
81 

 

 
 

INVERSE KINAMATICS ANALYSIS AND REAL TIME CONTROL 

OF 5-DOF ROBOT ARM USING PID AND FUZZY LOGIC 

CONTROLLERS WITH FRICTION MODELING 
  

Abdelwahab Sabreen A.1, Said Fatma El-Zahraa2, Hassan Hassan A.3  

and Gouda Mohamed M.4 

 
1, 3 Production Technology Department, 2, 4 Electronics Department,  

Faculty of Technology and Education, Helwan University, Cairo, Egypt.  
 

ABSTRACT 

Robots represent a vital base in modern and future industry. Hence, robot motion 

control is an important area for research. In this work, inverse kinematics analysis 

and real-time control of a 5-DOF robot arm are developed and simulated to reach 

specified positions with minimal error. Rules for analyzing inverse kinematics are 

developed for the robot arm using the geometric approach, along with analyzing DC 

motor models, and friction torque equations are introduced. Two control techniques 

were discussed: a PID controller is initially used, followed by the implementation of 

a fuzzy logic controller (FL). A FL controller is designed based on Mamadani pro-

Max inference. Four defuzzification methods (BOA, MOM, SOM, and COG) are 

compared. Simulations were conducted using Matlab and Simulink. The methods 

BOA, MOM, and SOM are similar in giving optimum results. The results of both 

controllers were compared. FL outperforms PID, with lower rise time, settling time, 

steady-state error, and less overshoot. Real-time control has been performed. The 

system performance was good as the output tracks the reference input signal in a good 

way, and the FL gave better results also. 

 

KEYWORDS 

Fuzzy logic/PID controller, Robot arm, Forward and Inverse kinematics, Open loop 

dynamics, Friction torque. 

 

INTRODUCTION  

The robot arm is made up of a network of connecting links that may move rotational 

and/or translational movements. These links are connected together by joints; hence, 

kinematic chains are formed starting at the base and ending with the end effector; the 

base can be fixed or active. Likewise, the end-effector or gripper is in charge of 

holding and moving objects, [1]. Robot manipulators and their control 

approach must be modeled and studied before being used for precision operations. 

Robot kinematics may be forward or inverse kinematics. Algorithms for control are 

designed to move the robot arm in different directions and positions. Prior knowledge 

of the intended position or angle of each joint is necessary for this, and it can be 

obtained using inverse kinematics when the desired end location is known, and using 



82 

 

forward kinematics when the joint angle is known. It is more difficult to determine 

the required joint angles for a given end-effector location than only forward 

kinematics, [2]. 

 

Many studies have investigated manipulator robots as a developing field. Kinematic 

analysis of industrial and educational robot arms, including the PUMA 560, SCARA, 

and SG5-UT processors, have been studied in some publications, [3 - 5]. Other control 

problems have been studied by the researchers. As in Chakraborty, B. et al.'s study, 

[6], which examined a 6-DOF robot manipulator's trajectory tracking in a dynamic 

environment. The tracking of end effector of robot manipulators against dynamical 

uncertainties is discussed by Yilmaz B. Melih et al., [7]. An overview of the state-of-

the-art developments in collaborative robotic manipulation from the perspectives of 

modeling, control, and optimization in multi-robot systems is investigated by Feng, Z 

et al., [8]. Robust hybrid impedance control that adapts to the changing environment 

for robot manipulators was the focus of Li, Jianfei et al., [9]. Adaptive manipulator 

control in changing environments was the subject studied by Chen J. et al., [10]. The 

researchers, [11], addressed the use of three controllers: a supervisory controller and 

fuzzy logic controller, and the PID controller as a reference baseline, where a 5DOF 

robot arm is modeled and controlled to achieve the desired position. The findings of 

the fuzzy logic controller and fuzzy supervisory controller are compared to those of 

the PID controller, they showed better performance. 

 

Other studies in control technology have focused on PID and FL controllers, [5, 12 - 

15]. A brief summary of some of the literature will be provided. Delibes, [16], used 

PID and FL control algorithms to control the position of a DC motor. Both controllers 

were implemented using the Labview application, and the application of these 

controllers produced a target position with a 0.4 percent overrun and an 80 msec 

settling time for FL, compared to a 4 percent overshoot and a 120 msec settling time 

for PID. Delibes focused on the effect of FL on the operation of a robot movement 

simulation controlled by a digital controller. 

 

The authors, [17] described a fuzzy supervisory method for fine-tuning PID settings. 

By using this technique, the parameters supplied by Ziegler-Nichols (ZN) tuning 

performed better. The study proved that FL controller performed better in 

simulations. Path planning was done using FL controller and genetic algorithms by 

Bang V. K. et al., [18]. FL controller was used to optimize the control of an automated 

arm, showcasing its practicality and efficiency in enhancing mechanical arm motion. 

For each sampling, Yung Tao et al., [19] evaluated the effectiveness of the PID, fuzzy, 

and fuzzy PID techniques to ensure the consistency of the transponder path that was 

generated. A dependable and effective fuzzy PID performance was found through 

experiments. 

  

For 2-DOF robot manipulators, a neural fuzzy controller (NFC) was used by Jaffa et 

al., [20] to regulate the position of an automated arm. Through hybrid learning, the 

neural network regulated the information input and output. The outcomes of the 

simulation demonstrated that NFC outperformed PID in controlling the automated 

arm path. Two distinct control strategies were used by Baghli Z.F. et al., [21], to 

operate a 2-DOF arm manipulator robot: smart adaptive fuzzy PID and single-output 



83 

 

control based on the traditional PID model. They discovered that, compared to 

traditional PID controllers, fuzzy PID was more stable and yielded superior 

outcomes. In their study, Nasr and Ayman, [22], used Matlab/Simulink to simulate a 

PID controller and control the system to a desired joint angle position. Their findings 

showed that small variations in the robot arm's initial joint angle positions led to 

varying desired joint angle positions, requiring modifications to the PID controller 

gains to avoid oscillation and overshoot caused by changes in parameter values. 

  

Three different position control strategies were developed by Usman Kabir et al., [23], 

using a 3-DOF robot manipulator; PID, PD, and FLC controllers were installed in 

each link of the robot manipulator; performance comparisons based on transient and 

steady-state characteristics showed that all three controllers tracked the setpoint with 

a small steady-state error; PID and PD controllers performed better in terms of 

settling and rise times, whilst FLC had less overshoot. In [24], the design of a self-

tuning particle swarm optimization (PSO) fuzzy PID positioning controller is 

described. PSO optimizes the quantization and scaling factors in the fuzzy PID 

algorithm to maximize the manipulator's robustness and accuracy. The findings 

demonstrate a notable improvement in the system's follower characteristics, tracking 

accuracy, and transient response speed. 

 

Controlling a 4-DOF robot arm was the subject of a comparative study by Mohamed 

Fawzy et al., [25], they looked at the control of the arm robot using FLC and the 2-

DOF PID controllers in great detail. Matlab/Simulink was used for the simulation. 

First, a desired model was constructed, and 2-DOF PID and FLC were devised for 

each joint of the arm robot. A reset mechanism was used to lessen overshoot and speed 

up response times. In comparison to the 2-DOF PID controller, the results showed 

that the FLC performed optimally, offering rapid response, a better rising time, and 

no overshoot. 

