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ABSTRACT  

This study involved the statistical analysis and optimization of the electrowinning 

process for producing electrolytic manganese powder from the paste of used ZnMnO2 

primary batteries, utilizing response surface methodology (RSM). The analysis 

considered the effect of electrolyte temperature (30 - 50 ℃), stirring rate (250 - 350 

rpm), distance between the anode and the cathode (3 - 10 cm), and current density 

(200- 600 A/m2) on the cathodic current efficiency, specific energy demand, and 

powder productivity. The experimental design utilized a Box-Behnken approach, 

employing quadratic polynomial equations to predict the mathematical models. The 

findings suggest that the proposed models effectively predict responses within the 

parameters of the electrowinning process utilized. The most important factors 

influencing cathodic current efficiency, specific energy demand, and productivity are 

the current density, the second-order effects of both current density and stirring rate, 

the distance between the anode and cathode, and the interactions between 

temperature and current density. Additionally, it was determined that RSM serves as 

an effective tool for optimizing the electrowinning process. 
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INTRODUCTION  

The Zn-MnO2 primary batteries are a widely recognized and established technology 

used across various applications, such as electronic toys, small devices, and portable 

gadgets, [1, 2]. The usage of these batteries surpasses that of other types due to their 

easy manufacturing process and safety for transport. As they are non-rechargeable 

(primary cells), they become unusable once depleted and need to be discarded, [3]. 

Figure 1 illustrates a cross-section of typical cylindrical primary Zn-MnO2 batteries. 

These batteries consist of manganese dioxide (MnO2) used as the positive electrode, 

metal zinc (Zn) as the negative electrode, an aqueous solution of potassium hydroxide 

(KOH for alkaline Zn-MnO2 batteries) or ammonium chloride (NH4Cl for neutral Zn-

MnO2 batteries) as the electrolyte, and a small amount of conductive and corrosion 

inhibiting additives, [4]. 



56 

 

 

 

Fig. 1 Cross-sectional schematic diagram of a cylindrical spent primary Zn-

MnO2 batteries, [5]. 

 

Zinc and manganese can be extracted from batteries using various recovery methods, 

primarily pyrometallurgical and hydrometallurgical processes. Extensive 

comparisons of these techniques have been conducted in past studies, [6, 7]. The 

pyrometallurgical method consumes significant energy due to its high-temperature 

requirements, [6] and can produce harmful gas emissions, such as carbon dioxide, 

carbon monoxide, and sulfur dioxide, as well as dust and volatile organic compounds, 

[8]. Consequently, this method often necessitates strict emissions controls, [3]. On the 

other hand, the hydrometallurgical process recovers metals from ores and waste 

materials using aqueous solutions with various chemicals. This involves dissolving the 

anodes and cathodes in acidic or alkaline solutions, followed by metal recovery 

through precipitation, extraction, or electrolysis. This approach is considered 

superior for recycling batteries since it minimizes gas emissions and requires less 

energy. Examples include the electrowinning of lead from chloride leach liquor, [9], 

packed bed electrolysis for copper powder production, [10], and other studies 

examining the effects of material shape and electrolyte characteristics on copper and 

manganese recovery, [11 - 17]. 

 

Electrolytic manganese powder plays an essential role in the cathodes of Zn MnO2 

alkaline batteries. The increased need for manganese is tied to steel production. 

Manganese and its derivatives are employed across multiple industries for 

applications such as steelmaking, manufacturing dietary supplements, producing 

fertilizers, making batteries, and developing specialty chemicals, [18, 19]. 

Additionally, they serve as drying agents, catalysts for dyes and varnishes, and color 

removers in the glass sector, [20]. 

 

Recently, the design of experiments (DoE) has become a widely used approach to 

establish numerical relationships between various input parameters impacting the 

electrolytic process variables to pinpoint the parameters that lead to the desired 

electrolytic product. This statistical method is an effective way to plan experiments, 

enabling the analysis of data for valid and objective conclusions. The two primary 

applications of experimental design are screening, which identifies the factors that 

affect the experiment, and optimization, which determines the best settings or 

conditions for the experiment. 
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The traditional optimization approach involves adjusting one process condition while 

keeping others constant. However, when dealing with multiple process variables, 

analyzing the entire system becomes increasingly challenging using this method. 

Recent statistical designs address this issue by considering all process parameters at 

the same time, allowing for a comprehensive evaluation of their collective effects. 

Response surface methodology (RSM) is recognized as one of the most prevalent 

optimization techniques used to analyze the performance of industrial processes, [21 

- 24]. RSM has been effectively utilized in various studies focused on process analysis, 

optimization, and variable formulation, [25]. 

 

According to the authors' knowledge, there is currently no information in the public 

domain regarding the characterization and optimization of the electrowinning 

process for generating electrolytic manganese powder from the paste of used ZnMnO2 

primary batteries using a statistical method. Therefore, this research intends to create 

mathematical models utilizing Response Surface Methodology (RSM) to predict, 

characterize, and assess the cathodic current efficiency, specific energy requirement, 

and powder productivity in the electrowinning process for the production of 

electrolytic manganese powder from the paste of used ZnMnO2 primary batteries. 

Additionally, the optimization of the electrowinning process will be addressed. 

