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ABSTRACT 

The aim of the present study is to investigate the friction coefficient displayed by 

sliding of bearing steel on polytetrafluoroethylene (PTFE) and polymethyl 

methacrylate (PMMA) at dry and in the presence of paraffin and glycerin oils. 

Besides, particles of iron (Fe), copper (Cu), aluminum (Al) and graphite (C) powders 

are added to the oils in 10 wt. % concentration. The grain size of the particles was 

ranging between 50 - 80 µm. The normal loads used are 2, 4, 6, 8, 10, 12, 14 and 16 N. 

While sliding velocity was 2 mm/s. 

 

It was found that dispersing the surfaces of PMMA and PTFE by Fe, Cu, Al and C 

particles decreased friction coefficient at dry sliding, where the effective decrease was 

presented by C. Sliding on PTFE showed lower friction than that observed for sliding 

on PMMA. At oil lubricated sliding, steel/PMMA displayed higher friction than that 

detected for oil dispersed with the tested particles. Sliding of steel on PMMA 

lubricated by paraffin and glycerin oils and dispersed by Al displayed lower friction 

values than that shown by sliding on PTFE. For lubricated sliding by paraffin and 

glycerin oils, the use of PMMA as bearing material can be recommended. 
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INTRODUCTION  

Oil additives are added to the base oil to improve its performance. Recently, the effect 

of dispersing the base oil by talc, C and PTFE to a blend of glycerin and motor oil on 

the friction coefficient wear resistance is investigated, [1]. It was found that talc 

showed the lowest wear. When particle size of the graphite increased friction 

coefficient increased. The lowest friction coefficient was found for oil dispersed by 3 

wt. % graphite of 0.012 mm particle size. Several attempts were performed to enhance 

the lubricating properties of oils by adding multiple additives, [2, 3]. The function of 

oil additives is to give special properties to the oil, [4 – 15]. There are multiple types 
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of oil additives, such as detergent, [16 – 18], anti-rust, [19, 20], anti-foam, [21, 22], 

viscosity improver additives, [23 – 25] and anti-wear additives, [26, 27]. 

 

Certain materials are used as anti-wear additives such as talc that can be used as solid 

lubricant and anti-wear additive, [28, 29]. Besides, PTFE is used as a solid lubricant 

due to its ability of PTFE layers to slide on each other with a minimal friction 

coefficient, [30]. Graphite (or graphene) works like PTFE, where its layers slide with 

relatively lower friction coefficient, [31, 32]. The anti-wear performance of talc and 

graphite were compared, where talc was found to give a smoother microstructure on 

the bronze surface tested with steel, [33]. 

 

The particle size of the dispersed materials in oils has critical effect on the behavior 

of the additive. The lower the particle size, the better performance due to the ability 

of smaller particles to penetrate the tight contact areas of the moving surfaces and 

provide lubricated film. In addition to that, the increased surface area relative to 

volume offers excellent mechanical properties, [2, 34]. Nanomaterials are also usually 

used as lubricant additives, [35, 36]. 

 

In this study the friction coefficient displayed by sliding of bearing steel on PMMA 

and PTFE at dry and in the presence of paraffin and glycerin oils was investigated. 

10 wt. % concentration of Fe, Cu, Al and C granulates were added to the oils.  

 

EXPERIMENTAL  

The test rig used to carry out the experiments is shown in Fig. 1. The values of applied 

loads were 2.0, 4.0, 6.0, 8.0, 10, 12, 14 and 16.0 N.  Load cell connected to digital 

monitor was used to measure the friction force. Then, friction coefficient was 

determined by the ratio between the friction force and the normal load. The 

experiments were performed at room temperature.  

 

 

 

Fig. 1 Arrangement of the test rig.  

 

Experiments were carried out at dry and oil lubricated sliding conditions. Granulates 

of Fe, Cu, Al and C of grain size ranging between 50 - 80 µm were used to disperse 

the tested oils at 10 wt. % concentration.  Two oils were tested paraffin and glycerin 
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oils. The steel pin (steel 51200) of 14 mm diameter was sliding on PMMA and PTFE 

sheet of 4 mm thickness for 60 mm. The pin surface is assumed to have the same 

surface roughness. This assumption is because of using a grinding paper after each 

track. In addition to, each track is only for one test related to one normal force value.  

Every experiment was repeated ten times then the average values were considered.  

 

RESULTS AND DISCUSSION 

The dry sliding of the steel pin on PMMA displayed relatively higher values of friction 

coefficient, Fig. 2. Dispersing the sliding surface by Fe, Cu, Al and C particles showed 

slight friction decrease. C particles drastically decreased friction coefficient. This 

behavior may be attributed to the ability of C to adhere to the two contact surfaces 

and conduct the electrostatic charge (ESC) to the pin surface. ESC is generated by 

triboelectrification of the surfaces of both PMMA and steel pin. It is known that when 

different materials are rubbing each other then one of them will gain electrons from 

the other and the other one will lose electrons. The ability of the dispersed materials 

to conduct ESC to the steel surface control the value of friction coefficient because 

ESC increases the adherence force between the two sliding surfaces and consequently  

friction coefficient increases. 