 

A 5-DOF robot arm manipulator employing PID and fuzzy control was presented by 

Masoud Solouki et al., [26]. Although PID is a common controller for linear systems, 

fuzzy rules performed better than conventional techniques. Amin Rashidifar M. et 

al., [27], concentrated on enhancing the control of a 5-DOF robot arm; they 

implemented a PID controller and compared it with a fuzzy logic controller and fuzzy 

supervisory controller, FLC performed better than PID controller. In [28], A study is 

done on the performance of PID and fuzzy controllers for 6 DOF arm manipulator 

position control using different defuzzification strategies. FLC outperforms PID 

controllers in terms of overshot, however both FL and PID controllers are able to 

converge to the intended output.  Dzulhizzam Bin Dulaidi, [29] controlled a 6-DOF 

robot arm using a FL controller and evaluated its performance against a PID 

controller; their investigation revealed that the FL controller responded more 

effectively than the PID controller in terms of overshoot, time response and steady-

state error.  

 

Separate NFCs for robot arm trajectory tracking were created by Jafar Tavoosi et 

al., [30], the NFC performed better in trajectory control than the PID controller, 

according to simulation data. A DC motor's direction was controlled by FLC and PID 

control algorithms, according to Jamal AbdAltayef et al., [31], both of the PID-FLC 



84 

 

controllers' architectural designs were derived from a Labview system; the FLC 

maintained the goal location more effectively than the PID controller, according to 

the results. A robotic arm was controlled by Yong-Lin Kuo et al., [32] using PID, 

fuzzy, and fuzzy PID systems, lower steady-state error was demonstrated by the 

fuzzy-PID controller. 

 

1.2 Problem Statement 

As robotic tasks become more intricate, there is a growing need for an intelligent, 

robust, computationally efficient, easy-to-install, and analyze controller to optimize 

and enhance the performance of industrial robot arms. Modeling, kinematic analysis, 

and real time control of 5-DOF robot arm are studied in this work using PID and 

FLC controllers to minimize the difference between the required and actual positions 

of robot joints or end-effector, meeting specific criteria such as reducing overshoot, 

minimizing rising time, eliminating steady-state error, and reducing the load on each 

joint motor to overcome system nonlinearity. Both controllers' performance will be 

evaluated by investigating the forward and inverse motion equations and dynamics 

of the robot arm including the friction effect, followed by the development, 

simulation, implementation, and assessment of the controllers of the robot arm 

system. Matlab and Simulink software packages will be used for dynamics and 

control simulation of the robot arm to build and test the practical model, and save 

costs and time. 

 

This paper consists of eight sections and is outlined as follows: The first section is the 

introduction; the second is the proposed mechanical design and working principle of 

the robot arm. The 3rd section is the robot arm kinematic model development. The 

fourth section is the DC servo motor model development, and Simulink model 

development of the robot arm, mentioning friction equations. The fifth section is 

showing the inverse kinematics analysis and simulation of a 5-DOF robot arm using 

Matlab. And robot arm prototype and control circuit are presented in Section 6. 

Control system design, including real-time control, is mentioned in Section 7, and the 

conclusions are given in Section 8, followed by references. 

 

1. PROPOSED MECHANICAL DESIGN AND WORKING PRINCIPLE OF 

ROBOT ARM 

The mechanical design of the robot arm is a manipulator that mimics the functions 

of a human arm, [33 - 35]. The robot arm is composed of five links connected by 

rotational joints to enable movement. Each joint provides the robot with a certain 

degree of mobility, known as degrees of freedom. The manipulator is considered a 

part of a kinematic chain, [36]. The robot's base is connected to one end of the chain, 

while the other end is attached to a tool such as a hand, gripper, or end effector. 

 

1.1 Mechanism Design in SolidWorks 

SolidWorks is selected for creating the robot arm due to its capability for 

simultaneous design and visualization, along with its ability to assess collisions and 

interferences. Given that each link relies on the previous one, the design of the robot 

arm must commence at the base and end at the gripper. Thus, the base (Link 0) was 

the initial component designed, followed by Links 1, 2, 3, and so forth. The proposed 

material for the robot arm was wood sheet, with a thickness of 5 mm, considering a 



85 

 

load of 150 mg that the robot arm could support and manipulate. The arm features 

five rotating joints and a movable grip. Fig. 1 depicts a SolidWorks model of the robot 

arm. 

 

 

Fig. 1 Robot arm model in SolidWorks. 

 

2.  ROBOT ARM KINEMATIC MODEL DEVELOPMENT  

Kinematics studies the motion of a body without considering its mass or the forces 

acting on it. In kinematics, position, velocity, acceleration, and all higher-order 

derivatives of position variables are studied, [37]. The robot arm is a serial-link 

manipulator that comprises a chain of mechanical links and joints. Each joint can 

move its outward neighboring link with respect to its inward neighbor. One end of 

the chain is the base, which is generally fixed, and the other end is free to move in 

space and holds the tool or end-effector. As the arm robot has multiple joints, the 

position of the end-effector will be a complex function of the state of each joint. 

 

2.1 Forward Kinematics Model Development 

Calculating the position and orientation of the end-effector in terms of the joint 

variables is known as forward kinematics (FK). To obtain the FK equations for the 

manipulator, the following steps must be done: Obtain the Denavit-Hertenberg (D-

H) parameters, [37 - 39]: D-H parameters are the most common method for 

describing the manipulator FK. A coordinate frame is attached to each joint to 

determine the D-H parameters, as shown in Fig. 2, where the colors red and blue 

denote all things associated with links i−1 and i, respectively. The sequence in which 

the elementary transforms are applied is shown by the numbers in circles. Where the 

four quantities( 𝜽𝒊, di, ai, 𝜶𝒊(  are the parameters of link i and joint i. The parameters 

are given the following names: 𝜽𝒊 (link angle) is the angle between xi-1 to xi measured 

about zi, 𝒅𝒊 (link offset) is the distance from xi-1 to xi, measured along zi, 𝒂𝒊 (link length) 

is the distance from zi to 𝒛𝒊−𝟏 measured along xi-1, and 𝜶𝒊 (link twist) is the angle 

between zi-1 to 𝒛𝒊  measured about xi. For a revolute joint 𝜽𝒊 is the joint variable and 

𝒅𝒊 is constant, while for a prismatic joint di is variable, and 𝜽𝒊 is constant. In many of 

the formulations that follow a generalized coordinate 𝒒𝒊 is used. 

 

The FK [40] shows the transition from one frame to the next, starting at the base and 

ending at the end-effector. Based on Fig. 2 using the D-H method, where each Ti 



86 

 

homogeneous transformation between the two adjacent frames is depicted as the 

product of four basic transformations, as in Equation (1), [15]. 

Ti = Rot (z, 𝜽𝒊) Trans (z, di) Trans (x, ai) Rot (x, ai)                                                     (1)                                                                  

       
Fig. 2 Standard D-H parameters for a link. 

 

Where the notation  Rot (x, αi) stands for rotation about the xi axis by i , Trans (x, 

ai)  is the translation along the xi axis by a distance ai, Rot (z, 𝜽𝒊) represents rotation 

by θi about the zi axis, and Trans (z, di) represents translation along the zi axis by a 

distance di. Hence, Equation (1) is rewritten. And the general transformation matrix 

is the standard D-H paramter matrix i-1Ti as in Equations (2) and (3). 