 

EXPERIMENTAL WORKS 

Material 

Spent ZnMnO2 batteries were broken and separated from the external papers and 

paste of batteries collected, which was then crushed into a powder to ensure a uniform 

consistency. This roasted battery powder was leached using ascorbic acid (C6H8O6) as 

a reducing agent in a sulfuric acid (H2SO4) solution. Following the leaching step, 

cementation for selective removal of zinc ions was performed using manganese 

powder (Mn). More details on the used material and experiments were found in the 

purification of Manganese electrolyte solution from the leaching of Zn-MnO2 spent 

batteries using the cementation technique, [26]. After purification of the Mn 

electrolyte solution from zinc, the solution contains 34.75 gm/L of Manganese ions. 

 

The used electrolytic cell for the extraction of Manganese from the paste of used 

ZnMnO2 primary batteries is shown in Fig. 2 and it consists of the following: 

 

 

1. Hot plate with a magnetic stirrer. 

2. Rotating fish. 

3. Stainless steel sheet cathode (-). 

4. Stand & cell plastic cover. 

5. Anode of graphite. 

6.   Thermometer. 

Fig. 2 Components of electrolytic cell, [17]. 
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A hot plate with a magnetic stirrer (DAIHAN SCIENTIFIC CO, Korea) was used for 

heating up and stirring the electrolyte, and the direct current was supplied to the 

electrodes by a power supply (GW Instek, DC Power supply SPS -1820, Taiwan). 

Extra details on the obtained results of the electrowinning process of production of 

manganese from the paste of used ZnMnO2 primary batteries were found in (Said et 

al, under publication). 

 

DESIGN OF EXPERIMENTS AND STATISTICAL APPROACH 

RSM is a widely used statistical modeling technique that helps identify key processing 

parameters, quantify their relationships with specific measured outputs, and 

determine the optimal responses of interest, [28 - 30]. In the RSM, various methods 

and tools for constructing regression models and assessing their adequacy are 

utilized. Let y represent the observed value of a response variable influenced by the 

levels of k quantitative factors, denoted as x1, x2, ..., xk. For the statistical analysis, the 

three independent variables were designated as X1, X2, and X3, respectively, and were 

coded according to Eq. (1) as follows, [31]: 

𝐗𝐢 =
𝑿𝒊−𝑿𝒐

∆𝑿𝒊
                                                                                                                (1)   

Where Xi and xi are the coded and real values of an independent variable, 

respectively, while, Xo is the real value of an independent variable at the central point 

and ∆Xi is the step change value, [31]:   

The response function is then written as: 

Y=f(x1,x2,……xk)𝜺                                                                                                  (2) 

Where ε is the noise or error term in observing the response. 

 

Contour plotting is frequently used to depict the predicted response surface 

graphically. The quadratic response model consists of all the linear terms, square 

terms, and linear interactions and can be written as the subsequent equation [31]: 

Y=b0+∑ 𝐛𝒏 
𝒊=𝟏 ixi+∑ 𝐛𝒏

𝒊=𝟏 iix2ii+∑ ∑ 𝒃𝒏
𝒋=𝟏

𝒏
𝒊=𝟏 ijxixj+𝜺                                                    (3) 

The method the of electrowinning process involves multiple variable parameters that 

impact the optimal values of the parameters and the responses of interest. To optimize 

and evaluate the primary effects of the electrowinning process, a four-factor, three-

level box-Behnken statistical design with full replication was employed in this study. 

The temperature of the electrolyte, current density, rate of electrolyte stirring, and 

the distance between the anode and cathode are the factors that can be controlled in 

the electrolytic refining process. On the other hand, the efficiency of the cathodic 

current, energy consumption, and the amount of powder produced are outputs that 

depend on these variables. Experiments were conducted by changing one process 

parameter while keeping the rest constant to determine the constraints of the process 

input parameters. Tables 1 - 3 provide summary of the different independent process 

variables, experimentally measured responses, and design matrix in the study. A 

series of 25 electrolysis experiments were conducted using electrowinning techniques, 

with various process parameters based on the design matrix. 
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Table 1 Independent process variables and experimental design levels. 
Variable Unit Goal Code 

 Low Medium High 

-1 0 +1 

Electrolyte Temperature A ℃ Minimize 30 40 50 

Stirring Rate B Rpm Minimize 0 100 200 

Distance between anode and cathode C Cm Minimize 3 6.5 10 

Current Density D A/m2 Minimize 200 400 600 

 

Table 2 Goals of experimentally measured responses. 
Response  Unit Goal 

Cathodic Current Efficiency CE % Maximize 

Specific Energy Demand SE KWh/Kg Minimize 

Powder Productivity PP g/Ah Maximize 

 

Table 3 Design matrix with code independent process variables.  
Factor 1 Factor 2 Factor 3 Factor 4 

Run A: Electrolyte 

Temperature 

B: Stirring 

Rate 

C: Distance between 

anode and cathode 

D: Current density 

1 40 200 3 400 

2 30 100 6.5 600 

3 40 0 3 400 

4 50 100 6.5 600 

5 50 200 6.5 400 

6 30 100 10 400 

7 40 0 6.5 200 

8 40 100 10 200 

9 40 100 6.5 400 

10 50 100 6.5 200 

11 40 0 6.5 600 

12 30 0 6.5 400 

13 30 100 3 400 

14 40 200 6.5 200 

15 40 200 10 400 

16 40 0 10 400 

17 40 200 6.5 600 

18 50 100 10 400 

19 30 100 6.5 200 

20 30 200 6.5 400 

21 40 100 3 200 

22 40 100 3 600 

23 50 0 6.5 400 

24 40 100 10 400 

25 50 100 3 400 

 

Evaluation of Variance and Creation of Models 

The significant parameters and the best level for each parameter that was evaluated 

against regression can be found using analysis of variance (ANOVA). The F test was 

used on individual terms of the model to determine the significance of the regression 

model and identify the significant terms and their respective levels of significance. 

