. Fig. 5 shows an example of image segmentation by 

RDNN. 

Fig. 5 Example of image segmentation by RDNN. 

 

 

          RDNNs maintain past inputs, known as the hidden state, which allows the network to consider the 

context of previous inputs, retaining crucial information within the image.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Recurrent Deep Neural Network (RDNN) Architecture. 
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3.2 Synthetic Data Augmentation with PGAN 

Progressive Growing of GANs (PGGANs) is a new technique for training GANs. It involves gradually 

increasing the resolution of both the generator and discriminator networks. This process starts with low-

resolution images and then adds layers to capture finer details as training continues, contributing to the 

creation of more realistic medical images, as shown in Fig. 7. 

Fig. 7 PGAN architecture for synthetic image generation. 

 

 

          After extracting anatomical and functional details from the IXI dataset using RDNN, data augmentation 

is applied using PGAN. The RDNN's output, in the form of segmented images, will serve as a reference for 

the PGAN's augmentation process. The PGAN leverages these segmented outputs and uses them with the 

same output size to generate new synthetic images that preserve the anatomical structures identified by the 

RDNN. By learning from these segmented outputs, the PGAN produces synthetic samples that are consistent 

with the underlying anatomical features, thereby enriching the diversity and quality of the training dataset for 

subsequent medical image analysis tasks, as shown in Fig. 8. 

 

        The training set consists of 2,400 images, the validation set contains 800 images, and the test set 

includes 800 images. The augmentation process achieves 4,000 pairs of T1 and T2 modalities. 

Generating New Samples: Use the generator part of PGAN to create new MRI images based on the learned 

distribution of the training data. 

Progressive Growing: Start training with low-resolution images and progressively increase the resolution, 

which helps stabilize the training process. The generator can be defined as in equation 3: 

 

G(z)=ConvTranspose(z)                                                               (3) 

 

where z is the latent vector sampled from a Gaussian distribution. 
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Fig. 8 PGAN generating synthetic detailed medical images output. 

 

           By combining synthetic and classic data augmentation techniques, this approach demonstrates superior 

performance in medical imaging, enabling a more robust training process. Furthermore, when trained on a 

dataset that maintains the important segmented features, PGAN can generate images suitable for medical 

image registration tasks, producing highly realistic, high-resolution images that surpass the limitations of 

earlier GAN models.  

          By employing a multi-stage training approach, PGGANs gradually increase image resolution, leading 

to more stable training and significantly improved image quality. This ability to create realistic images, 

especially in fields like medical imaging, is invaluable for applications such as image registration.  

 
3.3 Image Registration using UNET 

 

        The proposed registration architecture, illustrated in Fig. 9, is inspired by U-Net. It utilizes an encoder-

decoder design with skip connections, allowing flexibility in input dimensions, although the experiments use 

a specific input size of (160 × 192 × 224 × 2). Both encoder and decoder stages employ 3D convolutions with 

a 3x3 kernel and a stride of 2, followed by Leaky ReLU activations. The encoder reduces spatial dimensions 

to capture global deformations, akin to traditional image pyramid techniques. The decoder combines 

upsampling, convolutions, and skip connections to integrate encoded features, refining the spatial scale for 

accurate anatomical alignment. 
 

 

Fig. 9 UNet architecture for medical image segmentation: A dual pathway model utilizing encoder-decoder 

structure with skip connections for enhanced feature extraction and high-resolution reconstruction. 
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Loss Function 

The loss function for training the network is formulated as: 

L(If, Im, ϕ)) = Lsim(If, Im, ϕ)  +  R(ϕ)                                                                                      (4) 

          Here, Lsim measures the similarity between the deformed moving image (𝐼𝑚) and the fixed image (𝐼𝑓), 

while R is a regularization term that enforces smoothness in the deformation field. 

          To ensure realistic and smooth deformations, regularization terms are added. Diffusion Regularization 

(R) and Bending Energy are two examples presented in equations 7 and 8 where ∇u(p) is Gradient of the 

deformation field at position p. 