 

i-1Ti = [

𝐜𝐨𝐬𝛉𝐢 −𝐬𝐢𝐧𝛉𝐢 𝟎
𝐬𝐢𝐧𝛉𝐢 𝐜𝐨𝐬𝛉𝐢 𝟎

𝟎
𝟎

𝟎
𝟎

𝟏
𝟎

𝟎
𝟎
𝟎
𝟏

] [

𝟏 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎
𝟎

𝟎
𝟎

𝟏
𝟎

𝟎
𝟎
𝐝𝟏

𝟏

] [

𝟏 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎
𝟎

𝟎
𝟎

𝟏
𝟎

𝐚𝐢

𝟎
𝟎
𝟏

] [

𝟏 𝟎 𝟎
𝟎 𝐜𝐨𝐬𝛂𝐢 −𝐬𝐢𝐧𝛂𝐢

𝟎
𝟎

𝐬𝐢𝐧𝛂𝐢

𝟎

𝐜𝐨𝐬𝛂𝐢

𝟎

𝟎
𝟎
𝟎
𝟏

]         (𝟐) 

i-1Ti = [

𝐜𝐨𝐬𝛉𝐢 -𝐜𝐨𝐬𝛂𝐢   *   𝐬𝐢𝐧𝛉𝐢 sinαi*sinθi 𝐚𝐢*𝐜𝐨𝐬𝛉𝐢

𝐬𝐢𝐧𝛉𝐢 𝐜𝐨𝐬𝛉𝐢 *cosαi 𝐬𝐢𝐧𝛂𝐢 𝐚𝐢*𝐬𝐢𝐧𝛉𝐢

0 𝐬𝐢𝐧𝛂𝐢 𝐜𝐨𝐬𝛂𝐢 𝐝𝐢

0 0 0 1

]                                                 (3)                                                          

 

The transformation matrix between each two successive frames can be formulated as 

follows: After each link's D-H coordinate system has been constructed, a 

homogeneous transformation matrix may be simply created using frame{i-1} and 

frame {i}. This transformation consists of five basic transformations as below. Getting 

the last matrix 0T5 means that the position and orientation of the end-effector with 

respect to the base can be extracted. All the 0T1,  1T2, 
2T3, 3T4, and 4T5 will be found as 

in Equations from (4) to (8). 

 

0T1   = [

C𝛉𝟏 𝟎 S𝛉𝟏        𝟎

S𝛉𝟏 𝟎   −C𝜽𝟏 𝟎

𝟎
𝟎

𝟏
𝟎

𝟎       𝐋𝟏

𝟎       𝟏

]                                                                                                      (4) 

  

1T2   =   

⌈
⌈
⌈
 
C𝜽𝟐 −C(𝟗𝟎)𝑺𝜽𝟐 𝟎                 𝑳𝟐C𝜽𝟐

S𝜽𝟐 −C(𝟗𝟎)S𝜽𝟐 −𝑺(𝟗𝟎)C𝜽𝟐 𝑳𝟐C𝜽𝟐

𝟎
𝟎

𝟎
𝟎

𝟏                        𝟎
𝟎                        𝟏 ⌉

⌉
⌉
 
                                                                        (5) 

 



87 

 

2T3   = [

Cθ3 -Sθ3 0 𝐋𝟑Cθ3

Sθ3 Cθ3 0 𝐋𝟑Sθ3

0 0 1 0

0 0 0 1

]                                                                                                      (6) 

3T4   =   [

Cθ4 -Sθ4 𝐋𝟒Sθ4 0

Sθ4 0 −𝐋𝟒cθ4 0

0 1 0 0

0 0 0 1

]                                                                                               (7) 

4T5 =  [

Cθ5 -Sθ5 0 0    

Sθ5 Cθ5 0 𝟎
0 0 0 𝐋𝟓

0 0 0 1

]                                                                                                            (8) 

 

Then 0T5 could be formed by matrix multiplication of the individual link matrices. 

Starting by multiplying 4T5 and3T4, 2T3 which is multiplied by 1T2 and so on until 0T5 

is obtained as in Equations (9) and (10), [4]: 

TH = 0T5 = 0T1.1T2.2T3.3T4.4T5                                                                                                                                                              (9) 

 

And by multiplying the expanded matrices, the total transformation matrix of the 

robot is:  

BTW =0T5= [

𝒏𝒙 𝒐𝒙 ax p
x

𝒏𝒚 𝒐𝒚 ay p
y

𝒏𝒛 𝒐𝒛 az Pz

0 0 0 1

]                                                                                                       (10) 

Where: nx = c12*c345, ny = s12*c345, nz = s345, ox = s12,  oy = − 𝐜𝟑𝟒𝟓, oz =s12 , 

ax = -c12*s345, ay =s12*s345, az = -c345, Px = s12*d5=c12*a4*c34+c12*a3*c3, 

Py = -c12*d5+s12*a4*c34+s12*a3*c3, and Pz =a3*s34+a3*s3+d1. 

Where Px, Py, and PZ are the global coordinates specifying the end effector's spatial 

position.  

𝐩𝐱 : Position of the end-effector in x-direction =   𝐚𝐢𝐂𝛉𝐢 

𝐩𝐲 : Position of the end-effector in y-direction=  𝐚𝐢𝐒𝛉𝐢 

𝐩𝐳: Position of the end-effector in z-direction  

Using Matlab programming to multiply the individual matrices. 

Where:cn :cos(θn) , and sn : sin(θn). 

 
                       (a)                                                                        (b) 



88 

 

Fig. 3 (a) Links coordinates’ diagram of the robot arm, (b) Link coordinate 

diagram of the robot arm aligned in the x-axis. 

 

Using Equation (10), knowing the robot variables (θ1, θ2, θ3, θ4, θ5) then 0T5 will be 

identified, and the position and orientation of the robot wrist relative to the base 

frame will be known. Fig. 3(a) shows the links coordinates’ diagram of the robot arm, 

Fig. 3(b) shows the five linkage arm that start to align to the x-axis. A1, A2, A3, and 

A4 are the lengths of the links, accordingly. 

  

As shown in the Fig. 3, the first link advances by θ1, the second link by θ2, the third 

link by θ3, the fourth link by θ4, and the fifth link by θ5, and the kinematic model with 

frame assignments based on D-H parameters is presented. Table 1 shows the kinetic 

parameters calculated using this model.  While Table 2 shows the link lengths of the 

robot arm. 

 

           Table 1 The link parameters of robot arm manipulator (D-H parameters). 

Joint αi-1 (ᵒ) a i-1(mm) di-

1(mm) 

θi-1(ᵒ) 

1 α1 =90 a1 L1 0 

2 α2 = 0 a2 0 θ2 

3 α3 = 0 a3 0 θ3 

4 α4 =-90 a4 0 θ4 

5 α5 = 0 0 d5 θ5 

6 α6 = 0 0 0 Gripper 

 

Table 2 The link lengths of robot arm 5-DOF 

   Link Joint    Waist   Shoulder  Elbow    wrist 

      Symbol  a1    a2 a3  a4 

Link length (mm)    126.9  122     142 153 

 

3.2 Inverse Kinematics Model Development 

Inverse kinematics (IK) is concerned with the inverse problem of finding the joint 

variable in terms of the end-effector position and orientation. IK is used to determine 

the required joint angles of the robot arm to achieve the specified position and 

orientation of the end-effector. In this work, the geometric approach, [41] was used 

to solve the IK of the 5-DOF robot arm. Figure 4 shows the IK of a planar manipulator 

with 2 links and with 3 links. 

 

X=𝒂𝟏𝒄𝟏+𝒂𝟐𝒄𝟏𝟐                                                                                                               (11)                                                                                                                             

Y=𝒂𝟏𝒔𝟏+𝒂𝟐𝒔𝟏𝟐                                                                                                               (12) 

squaring and adding Equations (11) and (12) then : 

𝒙𝟐+𝒚𝟐 = 𝒂𝟏
𝟐+ 𝒂𝟐

𝟐+ 2𝒂𝟏𝒂𝟐 [𝒄𝟏𝒄𝟏𝟐+𝒔𝟏𝒔𝟏𝟐] = 𝒂𝟏
𝟐 + 𝒂𝟐

𝟐+2𝒂𝟏𝒂𝟐𝒄𝟐                                        (13)                                                                      

C2 =   
𝒙𝟐+𝒚𝟐−(𝒂𝟏

𝟐+𝒂𝟐
𝟐)

𝟐𝒂𝟏𝒂𝟐
                                                                                                        (14)                                                                                                                       

Finally 



89 

 

θ2 = cos-1 [
𝒙𝟐+𝒚𝟐−(𝒂

𝟐
𝟏+𝒂

𝟐
𝟐)

𝟐𝒂𝟏𝒂𝟐
]                                                                                                (15)                                                                                                           

For triangle OEC :𝒓𝟐 = 𝒙𝟐 + 𝒚𝟐                                                                                  (16)                                                                              

Using parallellelogram low [42] as in Fig. 5: 

𝒓𝟐 = 𝒂𝟏
𝟐 + 𝒂𝟐

𝟐 − 𝟐𝒂𝟏𝒂𝟐 𝐜𝐨𝐬 𝛂                                                                                      (17)  

 

 

        
(a)                                                                    (b) 

Fig. 4 Inverse kinematics of planar manipulator: (a)  with 2 links, and (b) with 3 

links. 