The model terms are considered significant if the value of "prob > F" is less than 0.05. 
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Additionally, the step-wise regression technique was used to remove any insignificant 

model terms automatically. The "lack of fit value" indicates how much the actual 

data varies around the fitted model. If the F test results show that the lack of fit is not 

significant, it implies that the model accurately represents the data, which is an ideal 

outcome. R² and the adjusted R² values are two additional criteria used in this 

modeling process. R² is used to indicate the adequacy of a fitted regression model. R² 

is a measure of the variation around the mean, and the adjusted R² value is a measure 

of the variation around the mean of the adjusted model terms. Scatter plots were also 

utilized for regression analysis. Perturbation curves and response surface plots were 

calculated for every model."Adeq Precision" measures the signal-to-noise ratio of 

each model. If the ratio is > 4, it indicates that the model is desirable, [31]. Based on 

the fit summaries, the suitable response models for the response factors should be 

selected. The experimental results of the cathodic current efficiency, specific energy, 

and productivity are listed in Table 4. The measured responses were analyzed by the 

design expert software Design-Expert V.13. 

 

Table 4 Experimentally measured responses. 
Run Response 1 Response 2 Response 3 

Cathodic Current Efficiency 

% 

Energy Demand 

(KWh/Kg) 

Productivity 

(g/A.h) 

1 83.6 10.5 0.725 

2 85.9 13.5 0.725 

3 75.7 9.7 0.689 

4 84.9 13.5 0.812 

5 88.4 12.5 0.825 

6 79.2 12.07 0.812 

7 74.9 7.5 0.725 

8 82.93 7.76 0.85 

9 84.56 10.68 0.867 

10 87.7 10.5 0.825 

11 82.5 12.6 0.799 

12 80.6 13 0.752 

13 83.6 10.7 0.799 

14 82.7 7.76 0.725 

15 82.85 9.82 0.85 

16 79.2 11.7 0.812 

17 86.1 12.072 0.83 

18 85.85 8.7 0.875 

19 75.4 7.76 0.725 

20 81.7 12.2 0.785 

21 68.5 7.76 0.625 

22 83.9 12.5 0.725 

23 87.2 10.35 0.825 

24 91.38 10.681 0.937 

25 78.9 12.5 0.725 

 

Cathodic Current Efficiency Model 

The cathodic current efficiency is viewed as a crucial factor for evaluating the 

effectiveness of the electrolysis process. Additionally, it is a crucial factor in terms of 

energy consumption and the rate at which powder is deposited. It can be defined as 
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the ratio of the actual deposited amount of material at the electrode to the deposited 

amount which is calculated using Faraday’s law, by the passage of the same charge, 

assuming that no side reactions take place at the electrode.  It depends on many 

factors such as the temperature, the current density, the stirring rate, the presence of 

additives and /or impurities in the electrolyte, the compositions and properties of the 

electrolyte, and the nature of the electrodes and the electrodeposit, [32]. 

 

This research only focused on analyzing how temperature, current density, stirring 

rate, and the distance between the anode and cathode impact the cathodic current 

efficiency. Table 5 provides the results of the analysis of variance (ANOVA) for the 

cathodic current efficiency and Table 6 shows fit statistics for the cathodic current 

efficiency quadratic model. 

 

Table 5 ANOVA for cathodic current efficiency quadratic model. 
Source Sum of 

Squares 

Df Mean 

Square 

F-value p-value 
 

Model 492.99 14 35.21 3.34 0.0305 Significant 

A-temperature 56.29 1 56.29 5.35 0.0433 Significant 

B-stirring rate  53.13 1 53.13 5.05 0.0485 Significant 

C-distance 30.85 1 30.85 2.93 0.1177 
 

D-current density 60.75 1 60.75 5.77 0.0372 Significant 

AB 0.0025 1 0.0025 0.0002 0.9880 
 

AC 29.11 1 29.11 2.76 0.1273 
 

AD 44.22 1 44.22 4.20 0.0676 
 

BC 4.52 1 4.52 0.4289 0.5273 
 

BD 4.41 1 4.41 0.4189 0.5321 
 

CD 63.76 1 63.76 6.06 0.0336 Significant 

A2 2.47 1 2.47 0.2345 0.6386  

B2 21.15 1 21.15 2.01 0.1868  

C2 59.71 1 59.71 5.67 0.0385 Significant 

D2 47.96 1 47.96 4.56 0.0586  

Residual 124.96 10 10.33 
   

Cor Total 598.27 24 
    

 

Table 6 Fit statistics for cathodic current efficiency quadratic model. 
R2 Adjusted R2 Predicted R2 Adeq Precision 

0.8240 0.577 - 0.3595 7.4840 

 

The F-value of 3.34 from the ANOVA results implies the model is significant. Values 

of "Prob > F" < 0.05 indicate model terms are significant. There is only a 3.05 % 

chance that an F-value this large could occur due to noise. The analysis of variance 

indicates that for the cathodic current efficiency model, the main effect of the current 

density (A), (B), (D), (CD,) and (C2) are significant model terms. The model terms are 

not significant if the obtained value areas are greater than 0.1. 