 

 
Fig.  2 Friction coefficient displayed by sliding of steel pin on dry PMMA sheet. 

 

The sliding of steel pin on PTFE sheet displayed the lowest friction values followed by 

C, Fig. 3, while, the highest friction values were shown in the presence of Fe, Cu and 

Al. The lowest friction shown for PTFE may be due to high value of generated ESC 

that caused the strong adherence of PTFE layer into the steel surface leading to 

change the friction to be between PTFE/PTFE instead of PTFE/steel. The known low 

friction of PTFE controlled the sliding performance. Presence of C as conductive 

material released the generated ESC out of the contact area through the steel surface. 
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Besides, C could separate the two contacting surfaces. Al particles separated PTFE 

from interaction with steel making the contact to be Al/PTFE and Al/steel. The same 

behavior was observed for Fe and Cu particles.  

 

 
Fig. 3 Friction coefficient displayed by dry sliding of steel pin on dry PTFE sheet. 

 

At oil lubricated conditions, the friction coefficient displayed by sliding of steel sliding 

on PMMA and PTFE in the presence of Al particles is shown in Fig. 3. Two oils were 

tested paraffin and glycerin oils were dispersed by 10 wt. % Al, C, Cu and Fe particles, 

Figs. 4, 5, 6 and 7 respectively. Generally, friction coefficient drastically decreased in 

oil lubricated sliding compared to the dry sliding.   

 

In the presence of clean paraffin oil, sliding of steel on PMMA caused higher friction 

coefficient values than that observed for oil dispersed with the tested particles, Fig. 4. 

Sliding on the surface of PMMA in the presence of paraffin and glycerin dispersed by 

Al represented lower friction values than that recorded by sliding on PTFE. Friction 

coefficient showed increasing trend with increasing the load when sliding on PTFE. 

It seems that the adherence of Al particles into PTFE was quite strong because of the 

relatively higher magnitude of the generated ESC so that the friction was between Al 

and steel surface. While sliding on PMMA that generated lower values of ESC 

displayed decreasing trend as the load increased. In this condition the adhesion of Al 

into PMMA was weak enabling for some of Al particles to roll between steel and 

PMMA surface and limiting friction coefficient.  

 

Dispersing the tested oils with C displayed slight decrease in friction with increasing 

the applied load, Fig. 5. Because C is an electrical conductive material, it dissipates 

ESC into the steel pin surface decreasing the ability of C particles to be adhered layer 

on the contact surfaces. The slight reduction in friction may be from the easy motion 
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of the C laminates on each other. Besides, sliding of steel on PMMA in the presence of 

glycerin showed the lowest friction values. 

 

 
Fig. 4 Friction coefficient displayed by oil lubricated sliding in the presence of Al 

particles. 

 

    

 
Fig. 5 Friction coefficient displayed by oil lubricated sliding in the presence of C 

particles. 
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Fig. 6 Friction coefficient displayed by oil lubricated sliding in the presence of Cu 

particles. 

 

 
Fig. 7 Friction coefficient displayed by oil lubricated sliding in the presence of Fe 

particles. 
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In condition of dispersing the tested oils with Cu particles, further friction decrease 

was observed compared to the oil dispersed by C, Fig. 6. That behavior may be 

attributed to the increase of Cu adhesion into the PMMA surface, while PTFE surface 

showed friction increase. The relatively high magnitude of ESC generated from 

sliding on PTFE was easily conducted out of the contact surface due to the good 

conductivity of Cu particles. Based on that observation, it can be recommended to use 

PMMA as bearing material in the presence of paraffin and glycerin oils. 

 

Fe dispersing the tested oils gave friction values higher than that observed for Al and 

Cu, Fig. 7, due to the embedment of particles in the PTFE and PMMA surfaces and 

abrading the steel surface. Glycerin medium showed relatively higher values than 

paraffin. The polarity of paraffin oil enables its molecules to be adhered into the two 

contact surfaces so that friction decreases.  

 

CONCLUSIONS 

1. Dry sliding of the steel pin on PMMA displayed relatively higher values of friction 

coefficient, while sliding on PTFE displayed the lowest friction values. 

2. In the presence of the tested particles, C displayed lower friction followed by Fe, 

Cu and Al. 

3. At oil lubricated conditions, friction coefficient drastically decreased compared to 

the dry sliding.   

4. Sliding of steel on PMMA caused higher friction coefficient values than that 

observed for oil dispersed with the tested particles. 

5. Sliding on the surface of PMMA in the presence of paraffin and glycerin dispersed 

by Al represented lower friction values than that recorded by sliding on PTFE.  

6. Dispersing the tested oils with C displayed slight decrease in friction with increasing 

the applied load. Besides, sliding of steel on PMMA in the presence of glycerin showed 

the lowest friction values.  

7. In condition of dispersing the tested oils with Cu particles, further friction decrease 

was observed compared to the oil dispersed by C.  

8. Fe dispersing the tested oils gave friction values higher than that observed for Al 

and Cu. 
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