 
Fig. 5 Parallellelogram low explanation. 

𝐜𝐨𝐬 𝛂 =
𝒂𝟏

𝟐+𝒂𝟐
𝟐−𝒓𝟐

𝟐𝒂𝟏𝒂𝟐
                                                                                                        (18)                                                                                                                          

(or directly using cosine rule) 

Since θ2 = П − α                                                                                                         (19)                                                                                                           

Cos θ2 = - cos α                                                                                                           (20)                                                                                                                            

Cos θ2 =  
𝒙𝟐+𝒚𝟐−(𝒂𝟏

𝟐+𝒂𝟐
𝟐)

𝟐𝒂𝟏𝒂𝟐
                                                                                                (21)  

θ2 = cos-1 [
𝒙𝟐+𝒚𝟐−(𝒂

𝟐
𝟏+𝒂

𝟐
𝟐)

𝟐𝒂𝟏𝒂𝟐
]                                                                                              (22)                                     

For triangle OEB: 

𝐭𝐚𝐧𝜷 = 
𝒂𝟐 𝐬𝐢𝐧 ɵ𝟐

𝒂𝟏+𝒂𝟐 𝐜𝐨𝐬 ɵ𝟐
                                                                                                        (23) 

 

For triangle OEC: 

𝐭𝐚𝐧ϒ = 
𝒚

𝒙
                                                                                                                        (24) 

𝜝 =𝐭𝐚𝐧−𝟏 𝒂𝟐 𝐬𝐢𝐧 ɵ𝟐

𝒂𝟏+𝒂𝟐 𝐜𝐨𝐬 ɵ𝟐
                                                                                                     (25) 

andϒ = 𝐭𝐚𝐧−𝟏 𝒚

𝒙
                                                                                                              (26) 



90 

 

using θ = ϒ −  𝜷   ,  θ1 =  𝐭𝐚𝐧−𝟏 𝒚

𝒙
 - 𝐭𝐚𝐧−𝟏 𝒂𝟐 𝐬𝐢𝐧 ɵ𝟐

𝒂𝟏+𝒂𝟐 𝐜𝐨𝐬 ɵ𝟐
                                                   (27)                 

and: 

θ2 = cos-1 [
𝒙𝟐+𝒚𝟐−(𝒂

𝟐
𝟏+𝒂

𝟐
𝟐)

𝟐𝒂𝟏𝒂𝟐
]                                                                                                (28) 

End effector pose is given by : E (x, y, ϕ)                                                                    (29) 

𝒑𝟐𝒙 = 𝒙 − 𝒂𝟑 𝐜𝐨𝐬 𝛟                                                                                                        (30) 

𝒑𝟐𝒚 = 𝒚 − 𝒂𝟑 𝐬𝐢𝐧𝛟                                                                                                        (31) 

As 𝒑𝟐(𝒑𝟐𝒙, 𝒑𝟐𝒚) is now known, and the remaining system is 2R – planar manipulator, 

then substituting ɵ1 and ɵ2 from Equations (27) and (28) in to Equation (32). 

θ1+ θ2+ θ3 = 𝛟                                                                                                                 (32) 

θ3= 𝛟 – (θ1+ θ2 )                                                                                                             (33) 

thus θ1 , θ2 and θ3 are all kown. 

θ4 = 𝜽𝟐𝟑𝟒 - 𝜽𝟐 – θ4                                                                                                          (34) 

θ5 = 𝒄𝟐𝟑𝟒 .  θ2 – 2 atan ( 𝑿𝟓𝒀 , 𝒀𝟓𝑿 )                                                                              (35) 

Hence, by kowing θ1, θ2, θ3, θ4, θ5 the joints’ positions are known. 

 

4. SIMULINK MODEL DEVELOPMENT OF ROBOT SYSTEM WITH FRICTION 

4.1 Friction in 5-DOF Robot Arm  

Friction has a major impact on how well a 5-DOF robot arm performs, how accurate 

the control is, and how much energy it consumes. Because friction forces are 

nonlinear and the robot arm is made up of numerous joints and connections, 

simulating friction in robotic systems can be challenging. The primary forms of 

friction that impact a robotic arm's functionality are: 1) Static friction (the resistance 

to motion that needs to be overcome). 2) Dynamic friction (the resistance to motion 

that arises after it has begun). 3) Viscous friction: proportionate to velocity, in which 

the moving part's velocity causes the frictional force to rise. 4) The Stribeck effect is 

a nonlinear friction phenomenon in which the frictional force decreases at small 

velocities and increases with speed as it increases. 

 

The joints, which have moving components like motors, gears, and bearings, are 

where friction mostly arises. Complex friction forces act on the robotic arm's joints 

which enable movement and rotation. Static friction, viscous friction, and the 

Stribeck effect can all be used to quantitatively represent friction for each joint. 

Assume, for simplicity, that the robot joints are mainly rotational; however, in certain 

situations, linear friction may also be relevant. Next, a combination of these friction 

models can be used to express the total friction torque (τf) in a joint as in Equation 

(36): 

τf = τc sin (𝜽̇)+b𝜽̇ +( τs−τc) e− ( ∣ 𝜽̇∣ 

𝜽̇𝒔

)2                                                                                                                                                (36) 

Where: τf is the total friction torque, τc is the Coulomb friction torque, b is the viscous 

friction coefficient, 𝜽̇ is the angular velocity, τs is the stiction (static friction) torque, 

𝜽̇𝒔 is the Stribeck velocity. 

 

Because friction introduces uncertainties and nonlinearities into the control system, 

it has an impact on control performance. Overcoming stiction, or static friction, at 

the start of motion is a crucial task in managing a  robot arm with friction. This 

friction frequently results in jerky motion, particularly at low speeds. Furthermore, 



91 

 

energy is lost due to viscous friction, necessitating greater actuator torque to maintain 

target velocities. Compensation techniques are employed, such as model-based 

friction compensation, which entails determining friction characteristics and 

incorporating them into the control loop, to enhance control performance. Robot arm 

movement can be less affected by friction by using an adaptive controller or a 

feedforward controller, [43 - 45]. 

When determining the necessary motor torque to produce the desired motion, friction 

torque at the joints must be taken into consideration. The load that the motor must 

overcome is increased by the overall friction torque, which opposes motion. As a 

result, in addition to compensating for the other dynamic forces operating on the 

system, the total motor torque must also account for the total friction torque. The 

torque required to generate the intended motion at a joint, taking into account 

friction, inertia, gravitational forces, and Coriolis forces, is known as the total motor 

torque, or τm. Equation (37) represents the relationship between friction torque and 

motor torque: 

τm = τdynamic + τf (37) 

Where τdynamic is the torque needed to counteract dynamic influences including 

centrifugal, inertial, and Coriolis forces in addition to gravity, and τf is the total 

friction torque that opposes motion. τm is the total torque that the motor needs to 

deliver. 