 

The predicted R2 of 0.8240 was close to the adjusted R2 of 0.5777. “Adeq Precision’’ 

measures the signal-to-noise ratio. A ratio > 4 is desirable. In this mode, the ratio of 

7.4840 indicates an adequate signal. This model can be used to negative the design 

space. A negative predicted R2 implies that the overall mean may be a better predictor 
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of your response than the current model in some cases, a higher-order model may 

also predict better. The ultimate mathematical equation representing the cathodic 

current efficiency based on coded factors, as determined by design expert software, 

is presented below. 

 

Cathodic current efficiency= 87.83+2.17*A+ 2.10*B +1.67*C + 2.46*D+0.0250*AB 

+2.70*AC –3.32*AD –1.06*BC –1.05*BD –5.01CD –0.8655* A2 – 2.53*B2 – 4.65*C2  

– 4.00*D2                                                                                                                                        (4) 

 

Specific Energy Demand Model 

The ANOVA outcomes for the simplified quadratic model of the specific energy 

demand calculations can be found in Table 7. The model F-value of 7.86 indicates that 

the model is significant. There is only a 0.12% chance that an F-value this large could 

occur due to noise. The values of "Prob > F" < 0.05, imply that the model terms are 

significant. In this case (D), and (AC) are significant model terms. Values greater than 

0.1000 indicate the model terms are not significant. A high F-value for a parameter 

indicates that the impact of that parameter on the refining process characteristics is 

significant. The results show that the highest value is F at a current density of about  

65.49. Table 8 shows the fit statistics for the specific energy demand quadratic model. 

The predicted R2 of 0.4751 is not as close to the adjusted R2 of 0.8001 as one might 

normally expect. ‘‘Adeq Precision” measures the signal-to-noise ratio. A ratio greater 

than 4 is desirable. The ratio of 9.997 indicates an adequate signal. This model can be 

used to negative the design space. 

 

Table 7 ANOVA for specific energy demand quadratic model. 
Source Sum of 

Squares 

Df Mean 

Square 

F-value p-value 
 

Model 84.41 14 6.03 7.86 0.0012 Significant 

A-temperature 0.1160 1 0.1160 0.1513 0.7054 
 

B-rpm 3.333E-07 1 3.333E-07 4.347E-07 0.9995 
 

C-distance 0.1781 1 0.1781 0.2323 0.6402 
 

D-current density 50.22 1 50.22 65.49 < 0.0001 Significant 

AB 2.18 1 2.18 2.84 0.1230 
 

AC 6.68 1 6.68 8.71 0.0145 Significant 

AD 1.88 1 1.88 2.45 0.1488 
 

BC 1.80 1 1.80 2.34 0.1570 
 

BD 0.1552 1 0.1552 0.2024 0.6624 
 

CD 0.1122 1 0.1122 0.1463 0.7101 
 

A² 2.85 1 2.85 3.72 0.0827 
 

B² 0.0010 1 0.0010 0.0013 0.9722 
 

C² 0.7063 1 0.7063 0.9211 0.3598 
 

D² 1.16 1 1.16 1.51 0.2474 
 

Residual 7.67 10 0.7668 
   

Cor Total 92.07 24 
    

 

Table 8 Fit statistics for specific energy demand quadratic model. 
R2 Adjusted R2 Predicted R2 Adeq Precision 

0.9167 0.8001 0.4751 9.9770 
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Specific Energy Demand=10.89 – 0.0983 *A +0.0002 *B –0.1273 *C + 2.23*D 

+0.7375 * AB –1.29 *AC –0.6850*AD –0.6700* BC –0.1970*BD – 0.2101 *CD+ 

0.9300*A² –0.0173*B² –0.5059*C² – 0.6210* D²                                                            (5) 

 

Powder Productivity Model 

A model was created to optimize the efficiency of powder production. Table 9 presents 

the ANOVA results for the quadratic model of powder productivity. A model with an 

F-value of 4.46 is considered statistically significant. There is only a 1.12% chance 

that an F-value this large could occur due to noise. The significance values of "Prob 

> F′′ are less than 0.05, indicating that the model terms are considered significant. 

Based on these findings, it can be inferred that (C), (B2), (C2), and (D2) are significant 

model terms. Table 10 shows the fit statistics for the powder productivity quadratic 

model. The Predicted R2 of 0.0674 is not as close to the Adjusted R2 of 0.6688 as one 

might normally expect. Adeq Precision measures signal-to-noise a ratio greater than 

4 is desirable. In this mode, the ratio of 8.975 indicates an adequate signal. This model 

can be used to navigate the design space.  