Rdiffusion(ϕ) = ∑  

p∈Ω

‖∇u(p)‖2                                                                                                                                         (5) 

 

Rbending (ϕ) = ∑  

p∈Ω

‖∇2u(p)‖2                                                                                                                                          (6) 

         When anatomical segmentations are available, an additional loss function Lseg quantifying the overlap 

between segmentations is incorporated as shown in equation 9 as 𝛾seg (Sf−m,Φ): Auxiliary penalty term. 

 

𝐿(𝐼𝑓 , 𝐼𝑚 , 𝜙) = 𝐿sim (𝐼𝑓 , 𝐼𝑚, 𝜙) + 𝑅(𝜙) + 𝛾seg (𝑆𝑓 , 𝑆𝑚 , 𝜙)                                                                 (7)  

 

         The method extends to include Bayesian uncertainty through Monte Carlo dropout, allowing the 

estimation of predictive variances for both transformation and appearance uncertainties as shown in equations 

10 and 11 as ut : Transformation output at sample T and uˉ Mean of the transformation outputs across T 

samples and 𝜎
transformation 

2  is the Variance of the transformation, indicating the uncertainty in the 

transformation parameters. 

 

𝜎transformation 
2 =

1

𝑇
∑  

𝑇

𝑡=1

  (𝑢𝑡 − �⃐� )2                                                                                                                                       (8)

𝜎appearance 
2 =

1

𝑇
∑  

𝑇

𝑡=1

  (Im ∘ ϕt − If)
2                                                                                                                                   (9)

 

 

         The U-Net method integrates advanced deep learning architectures with traditional image registration 

techniques, providing robust and reliable registration with uncertainty quantification. The equations outlined 

above encapsulate the mathematical foundation upon which the registration framework operates, ensuring 

both accuracy and smoothness in the deformation fields generated during the process. 

 

4.  Experimental Results  

        The proposed method was implemented using PyTorch and trained on a PC with NVIDIA GPUs and 16 

GB of RAM. All models were trained for 500 epochs using the Adam optimizer with a learning rate of 1 × 

10−4 and a batch size of 1. Data augmentation techniques, such as random flipping, were applied to the brain 

MRI dataset. The proposed U-Net architecture is compared against several important registration methods, 

such as: 

1. SyN4  Employed mean squared difference (MSQ) as the objective function for inter-patient and [27]:

atlas-to-patient brain MRI registration, with default Gaussian smoothing and iteration parameters. For XCAT-

to-CT registration, cross-correlation (CC) was used as the objective function. 
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2. NiftyReg  Utilized the sum of squared differences (SSD) as the objective function and bending [28]:

energy as a regularizer. Regularization weights and iteration parameters were empirically determined for each 

registration task. 

3. VoxelMorph  Employed two variants, VoxelMorph-1 and VoxelMorph-2, with varying numbers of [29]:

convolution filters. 

4. DAGAN  : This method outlines various augmentation techniques, including conventional methods [10]

such as image flipping, rotation, shifting, brightness adjustment, and zooming, alongside elastic distortion to 

address non-rigid deformations of imaged organs. These strategies aim to enrich training datasets, thereby 

improving the model's robustness and performance during the learning process. However, challenges remain 

regarding the quality of synthetic images and the limited scope of evaluation. 

         Registration performance was evaluated using the Dice score, which quantifies the volume overlap 

between anatomical and organ segmentations. The average Dice scores across all anatomical and organ 

structures were compared among the different methods, as illustrated in Equation 10. 

 
Importance of using Dice Similarity Coefficient (DSC) 

         Sensitivity to Class Imbalance: The Dice Similarity Coefficient is effective in medical imaging, 

addressing class imbalances where the area of interest is small. 

 

Dice(sf
k, sm

k ∘ ϕ)= 2. 
|𝑠𝑓

𝑘∩(𝑠𝑚
𝑘 ∘𝜙)|

|𝑠𝑓
𝑘|+|𝑠𝑚

𝑘 ∘𝜙|
                                                                                                                         (10) 

 
           It measures the overlap between predicted and true positive voxels, where sfksfk is the segmentation of 

the fixed image, smksmk is the segmentation of the moving image (to be aligned), and ϕϕ is the transformation 

function applied to the moving image's segmentation.  