 

Friction raises energy consumption in addition to affecting control precision. In order 

to accomplish the necessary motion, the motors must produce more torque due to 

increased friction in the joints. The friction-related power loss, Pf, can be written as 

in Equation (38): 

Pf = τf 𝜽̇                                                                                                                                                                                                                    (38) 

This formula demonstrates that power loss rises as joint velocity and friction torque 

increase. The robotic arm's efficiency can be increased by minimizing energy losses 

and utilizing advanced control techniques, lubricating the joint to reduce friction, or 

improving the mechanical design [43 - 45]. 

 

4.2 DC Servo Motor Model Development 

Direct current (DC) motor is a common actuator in industrial applications such as 

industrial and educational robots, [37, 46]. The position, speed, and torque control of 

a DC servo motor is an essential issue when building a robot arm.  The DC servo 

motor mathematical model, [47 - 48] will be brifly presented in the following. 

Studying the electrical features of DC motor: motor coils generate torque in the 

armature when a voltage is applied. The torque created by the motor, τm, is 

proportional to the armature current, ia, and can be found as in Equation (39), 

τm(t) = Kt ia(t)                     

where Kt is the torque constant. 

 

The armature windings' rotation in the fixed magnetic field generates the back 

electromotive force, or EMF voltage vb(t), whose polarity acts against the current that 

generates motion. A linear relation is provided by relating the EMF to the angular 

speed of the motor shaft ω(t) as in Equation (40), 

vb (t) = Kb ω(t)                                                                                                                                   (40) 



92 

 

where Kb is the EMF constant. 

 

The electrical equivalent of the armature circuit can be described as an inductance La 

in series with a resistance Ra, and Ra is in series with an induced EMF voltage that 

opposes the voltage source Vin. These differential equations form the mathematical 

model that describes the electric characteristics of the armature controlled DC motor. 

By summing the voltages across the R-L circuit, Kirchoff's law is applied around the 

electrical loop to yield, as shown in Equations (41): 

∑𝑽 = Vin -VR - VL - EMF = 0 

Vin (t) = Ra ia + La 
𝒅𝒊𝒂 

𝒅𝒕
 + Kb 

𝒅𝜽(𝒕)

𝒅𝒕
 

Vin (s) = Ra I(s) + La s I(s) + Kb s 𝜽(𝒔) 

I(s) (Ra +La s ) = Vin (s) - Kb s θ(s) 

 

 

(41) 

In DC motor mechanical properties; the torque generated by the motor results in an 

angular velocity, denoted as ω(t) = dθ(t)/dt, based on the damping friction, bm, and the 

inertia Jm of the motor and load. It is possible to develop a mathematical model of the 

DC motor system's mechanical properties in the form of differential equations by 

performing the energy balancing; as the torques' sum must equal zero, as shown in 

Equations (42): 

∑𝑻 = Jm *α = Jm* d2θ/dt2 

Te - Tα - Tω - TEMF = 0 

 

(42) 

The following values can be substituted in an open loop DC motor system without a 

load applied, so that the change in τm is zero: Te = Kt ia(t), Tα =Jm*d2θ/dt2 , and Tω = 

bm*dθ/dt. Then, the Laplace transform is taken and Equation (42) is reaaranged, 

giving Equation (43): 

Kt ia(t) - Tload  - Jm*d2θ/dt2  - bm* dθ/dt = 0,  

Kt *I(s) = (Jm*s + bm ) s θ(s)     

(43) 

To derive the transfer functions for DC motor open loop systems; first get I(s) on the 

right side from Equation (41) to get Equation (44). Then, this value of I(s) is used to 

replace the DC mechanical characteristics in Equation (43), as follows in Equation 

(44): 

I(s) = 
𝟏

𝑳𝐚 𝐬 + 𝑹𝐚 
  [𝑽𝒊𝒏 (𝐬) - Kb ω(s)]                                                                                                   (44) 

Equation (45) represents the DC motor electric component transfer function that 

links armature current and voltage: 
𝐈(𝐬) 

[𝑽𝒊𝒏 (𝐬)− 𝑲𝒃 𝝎(𝐬)]  
 = 

𝟏

𝑳𝒂 𝐬+𝑹𝒂
                                                                                                                   (45) 

Equation (46) represents the mechanical component transfer function of a DC motor 

in terms of input rotor speed and output torque: 
𝝎(𝐬) 

[𝑲𝒕 𝑰𝒂(𝐬)− 𝑻𝑳 𝝎(𝐬)]  
 = 

𝟏

𝑱𝒎 𝐬+𝒃𝒎
                                                                                                                   (46) 

In case, there is no load attached, Tload =0, then: 
𝝎(𝐬) 

[𝑲𝒕 𝑰𝒂(𝐬)]  
 = 

𝟏

𝑱𝒎 𝐬+𝒃𝒎
                                                                                                                                  (47) 

Currently, replacing Equation (43) in Equation (42) yields: 

𝑲𝒕 [
𝟏

𝑳𝒂 𝒔+𝑹𝒂
] [𝑽𝒊𝒏 (𝐬) - Kb ω (s)]    =     𝑱𝒎 𝒔𝟐𝜽(𝐬) + 𝒃𝒎 𝒔 𝜽(𝐬)                                                    

(48)                     



93 

 

Rearranging Equation (48) to get the DC motor open loop transfer function with no 

load applied, which is provided by coupling the motor shaft output angle, θm(s), to 

the input voltage, Vin(s) as follows. 

Gangle (s) = 
𝜽(𝒔)

𝑽𝒊𝒏 (𝐬)
 = 

𝑲𝒕
[𝑳𝒂 

𝑱𝒎 𝒔𝟑+(𝑹𝒂 
𝑱𝒎+𝒃𝒎𝑳𝒂)𝒔𝟐

))
+(𝑹𝒂𝒃𝒎+𝑲𝒕𝑲𝒃)𝒔)

]
]

                                                         

(49) 

The open loop transfer function of a DC motor, which links the motor shaft output 

angular velocity, 𝝎(𝒔), to the input voltage, 𝑽𝒊𝒏 (𝐬), is as follows: 

Gspeed (s) = 
𝝎(𝒔)

𝑽𝒊𝒏 (𝐬)
 = 

𝑲𝒕
[𝑳𝒂 

𝑱𝒎 𝒔𝟐+(𝑹𝒂 
𝑱𝒎+𝒃𝒎𝑳𝒂)𝒔+(𝑹𝒂𝒃𝒎+𝑲𝒕𝑲𝒃)

)
]
]

                                                                

(50) 

 

Table 3 shows the DC motor parameters’ values chosen for motor simulation. The 

schematic diagram in Fig. 6(a) is modeled as a block diagram in Fig. 6(b). This block 

diagram represents an open loop system, and the motor has built-in feedback EMF, 

which tends to reduce the current flow. 

 
                 (a)                                                                                 (b) 

Fig. 6 (a) Schematic diagram of DC motor system,  (b) Block diagram for DC 

motor system. 

The benefit of using a block diagram is that it provides a clear image of the  transfer 

function relation between each block of the system. Therefore, based on the block 

diagram in Fig. 6(b). Equation (51) depicts the total transfer function of a DC servo 

motor system: 
𝛉𝐦(𝐒)

𝐯𝐭(𝐬)
=

𝟎.𝟖𝟖𝟒

𝟑.𝟑𝟏𝟓𝐞−𝟎𝟖𝐒𝟑+𝟎.𝟎𝟎𝟎𝟏𝟖𝟓𝟔  𝐒𝟐+𝟏.𝟎𝟏𝟔  𝐒
                                                                                                 (51) 

Where: 𝒗𝒕 𝐢𝐬 𝐭𝐡𝐞 𝐯𝐨𝐥𝐭𝐚𝐠𝐞 𝐢𝐧𝐩𝐮𝐭, 𝜽𝒎 𝐢𝐬 𝐭𝐡𝐞 𝐚𝐧𝐠𝐥𝐞 𝐨𝐮𝐭𝐩𝐮𝐭, and S is the  Laplace 

variable. 