 

Table 9 ANOVA for productivity quadratic model. 
Source Sum of 

Squares 

df Mean 

Square 

F-value p-value 
 

Model 0.1007 14 0.0072 4.46 0.0012 Significant 

A-temperature 0.0070 1 0.0070 4.32 0.0645 
 

B-rpm 0.0016 1 0.0016 0.9841 0.3446 
 

C-distance 0.0433 1 0.0433 26.83 0.0004 Significant 

D-current density 0.0033 1 0.0033 2.02 0.1852 
 

AB 0.0003 1 0.0003 0.1688 0.6898 
 

AC 0.0047 1 0.0047 2.91 0.1189 
 

AD 0.0000 1 0.0000 0.0262 0.8746 
 

BC 1.000E-06 1 1.000E-06 0.0006 0.9806 
 

BD 0.0002 1 0.0002 0.1490 0.7076 
 

CD 0.0036 1 0.0036 2.22 0.1674 
 

A² 0.0042 1 0.0042 2.63 0.1361 
 

B² 0.0095 1 0.0095 5.90 0.0355 Significant 

C² 0.0085 1 0.0085 5.25 0.0449 Significant 

D² 0.0172 1 0.0172 10.67 0.0085 Significant 

Residual 0.0161 10 0.0016 
   

Cor Total 0.1169 24 
    

 

Table 10 Fit statistics for powder productivity quadratic model. 
R2 Adjusted R2 Predicted R2 Adeq Precision 

0.8620 0.6688 0.0674 8.9748 

 

From the previous table, the final mathematical model for the powder productivity 

in terms of coded factors as indicated by design expert software is shown below:  

 

Powder Productivity = 0.8879+ 0.0241*A+ 0.0115*B + 0.0627*C –0.0083*AB 

+0.0343*AC –0.0032*AD + 0.0005*BC + 0.0077*BD –0.0375*CD – 0.0359*A2 – 

0.0537*B2 – 0.0554*C2 – 0.0757*D2                                                                                                                          (6) 
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Actual and Predicted Values  

Figure 3 presents the relationship between the actual and predicted values of cathodic 

current efficiency, specific energy demand, and powder productivity. This graph 

illustrates that the constructed models are adequate because the residuals in 

expectation for each response are minimized. This is evident as the residuals tend to 

cluster close to the diagonal line, indicating that the model accurately represents the 

response within the scope of the examined factors.  

   
(a)                                                                                            (b)  

 
        (c) 

Fig. 3 Scatter diagrams of (a) cathodic current efficiency, (b) specific energy 

demand, and (c) powder productivity. 

         
(a)                                                                                            (b) 

 
      (c) 

Fig. 4 Residual plots of the models of (a) cathodic current efficiency, (b) 

specific energy demand, and (c) powder productivity. 
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Figure 4 shows the normal plot of residuals of cathodic current efficiency, specific 

energy demand, and powder productivity. The majority of the points fall either 

directly on the straight line or very near to it, with only a few outliers. This 

demonstrates that the models are indeed efficient and accurate. 

 

The perturbation plots illustrating how process parameters impact process responses 

can be found in Fig. 5. Perturbation plots highlight the effect of varying each 

parameter (temperature, stirring rate, distance, current density) on cathodic 

efficiency, energy demand, and productivity. For instance, current density and 

temperature show a significant impact on efficiency and energy demand. From Fig. 

5, it was concluded that these plots demonstrate that current density and temperature 

are among the most influential parameters for optimizing electrowinning. This 

finding guides the focus on controlling these parameters precisely to achieve targeted 

efficiencies and productivity with minimal energy.  

 
(a)                                                                                             (b) 

 

 
(c) 

Fig. 5 Perturbation of the models of (a) cathodic current efficiency, (b) specific 

energy demand, and (c) powder productivity. 

 

Effect of process parameters interactions on the process responses 

One key difference between the statistical approach and experimental technique is 

the ability of the statistical approach to demonstrate how interactions between 

process parameters affect process responses. The contour and 3D surface plots are 

shown from Figs. 6 - 17. Contour plots visually represent the effect of different 

variables on a flat surface, while 3D surface plots take this representation a step 

further by adding shape to the color and contour information provided in the contour 

plot. Figs. 6 - 9 show the interactions between temperature and stirring rate, 

temperature and distance, and other parameters on responses like cathodic current 

efficiency, energy demand, and productivity. Higher temperatures and moderate 
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stirring rates are linked to improved efficiency and productivity. From these figures 

it was concluded that interaction plots suggest that the best results occur under 

specific parameter combinations. For instance, balancing higher temperatures with 

moderate stirring enhances process efficiency. This highlights the need to adjust 

parameters concurrently rather than in isolation to achieve desired outcomes.  

 

 

 
Fig. 6 Contour shows the effect of A and B on different responses. 

 

In Fig. 7 the 3D surface plot illustrates the effect of temperature and stirring rate on 

cathodic current efficiency. The efficiency increases as the temperature and stirring 

rate rise, with the highest efficiency observed at higher temperatures and moderate 

stirring rates. This indicates that both parameters play a crucial role in optimizing 

the electrochemical process.  

 

Also in this 3D surface plot, the interaction between temperature (A) and stirring rate 

(B) is shown and focuses on how they affect the specific energy demand (kWh/Kg). 