Deep Learning Integration: The proposed work utilizes the Dice Similarity Coefficient to enhance 

segmentation accuracy.  

 

          Fig. 10 shows an example of a T1 magnetic resonance (MRI) slice and a T2 MRI slice. The first two 

columns show input pairs, the third column shows the results obtained with ANTS SyN (CC), and the fourth 

column shows the proposed results. 

 

 

Fig. 10 Comparison of T1 and T2 MRI scans with registration results: evaluating the effectiveness of 

traditional ANTs SyN Method versus the proposed technique. 

 

Scope Of Accuracy: The proposed method was evaluated using the Dice Similarity Coefficient (DSC) as the 

primary metric for assessing registration accuracy. The results, summarized in Table 1, indicate that the 

proposed method achieved a mean DSC of 0.787 (± 0.132), outperforming the benchmark methods: SyN4 

(0.776), NiftyReg (0.776), VoxelMorph (0.766), and DAGAN (0.780) which is visualy illustrated in Fig. 11. 

This improvement in accuracy highlights the effectiveness of our approach in achieving precise alignment of 

medical images. 
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Method Dice Score (Mean ± Std Dev) 

SyN4 0.776 (0.130) 

NiftyReg 0.776 (0.132) 

VoxelMorph 0.766 (0.133) 

DAGAN 0.780 (0.130) 

Proposed Method 0.787 (0.132) 

 

 

 
 

Fig. 11 Comparison of proposed work and DAGAN in medical image registration. 

 

 

4.1. Generalization Accuracy 

        This proposed work conducts a comprehensive cross-validation analysis to evaluate the effectiveness of 

the proposed approach against traditional registration techniques. The RIRE dataset was used, comprising a 

total of 1,000 images, including both T1-weighted and T2-weighted MRI images, as well as standard CT 

scans of the same anatomical regions. To ensure uniformity across the dataset, all images were standardized 

to a resolution of 256 x 256 pixels.  

        The proposed method achieved the highest mean Dice Similarity Coefficient of 0.789 with a standard 

deviation of ± 0.003, indicating both high accuracy and consistency across different folds, as shown in Table 

2. 

 

Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean DSC (± Std Dev) 

NiftyReg 0.775 0.770 0.778 0.772 0.774 0.774 (± 0.002) 

VoxelMorph 0.770 0.765 0.772 0.769 0.771 0.769 (± 0.002) 

SyN4 0.776 0.774 0.778 0.775 0.777 0.776 (± 0.002) 

DAGAN 0.780 0.775 0.782 0.779 0.781 0.779 (± 0.002) 

Proposed Work 0.790 0.785 0.792 0.788 0.791 0.789 (± 0.003) 
 

         The cross-validation analysis, conducted over five folds, revealed that the proposed method achieved a 

mean DSC of 0.789 (± 0.003), with scores ranging from 0.790 to 0.785 across the folds. This consistency 

across different subsets of the dataset underscores the robustness of the proposed approach. In contrast, the 

benchmark methods exhibited more variability, with NiftyReg showing a mean DSC of 0.774 (± 0.002) and 

Table 1. Performance comparison: evaluating Dice scores of traditional 

methods versus the proposed Approach for T1 and T2 MRI scans 

 

Table 2. Proposed work generalization accuracy compared to previous methods. 
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VoxelMorph at 0.769 (± 0.002). The lower variability in the proposed method suggests that it generalizes 

well across different imaging scenarios.  

The superior performance of the proposed method can be attributed to several factors: 

 Model Architecture: 

      The U-Net architecture utilized in the proposed method is particularly well-suited for medical image 

segmentation tasks due to its ability to capture both local and global features effectively. This architectural 

choice likely contributed to the improved accuracy observed in the results. 

 

 Data Augmentation Techniques: 

      The application of data augmentation techniques, such as random flipping, enhanced the diversity of the 

training dataset. This not only improved the model's ability to generalize but also helped mitigate overfitting, 

which is a common challenge in medical imaging tasks. 