Using Simulink, the model of the motor may be created. This model includes all the 

parameters derived previously. Fig. 7 shows the Simulink model of a DC motor. 



94 

 

 
Fig. 7 DC motor subsystem using Simulink. 

 

 

Table 3 The values and DC motor parameters selected for the motor simulation.      

           Parameters     Values Unit 

Moment of inertia (bm) 0.0243 kg.m2 

Friction coefficient (Jm) 0.000026852 N.ms 

Back EMF constant (Kb) 1.058 v/ms-1 

Torque constant (Kt) 0.884 Nm/A 

Electric resistance (Ra) 3.33 Ohm 

Electric inductance (La) 0.000000015 H 

 

Simulation results using Simulink are shown in Figs. 8, 9 for the DC motor model 

without and with load disturbance. Simulation results demonstrated that, the motor 

was running at no-load conditions at startup, and still running to reach the steady 

state value as shown in Fig. 8. When a mechanical load is applied suddenly to the shaft 

as shown in Fig. 9, a small no-load current does not produce enough torque to carry 

the load; thus, the motor starts to slow down. This causes counter EMF to diminish 

resulting in a higher current and a correspondingly higher torque. When the torque 

developed by the motor is exactly equal to the torque imposed by the mechanical load, 

then the speed will remain constant. However, for the motor to move the robot arm 

to a proper angular position corresponding to the input, this can be achieved by using 

the control technique as a PID controller. 

 
  (a)                          

 
 (b) 



95 

 

 
      (c)              

 
                                  (d) 

Fig. 8 DC motor open loop step response without load:(a) current, (b) Torque, (c) 

Speed, and (d) Position. 

 
(a) 

 
                  (b) 

 
       (c) 

 
          (d) 

Fig. 9 DC motor model simulation with load disturbance :(a) Current, (b) Torque, 

(c) Speed, and (d) Position. 

 

4.3 Simulink Model Development of Robot Arm 

All software used in this work depends on the Matlab/Simulink program. Matlab, is 

an acronym for Matrix Laboratory, Matlab is a multifunctional computer program 

designed to facilitate engineering and scientific computations. It employs the Matlab 

programming language and offers a vast array of pre-built functions to streamline 

and simplify technical programming tasks. Matlab has many advantages, such as ease 

of use, platform independence, predefined functions are available, device-

independent plotting, and a graphical user interface. However, Matlab is an 



96 

 

interpreted language. The main disadvantage of interpreted languages is execution 

speed. Simulink is an add-on product to Matlab, provides an interactive, graphical 

environment for modeling, simulating, and analyzing dynamic systems. It makes it 

possible to quickly and easily create virtual prototypes in order to investigate design 

concepts at any level of detail. Simulink offers a graphical user interface (GUI) for 

creating block diagram models. It comes with an extensive library of pre-made blocks 

that may be dropped to create graphical models of systems.  It supports linear and 

nonlinear systems, modeled in continuous time, sampled time, or hybrid of the two. 

Simulink is integrated with Matlab, and data can be easily shared between the two 

programs, [49]. 

  

The robot arm model developed in SolidWorkswas is transferred into Matlab using 

the option “Export- simscape multi-body first generation” where the file is a CAD 

assembly file exported to Matlab as an XML file format based on the Sim-Mechanics 

library. Simulation is performed to verify the design dynamics in the form of a 

Simulink model containing the blocks as shown in Fig. 10(a). The blocks imported 

into Simulink are rearranged according to engineering laws, physical laws, and the 

required assembly. The input block, system block, and output block are the three 

primary block types in the Simulink model. The input block shows a simulation of the 

reference input signals (position of joints) designed to obtain the robot arm’s 

temporal response (gripper position) before adding the controls. System bocks 

represent robot arm links and joints and the final gripper. The output block 

represents the gripper position. Fig. 10(b) shows a 3D visualization of the system 

blocks. 

 

FK and IK are the two kinematics solutions for robotic arms. FK stands for 

conversion from configuration to cartesian space. In contrast, IK stands for 

transformation from cartesian space to joint space. Robots FK are simulated in this 

work by calculating the end-effector coordinates knowing their joint angles using the 

D-H parameters presented in Table 1. Further, a 3D conception of the system blocks 

is shown in Fig. 10(b). 

 

 
(a)                                                                       (b) 

Fig. 10 Robot arm model in Simulink, (a) Model blocks, (b) 3D visualization of 

the system blocks. 

 



97 

 

5. INVERSE KINEMATICS ANALYSIS AND SIMULATION OF A 5-DOF ROBOT 

ARM  USING MATLAB 

Matalb Graphical User Interface (GUI) was used in this work to perform many 

functions, as shown in Fig. 11. It illustrated the inputs to the program, which were the 

position of the end-effector, while the outputs were the joint angles (joints’ position). 

Also, a 3D simulation of the robot arm movement was presented in GUI as an output. 

The positions (px, py, and pz) of the goal were set relative to the base of the robotic 

arm as inputs. To determine the joint angles of the robot arm, the Equations (11) to 

(35) were used. The position of each joint of the robot arm was determined using the 

Equations from (2) to (10). 3D simulation of the movement of the robot arm was 

applied using the Robotics toolbox in Matlab, depending on the D-H parameters. 

 

To test the efficiency of the geometric approach in the IK analysis, several cases were 

studied. The inputs to the GUI program, shown in Fig. 11, were the position of the 

goal (px, py, and pz), and the outputs were the joint angles of the robotic arm. The 

3D representation of the robotic arm depending on the D-H parameters is shown in 

Fig. 12. The 3D representation illustrates four cases. The extracted angles of joints 

were applied in Equation (10) to determine the position of the end-effector. The 

algorithm of the geometric approach was developed for the IK analysis of the robotic 

arm, and the results of this method were compared to results extracted using the 

algebraic solution. The errors between them were obtained and listed in Table 4 to 

indicate the efficiency of the program used.  A large match was found, so the 

geometric approach method was applied. 

 

Table 4 indicated a little small error occurred in the position of the end-effector of the 

robotic arm that confirms the effectiveness of the program used, where the maximum 

error for the end-effector's x, y, and z coordinates were, respectively, 0.0239%, 

0.1085%, and 0.0251%. 

 
Fig. 11 The window of the GUI program. 

 



98 

 

                    
Case (1) 

 

                    
Case (2) 

 
Case (3) 

 
Case (4) 



99 

 

Fig. 12 GUI for four cases. 

 

Table 4 The error of the end-effector position. 

Case No. True end effector 

position (mm) 

Joint angle 

measured 

(degree) 

True end effector 

position (mm) 

Absolut error=((true-

measured)/true)*100% 

1 Px=220 

Py=161 

Pz=220 

θ1=36.1973 

θ2=69.9029 

θ3=-43.1499 

θ4=52.2469, θ5=90 

Px=219.9986 

Py=161.0146 

Pz=219.9934 

0.0006 

0.009 

0.003 

2 Px=-230 

Py=61 

Pz=220 

θ1=165.1461 

θ2=89.9426 

θ3=-65.6204 

θ4=53.6778, θ5=90 

Px=-230.0103 

Py=60.9861 

Pz=219.9964 

0.0045 

      0.023 

      0.00016 

3 Px=220 

Py=61 

Pz=220 

θ1=15.4972 

θ2=95.1123 

θ3=70.5272 

θ4=53.4149, θ5=90 

Px=220.0553 

Py=60.9854 

Pz=220.2386 

0.0251 

0.0239 

0.1085 

4 Px=-230 

Py=111 

Pz=220 

θ1=154.2376 

θ2=81.8983 

θ3=-60.124 

θ4=58.2257, θ5=90 

Px=-230.0493 

Py=111.0121 

Pz=220.1713 

0.0214 

0.0109 

0.0778 

 

6. ROBOT ARM PROTOTYPE AND CONTROL CIRCUIT 

The robot arm prototype was manufactured from wood according to the design 

developed for this work, and the main parts are shown in Fig. 13 (a). Additionally, a 

schematic diagram of the control circuit is presented in Fig. 13 (b). Table 5 provides 

details on the control circuit components and their specifications. 
 