The plot suggests that specific energy demand varies with changes in both 

temperature and stirring rate. The contours at the base highlight that higher specific 

energy demand is observed at lower temperatures and higher stirring rates, as 

indicated by the color gradient shifting from green to yellow-red points on the surface 

likely representing key experimental data points or specific observation 3D surface 

plot, the interaction between temperature (A) and stirring rate (B) is explored plot 

shows that productivity (g/Ah) increases as the temperature and stirring rate change. 

The contour at the base of the plot reveals that the optimal combination of higher 

temperatures and moderate stirring rates leads to the highest productivity. The color 

gradient also suggests that productivity increases as the surface color shifts from 

green to yellow and orange. Points on the plot indicate actual data values, where those 

above or below the surface represent the difference between observed and predicted 

values.  
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Fig. 7 D Surfacelots show the effect of A and B on different responses. 

 

 

 
 Fig. 8 Contour shows the effect of A and C on different responses. 

 

In Fig. 9, The 3D surface plot shows how temperature and the distance between 

electrodes affect cathodic current efficiency. As the temperature rises, the efficiency 

improves, especially when the distance is set to a lower level, the results highlight that 

maintaining an appropriate distance, along with a controlled temperature, is essential 

for achieving higher efficiency levels in the process. This 3D surface plot illustrates 

the interaction between temperature (°C), distance (cm), and specific energy demand 

(KWh/kg). The graph shows that as the temperature increases, the specific energy 

demand decreases. Although the distance parameter has a less significant impact, it 

still has a measurable effect on energy demand. Key data points are highlighted to 

emphasize the trends across various conditions. This model helps in understanding 
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how these variables interact and provides insights into optimizing parameters for 

improved efficiency. Also, the 3D surface plot demonstrates the effect of temperature 

(A) and distance (C) on the productivity. The highest productivity values are observed 

at intermediate temperature and distance levels, as shown by the peak in the surface. 

The design points marked above and below the surface suggest that the experimental 

data align well with the model predictions, confirming that productivity increases as 

both parameters are optimized within a specific range. This 3D surface plot highlights 

the relationship between temperature (A) and distance (C) on productivity (g/Ah) 

under controlled conditions. The plot shows a curvature, indicating that increasing 

the temperature while keeping the distance at certain levels improves productivity. 

However, excessive changes in either parameter led to a decline in productivity, 

suggesting an optimal range for maximizing efficiency.  

 

 
 

 
Fig. 9 3D surface plots show how effect of A and C on different responses. 

 

Figures 10 - 15 illustrates additional parameter effects, such as current density with 

distance and stirring rate with current density. These plots reveal that lower distances 

and higher current densities significantly enhance efficiency, while specific stirring 

rate and current density combinations reduce energy demands. It was concluded that 

the contour plots reveal that certain parameter ranges lead to maximum efficiency 

and productivity. For example, decreasing the distance between electrodes while 

maintaining moderate stirring boosts the rate of manganese deposition. These 

insights provide specific guidelines for parameter tuning.  
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Fig. 10 Contourshows effect of A and D on different responses. 

 

In Fig. 11, this plot highlights the relationship between temperature and current 

density in influencing cathodic current efficiency. As the temperature and current 

density increase, there is a noticeable rise in efficiency, reaching optimal values in 

specific ranges. This finding underscores the importance of balancing both 

temperature and current density to optimize the electrochemical process. This 3D 

surface plot shows the relationship between temperature (A: °C) and current density 

(D: A/m2) on specific energy demand (kWh/kg). The plot suggests that as temperature 

increases, the specific energy demand tends to decrease, indicating that higher 

temperatures lead to lower energy consumption. In contrast, as current density 

increases, the specific energy demand generally rises, meaning higher current 

densities require more energy. The interaction between these two variables is visually 

represented by the color gradient, with blue indicating lower specific energy demand 

and red representing higher values. This visualization helps in identifying the optimal 

temperature and current density combination for minimizing energy use. In this 3D 

surface plot, the interaction between temperature (A) and current density (D) is 

examined. The plot suggests that productivity (g/Ah) increases with higher 

temperature and lower current density. The elliptical contour at the base of the plot 

shows this relationship, where the optimal combination of higher temperature and 

moderate current density results in the highest productivity levels.  

 

Fig. 13 shows a 3D surface plot that visualizes the interaction between stirring rate 

(B) and distance (C) on cathodic current efficiency. The efficiency increases with 

lower stirring rates and greater distances between electrodes, achieving a peak 

efficiency above 85%. This 3D surface plot shows the relationship between stirring 

rate (B: rpm) and distance (C: cm) on specific energy demand (kWh/kg). The plot 

reveals that as the stirring rate increases, the specific energy demand tends to rise, 
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indicating that higher stirring rates require more energy. On the other hand, the 

effect of distance on specific energy demand is less pronounced, but it still influences 

the energy demand, with certain distances leading to lower or higher energy 

consumption depending on the stirring rate. The contour lines and color gradient on 

the plot help visualize these interactions, showing how varying combinations of 

stirring rate and distance impact energy and efficiency.  

 

 
 

 
Fig. 11 3D surface plots the show effect of A and D on different responses. 