 

 Training Parameters: 

       The choice of the Adam optimizer and the specific learning rate were critical in ensuring that the model 

converged effectively during training. The training duration of 500 epochs allowed the model to learn 

intricate patterns in the data, further enhancing its performance. 

 

 Implications of Findings: 
       The results of this study have significant implications for clinical applications in medical imaging. The 

higher accuracy and robustness of the proposed method suggest that it could be effectively utilized in 

scenarios requiring precise image alignment, such as in pre-surgical planning or longitudinal studies where 

consistent image registration is crucial. 

 

        The consistent performance across folds suggests that the method is robust and generalizes well to 

different datasets, making it a promising approach for clinical applications in medical imaging. Future work 

will focus on further refining the model and exploring its applicability across diverse imaging modalities. 
 

5.  Conclusion 

In this paper, we successfully integrated a Progressive Generative Adversarial Network (PGAN) 

with enhanced classic augmentation techniques for multimodal medical image registration. Our findings 

indicate that this approach significantly improves the quality and diversity of synthetic medical images, 

achieving a mean Dice Similarity Coefficient of 0.78, which demonstrates enhanced registration accuracy 

compared to traditional methods. The contributions of this study extend to both academic and practical 

realms. Academically, it provides a robust framework for data augmentation in medical imaging, addressing 

the critical issue of data scarcity. Practically, it offers a solution that can be implemented in clinical settings to 

improve diagnostic accuracy and decision-making. The proposed solution presents several advantages, 

including improved robustness to noise, adaptability across various imaging modalities, and enhanced 

generalization capabilities. However, it also has limitations, such as the need for extensive computational 

resources and potential challenges in training the GAN effectively. Future work should focus on validating 

the proposed method across diverse datasets and clinical scenarios to further assess its generalizability. 

Additionally, exploring hybrid approaches that combine GANs with other machine learning techniques could 

yield even more effective solutions for medical image registration. 
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تعزيز البيانات المعتمدة على شبكات التوليد الخصمية لتسجيل الصور الطبية  تحسين

 متعددة الوسائط
أ 

        سامح ظريف
أ

خالد امين      
أ

       مريم جورج 
ب

    مريان وجدى
أ 

  جامعة المنوفية، المنوفية، مصر   -كلية الحاسبات و المعلوماتقسم تكنولوجيا المعلومات، 
ب

 ، مصر  الغربية، طنطاجامعة   -كلية الحاسبات و المعلومات قسم تكنولوجيا المعلومات، 

    
ب
     خالد امين 

ج
    د مريان وجدى       مريم جورج 

أ 
  

 الملخص :
تعد زيادة البيانات تقنية حاسمة لتعزيز تعميم نماذج تسجيل التعلم العميق، وخاصة في مجال التصوير                

الطبي، حيث غالباً ما تكون البيانات المتعددة الوسائط عالية الجودة والمتنوعة نادرة. واجهت مناهج التسجيل 

يات التنفيذ المعقدة والمبالغة في التجهيز، مما يقلل من إمكانية المتعدد الوسائط السابقة قيودًا متعددة، مثل عمل

تعميم النماذج ويؤثر على دقة التسجيل. تؤكد هذه القيود على الحاجة إلى منهجيات محسنة لتعزيز فعالية تحليل 

التدريجي الذي يقوم بتوليف صور طبية متعددة الوسائط عالية  GANالصور الطبية من خلال تطوير إطار 

( لتحسين جودة وتنوع GANsالجودة. في هذه الدراسة، نقترح نهجًا يعتمد على الشبكات التنافسية التوليدية )

الصور الطبية المتعددة الوسائط. تتضمن منهجيتنا خطوات المعالجة المسبقة والتعديلات في الوقت الفعلي أثناء 

توضح النتائج أن الطريقة المقترحة تتفوق على  وتقنيات ما بعد المعالجة لتحسين الصور الناتجة. GANتدريب 

، مما يشير إلى تحسن كبير في دقة 0.78تقنيات التسجيل التقليدية، حيث حققت معامل تشابه النرد المتوسط 

 التسجيل. وتدعم هذه النتائج إمكانية تطبيق نهجنا في الإعدادات السريرية، مما يعزز فعالية تحليل الصور الطبية.