 
(a) 

 
(b) 

Fig. 13 )a) Real photo of robot arm’s control circuit;1: Arduino Mega 2560 board, 2: 

Power supply, 3: Servo motor driver, 4: Robot arm, 5: USB 2.0 cable, 6: 

Laptop;(b)Schematic diagram of the control circuit. 

  

Table 5: Specifications of control circuit components. 



100 

 

   

 

7.  CONTROL SYSTEM DESIGN 

a. Controller Design 

To control a motion process, the precise position of the object needs to be measured 

and maintained. The designed system should respond to the applied input with a 

suitable overshoot, settling time, and a zero steady state error as possible. Two 

controller will be used, PID and FL conrollers. 

7.1.1  PID Controller Design 

The PID algorithm is a widely used feedback controller in industry. It is a robust and 

easy-to-comprehend algorithm that provides excellent control effectiveness 

regardless of the dynamic behavior of a specific process plant. 

Gpid (s) = kp + ki /s +kd.s                                                                                                                 (52) 

The calculating algorithm offered in Equation (52) includes three separate 

coefficients: p, i, and d. These coefficients can be explained in terms of time, where p 

is for existing errors, and i is for the accumulation of past errors. Coefficient d means 

approaching error based on the uninterrupted pace of change [48]. Parameters of the 

PID controller were tuned using Simulink instead of traditional tuning methods like 

ZN method. Five PID controllers were developed, one for each DC servo motor 

associated with each joint. In order to assess the performance of the PID controller, 

simulations are presented. The parameters of the five developed PIDs are shown in 

Fig. 14. 

Function Specifications  Qty. Part No

. 

Robot 

forward and 

backward 

motion. 

Torque: 17 kg.cm 

Current:  130mA 

Step angel: 1.8 

Motor speed: 800 r.p.m 

5 Servo Motor  (360) 

 

 

  1 

Control 

program 

development. 

A microcontroller board based on the AT 

mega 2560, with 54 digital input/output 

pins (of which 15 can be used as PWM 

outputs), 16 analog inputs, 4 UARTs 

(hardware serial ports), a 16 MHz crystal 

oscillator. 

1 Arduino Mega 2560 

board 

  2 

Contact the 

motor to the 

control 

circuit 

L298N Dual H Bridge DC Stepper Motor 

Drive Controller Board Module for 

Arduino the L298 Stepper Controller 

makes it easy to drive either two dc motor 

or a bipolar stepper motor. This is a very 

high quality board and is very compact for 

designs where space really matters. 

5 Dual  H-bridge 

motor driver using 

L298N 

  3 

DC power 

source 

5 DC volt, 10 mA 1 Power supply   4 

Connect the 

Arduino 

board to PC. 

Data transfer speed is 480 Mb/sec 1 USB 2.0 cable   5 

Connect the 

Arduino 

board to 

power source  

Input 100-240V, 50/60 Hz, 0.2A Output 5V 

 

1 Adaptor   6 



101 

 

           
 (a)                                                             (b) 

        
 (c)                                                                       (d) 

 
 (e) 

Fig. 14 Controller parameters of: (a) PID1, (b) PID2, (c) PID3, (d) PID4, and (e) 

PID5. 

 

7.1.2  FL Controller Design  

FLC controller system is easy to understand and design, and it performs better than 

other types of controllers. By executing basic principles guiding the system’s 

behavior. FL enables the modeling of complicated systems that originate from 

information and mastery by combining substitutional ways of thinking using a higher 

level of the inference procedure, which is divided into four parts as follows: 

Fuzzification of input variables, rule evaluation, aggregation of rule outputs, and 

defuzzification [50-51]. The implementation of the FLC is as follows:1) Identifying 

FLC input and output. A FLC has two inputs: error E(t) and change of error ΔE(t), 

and one output, which is the designed control signal. 2) Fuzzifying input and output 

variables. Each variable of FLC inputs has seven fuzzy sets ranging from negative big 

(NB) to positive big (PB). 3) Determining the input-output relationship and designing 

an inference mechanism rule. The Mamdani (Pro Max) inference is used. 4) 



102 

 

Defuzzifying the output variable of the fuzzy mechanism. Different defuzzification 

methods were used and compared to obtain the control signal. Figure 15 shows the 

fuzzy membership functions of E(t). FLC Design and Simulation; the input and 

output functions were adjusted: input-1 represents the set point shown in Fig.s 16 and 

input-2 for the current position, while the output is for the output signal as shown in 

Fig. 17. Rules representation is shown in Fig. 18 and Table 6. For the error signal E(t) 

as an input and control signal C(t) as an output, NB stands for negative big, NM 

means negative mean, Z means zero, PS means positive small, PM means positive 

mean, and PB means positive big. To vary the error (ΔE) as input, N means negative, 

and P means positive, [50, 52]. 

 

These are the linguistic variables that describe each of the time-varying fuzzy 

controller inputs and outputs that are used to define the rule base of the fuzzy 

controller. The Simulink model for the FLC is displayed in Fig. 19. A FLC controller 

was developed for each DC servo motor related to each joint. 

 

 

              
Fig. 15 Fuzzy library in MATLAB.      Fig. 16 The input function adjustment. 

 

          
Fig. 17 The set point representation.     Fig. 18 Rules representation. 

 

Table 6 Rule base description. 

No. Rule Description 



103 

 

 

 

 

 

 
Fig. 19 Simulink model block diagram of FLC. 

 

The process of defuzzification yields a non-fuzzy action by converting a group of fuzzy 

sets into a crisp value. The most common approaches are as follows: (1) center of 

gravity (COG), (2) bisector of area (BOA), (3) denotes of maximum (MOM), (4) 

smallest of maximum (SOM), and (5) largest of maximum (LOM). The purpose of 

COG, where the crisp control value uCOG is the abscissa of the center of gravity of the 

fuzzy set, uCOG is calculated as in Equation (53): 

𝐮𝐂𝐎𝐆 = 
∑ 𝛍𝐢 𝐜(𝐗𝐢)𝐱𝐢

∑ 𝛍𝐢   𝐜(𝐱𝐢)
                                                                                                                                   (53) 

Where Xi is a point in the world of the conclusion (i = 1, 2,…...), and 𝛍𝐜xi is the 

membership value of the resulting conclusion set. Integrals take the place of 

summations for continuous sets. 

The BOA defuzzification technique calculates the coordinates of the vertical line 

that’s wears the area of the extracted membership function into two analogous areas 

as in Equation (54). 

|∑ 𝛍𝐜(𝐱𝐢) − ∑ 𝛍𝐜(𝐱𝐢)
𝐢𝐦𝐚𝐱
𝐢=𝐣+𝟏

𝐣
𝐢=𝟏 | , 𝐢 < 𝐣 < 𝐢𝐦𝐚𝐱                                                                   (54) 

Where imax is the index of the largest abscissa max xi, and BOA is considered a 

computationally difficult procedure. 