 

 
 

 
Fig. 12 Contour shows the effect of B and C on different responses. 
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Fig. 13 3D surface plot shows the effect of B and C on different responses. 

 

 

 
Fig. 14 Contour shows the effect of B and D on different responses. 

 

The 3D surface plot shown in Fig. 15 illustrates the relationship between stirring rate 

(B) and current density (D) on cathodic current efficiency. Higher current density 

and lower stirring rates lead to an increase in efficiency, with a maximum close to 90 

%.  
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Fig. 15 3D surface plots the show effect of B and D on different responses. 

 

 
 

 
Fig. 16 Contour shows the effect of C and D on different responses. 

 

This 3D surface plot shows the variation in cathodic current efficiency (%) as a 

function of distance (C) and current density (D). The graph suggests that higher 

current density and a smaller distance between electrodes result in higher efficiency, 

peaking at around 90 %. The design points show values that are both above and below 
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the surface, indicating the spread of data used for the optimization process as shown 

in Fig. 17.  

 
 

 
Fig. 17 3D surface plots show the effect of C and D on different responses. 

 

The previous figures show how temperature, stirring rate, and process responses are 

related. It is observed that increasing both the temperature to 40 and 50 ℃ and the 

stirring rate up to 100 rpm can enhance the cathodic current efficiency. Also 

increasing the distance between the anode and the cathode can enhance the cathodic 

current efficiency and powder productivity. According to Fig.10 and Fig.11, the 

highest cathodic current efficiency occurs at a high current density, but significantly 

decreases at lower current densities and temperatures as happened in an optimization 

of packed bed electrolysis of zinc anode casing of spent dry cell batteries. 

 

Optimization of the Packed Bed Electrolysis Process 

In this research, the optimization methods used involved merging the objectives into 

a single desirability function to predict the desired outcomes for each factor and 

response through numerical and graphical techniques. The goals of optimization can 

be utilized to maximize, minimize, or achieve the desired value of the response 

variable, [33]. 

 

Single Response Optimization 

The established models were utilized to optimize the input parameters of the packed 

bed electrolysis process. Each model was independently optimized without 

considering the other responses. Table 11 shows the single response optimization 

criteria for input/output process parameters. This table displays the relative 

significance of each factor that has been chosen.  
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Table 11 Single response optimization criteria for input/output process 

parameters. 
Criteria Parameters Responses 

A,℃ B, rpm C, cm D, A /m2 CE,% SE, Wh/Kg PP,g/Ah 

1 Min (+++) Min (+++) Min (+++) Min (+++) Max (+++) _ _ 

2 Min (+++) Min (+++) Min (+++) Min (+++) _ Max (+++) _ 

3 Min (+++) Min (+++) Min (+++) Min (+++) _ Min (+++) _ 

4 Min (+++) Min (+++) Min (+++) Min (+++) _ _ Max(+++) 

5 Min (+++) Min (+++) Min (+++) Min (+++) Min (+++) _ _ 

6 Min (+++) Min (+++) Min (+++) Min (+++) _ _ Min (+++) 

Numerical Optimization 

In this study, four optimization criteria were selected. A multi-criteria optimization 

approach was utilized to optimize the input and output process parameters for each 

criterion.  

Graphical Optimization 

 
(a)                                 (b)                                    (c) 

 
       (d)                                    (e)                                       (f) 

Fig. 18 Overlay plots show the region of the optimal process conditions of: 

(a) criteria (1)                                      (d) criteria (4) 

(b) criteria (2)                                      (e) criteria (5) 

(c) criteria (3)                                       (f) criteria (6) 

 

Graphical optimization with multiple responses identifies specific areas where 

requirements meet the proposed criteria simultaneously. By overlaying critical 

response contours on a plot, it becomes feasible to visually search for the optimal 

compromise. Therefore, when dealing with multiple responses, it is advisable to 

conduct numerical optimization first. The graphical optimization showcases the 

achievable response values within the factor space. The overlay plots in Fig. 18 

demonstrate how graphical optimization enables the visual selection of the best 

process conditions based on specific criteria. The results of the graphical optimization 

are shown in overlay plots, which are very convenient for quickly choosing the 
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parameter values for the packed bed electrolysis process to achieve desired response 

values. The shaded yellow areas on the overlay plot in Fig. 18 indicate the regions that 

satisfy the specified criteria. 

 

The results of the graphical optimization are shown in overlay plots, which are very 

convenient for quickly choosing the parameter values for the packed bed electrolysis 

process to achieve desired response values. The shaded yellow areas on the overlay 

plot in Figure 18 indicate the regions that satisfy the specified criteria. The overlay 

plot visually pinpoints the specific parameter combinations where all criteria 

converge, indicating the most balanced operating conditions. This region offers 

practical ranges for multi-criteria optimization, ensuring efficient resource use and 

effective manganese recovery.  

 

2 Desirability 

The desirability function method is widely used in modern industrial applications to 

optimize multiple response processes by identifying the optimal working conditions 

that yield the most desirable outcomes. The primary objective of the optimization 

method is to find a set of conditions that satisfy all goals, rather than just achieving a 

desirability value of 1.0, [25]. Table 12 shows the optimization criteria and 

optimization results using numerical multiple responses. The desirability values and 

graphs of the six optimization criteria are shown in Fig.19. These desirability values 

confirm the model's strength in predicting conditions that optimize the 

electrowinning process across multiple responses. Achieving high desirability 

indicates that the identified parameter ranges effectively satisfy all process objectives, 

including efficiency, productivity, and minimal energy use.  

 

Table 12 The optimization criteria and optimization results using numerical 

multiple responses. 
Criteria Parameters Response Desirability 

A B C D CE SE PP 

1 30 29.511 4.062 389.651 79.474 10.877 0.738 0.712 

2 30 0 4.627 380.120 77.843 11.186 0.72 0.763 

3 30 0.002 3 200.156 59.670 6.357 0.545 1 

4 31.862 36.403 5.056 315.225 78.220 9.935 0.761 0.695 

5 30 0.043 3.004 200.001 59.675 6.357 0.545 1 

6 30.016 0.974 3 200.001 59.751 6.353 0.546 0.999 

 

3 Validation of the Experiments 

Tables 13, 14, and 15 were carried out to evaluate the reliability of the statistical work. 

As shown in Tables 13,14, and 15, all values are in the range of engineering errors 

and accepted in the industry. Also, Fig.20, Fig.21, and Fig.22 show these values. The 

percentages of error can be calculated from the following equation : 

 

Error,[𝑬] =
𝑨𝒄𝒕𝒖𝒂𝒍 𝑽𝒂𝒍𝒖𝒆−𝑷𝒓𝒆𝒅𝒊𝒄𝒕 𝑽𝒂𝒍𝒖𝒆

𝑨𝒄𝒕𝒖𝒂𝒍 𝑽𝒂𝒍𝒖𝒆
    x100                                                                   (7)        
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From Figs. 20 - 22 it was shown that the low error rates validate the model’s predictive 

accuracy for key performance metrics. This reliability in prediction underscores the 

model's potential for application in real-world settings, where achieving consistent 

results is critical for scaling the electrowinning process.  

 

 
                  (a)                                            (b) 

 
                (c)                                            (d)                      

 
              (e)                                       (f) 

Fig. 19 Desirability graphs of the models, (a) criteria (1), (b) criteria (2), (c) 

criteria (3), (d) criteria (4), (e) criteria (5) and (f) criteria (6). 

Table 13 Validation for the cathodic current efficiency response. 
Run A, 

°C 

B, 

Rpm 

C, 

cm 

D, 

A/m2 

Actual 

Value 

Predict 

Value 

Error 

[E]% 

6 30 100 10 400 79.2 79.12 0.1 

8 40 100 10 200 82.93 83.4 0.5 

9 40 100 6.5 400 84.56 87.83 3.8 

15 40 200 10 400 82.85 83.36 0.6 

16 40 0 10 400 79.2 81.27 2.6 

18 50 100 10 400 85.85 88.85 3.4 

24 40 100 10 400 91.38 84.85 7.1 
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Fig. 20 Validation for the cathodic current efficiency response. 

 

Table 14 Validation for the specific energy demand response. 
Run A, 

° C 

B, 

Rpm 

C, 

Cm 

D, 

A/m2 

Actual 

Value 

Predict 

Value 

Error 

[E]% 

6 30 100 10 400 12.07 12.58 4.2 

8 40 100 10 200 7.76 7.61 1.9 

9 40 100 6.5 400 10.68 10.89 1.9 

15 40 200 10 400 9.82 9.57 2.5 

16 40 0 10 400 11.70 10.91 6.7 

18 50 100 10 400 8.70 9.80 12.6 

24 40 100 10 400 10.68 10.26 3.9 

 

 
Fig. 21 Validation for the cathodic current efficiency response. 

 

Table 15 Validation for the productivity response. 
Run A, 

° C 

B, 

rpm 

C, 

cm 

D, 

A/m2 

Actual 

Value 

Predict 

Value 

Error 

[E]% 

6 30 100 10 400 0.812 0.8010 1.35 

8 40 100 10 200 0.85 0.8390 1.29 

9 40 100 6.5 400 0.8670 0.8879 2.41 

15 40 200 10 400 0.85 0.8535 0.411 

16 40 0 10 400 0.812 0.8295 2.155 

18 50 100 10 400 0.875 0.9177 4.88 

24 40 100 10 400 0.937 0.8952 4.46 
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Fig. 22 Validation for the productivity response. 

  

CONCLUSIONS  

1. Statistical modeling and optimization of the electrowinning process were 

carried out to recycle spent ZnMnO2 batteries, to produce high-quality electrolytic 

zinc powders. The investigation yields the following conclusions: 

2. The suggested models effectively forecast responses within the specified 

parameters of the process being applied. 

3. The current density, stirring rate, temperature, the distance between the 

anode and the cathode, and the two-level interactions of temperature and current 

density are the most significant model terms associated with cathodic current 

efficiency. 

4. The optimum conditions of the electrowinning process are temperature 

electrolyte =40℃, stirring rate=100 rpm, the distance between the anode and the 

cathode= 10 cm, and current density =400 A/m2. 

5. RSM can be considered a powerful tool in the optimization of the electrolysis 

of paste of the ZnMnO2 of spent primary batteries. 
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