Another option for obtaining the crisp value is to select a point with the most 

members. There may be several points with the highest membership value in the total 

inferred fuzzy set. As a result, calculating the average value of these points is a 

common method. Using the method called MOM, the crisp value is determined as in 

Equation (55): 

𝐮𝐌𝐌 =
∑ 𝐗𝐢𝐢∈𝐈

⌈𝐈⌉
 , I ={𝐢|𝛍𝐜(𝐱𝐢) = 𝛍𝐦𝐚𝐱|}                                                                                            (55) 

1  If (ERROR is Z) and (error_change is NB) then (output1 is NS)  

2  If (ERROR is Z) and (error_change is NM) then (output1 is z)  

3  If (ERROR is Z) and (error_change is NS) then (output1 is z)  

4  If (ERROR is Z) and (error_change is Z) then (output1 is z)  

5  If (ERROR is Z) and (error_change is PB) then (output1 is PS)  

6  If (ERROR is Z) and (error_change is PM) then (output1 is z)  

7  If (ERROR is Z) and (error_change is PS) then (output1 is z)  



104 

 

Where i is the crisp set of indices i, 𝛍𝐜 (xi)reaches its maximum 𝛍max, and ǀ I ǀ is its 

cardinality, a term used to describe the phenomenon of the number of members.  

The leftmost point among the points with the highest membership in the inferred 

fuzzy set can also be chosen. This procedure is referred to as the SOM defuzzification 

method. The crisp value is determined as in Equation (56): 

𝐮𝐬𝐨𝐦 = 𝐱𝐦𝐢𝐧 (𝐈)                                                                                                                                    (56) 

Another option is choosing the rightmost point among the points with maximum 

membership to the overall inferred fuzzy set. This technique is called the LOM 

defuzzification technique, where the crisp value is calculated as in Equation (57): 

𝐮𝐥𝐎𝐌 = 𝐱𝐦𝐚𝐱 (𝐈)                                                                                                                                      (57)   

These methods have been suggested in the literature. Fig. 20 shows the step response 

of the developed FLC related to the first DC servo motor and joint as an example.  

 
Fig. 20 The step response of the developed FLCs related to the first DC servo motor 

and joint. 

 

7.2 Closed Loop Control Using PID and FLC Controllers 

The PID control system, and FLC control system are combined together in one model 

for comparison, as shown in Fig. 21. The first part was the application of the PID 

control system on each motor as shown in Fig. 22 (a), and in the second part, the FLC 

controller was applied on each motor as shown in Fig. 22 (b).  



105 

 

 
Fig. 21 Closed loops using PID and FLC control systems combined together. 

 
(a)                                                                    (b) 

Fig. 22 (a) PID control systems structure, (b) Fuzzy control system structure. 

 



106 

 

7.3 Implementation of  N Independent Joint Control  

Independent joint control (IJC) controls the position of each joint independently [1]. 

This will help to ignore the dynamic coupling between joints. After testing the servo 

motor in the previous two stages and applying the controllers (PID and FLC), a 

complete system for the robotic arm was created that contains both controllers (PID 

and FLC) as shown in Fig. 23. It represents one motor to move one link. IJC for N 

joint robot manipulator (e.g., revolute or prismatic) joints is accomplished by using 

N block diagrams with respect to the number of the independent joints. The main 

system consists of several levels. As a case study, the independent joint control is 

implemented on 5 DOF robot arm.  

 
Fig. 23 IJC for 5 DOF using Simulink. 

The main block diagram consists of three subsystems: subsystems 1, 2, and 3. The 

first subsystem “reference step” has the input values for each joint variable of the 

robot manipulator; these values represent the angles required that can be controlled 

by each one of the controllers independently. A step input is used for the five input 

angles. Similarly, subsystem 2 “control” has the disturbance input values that affect 

each link. In subsystem 3, “Model (robot arm),” five blocks are used, each one has an 

independent controller. 

 

For each IJC, an appropriate angle is specified in the menu. When the signal enters 

the closed-loop control from input one of Fig. 24, it passes through many blocks such 

as gain, sum, and PID control. The gain block is used for the multiplication process 

between the input and a constant value to increase or decrease the signal value. Next, 

the summation block is used to pass the error signal, which is the difference between 

the desired input and the output. The error enters the PID controller block. Finally, 

the output of the PID controller is used to move the motor of the desired link. When 

the disturbance is applied from the second input, it passes through the feedforward 

block. To display the impact of disturbance with and without feedforward control, 

the switch block is utilized to switch between the feedforward block and zero as a 

constant. The performance of each link using the PID and FLC controllers was 

compared. Fig.s 25 (a), (b), (c), (d), and (e) indicate the controllers’ output response 

related to motors 1, 2, 3, 4, and 5. 



107 

 

                    
Fig. 24 One joint variable. 

 

 
(a)                                                               (b) 

 
(c)                                                               (d) 

 
(e) 

Fig. 25 Output responses of PID and FLC controllers for: (a) motor 1, (b) motor 

2, (c) motor 3, (d) motor 4, and  (e) motor 5. 

 

The findings reveal that all controllers can complete the intended movement of the 

robot arm’s servo motors. The time response parameters, including rise time, settling 

time, and steady-state error (SSE) of the PID controller and FLC system of the 

higher-order system transfer function of the DC servo motor of the processor, were 

also obtained. The FLC resulted in reduced rise time, stabilization time, SSE, and 

bypass than the PID controller. The comparison between the two controllers is shown 

in Table 7. 

 

Table 8 displays the results of several defuzzification procedures, the BOA, MOM, 

and SOM techniques to the study, [23], which yield almost identical results. 



108 

 

Implementing a simple defuzzification approach resulted in system optimization due 

to the complexity of processes like fuzzification and defuzzification. Then the COG 

method should be avoided. When comparing the results to the results given in Table 

4, it was found that the performance of the developed  FLC gave better results in 

terms of rise time, settling time, the results obtained using the four defuzzification 

strategies are shown in Table 9. The results of the BOA, and SOM strategies are 

roughly equal, as this table demonstrates. In contrast, there are wide variations in the 

COG approach results. Due to complex operations such as fuzzification and 

particularly defuzzification, implementing a simplified defuzzification strategy 

optimizes the system. Comparing PID and FLC controllers’ parameters. 

Table 7 compared between PID and FLC controllers’ parameters. 

      Motors  

   (joint No.) 

System properties 

Controller 

Type 

 Rise time 

(rt) 

 Settling 

time (st) 

Steady State   

Errors (SSE) 

     Overshoot  

Motor1 

  ( at joint 1) 

PID 0.26514 0.015685 0.03125 0.03 

FLC 0.146253 0.011897 0.00612 0.016446 

     Motor2 

  ( at joint 2) 

PID 0.246084 0.030299 0.00108 0.008109 

FLC 0.225239 0.023342 0.000807 0.0023701 

     Motor3 

  ( at joint 3) 

PID 0.274915 0.026104 0.001985 0.069705 

FLC 0.107747 0.024641 0.001256 0.0015471 

     Motor4 

  ( at joint 4) 

PID 0.2714389 0.025763 0.014598 0.0028283 

FLC 0.094743 0.012818 0.00125 0.011673 

    Motor5 

( at joint 5) 

PID 0.212219 0.020554 0.00234 0.0176497 

FLC 0.0064693 0.012827 0.00254 0.0013509 

Table 8 Comparison of the FLC parameters of the developed robot arm and the 

FlC in study of [23]. 

System 

output 

  Controllers   

Characteristics Link 1 

(FLC) to 

robot 

arm 

Link 1 

(FLC) 

in study 

[23] 

Link 2 

(FLC) to robot 

Arm 

Link 2 

(FLC) in 

study [23] 

Link 3 

(FLC) to 

robot arm 

Link 3 

(FLC) in 

study 

[23] 

Rise time (rt) 0.146253 1.8507 0.225239 1.1373 0.107747 0.6444 

Settling time (st) 0.011897 3.3064 0.02342 2.4064 0.024641 1.4413 

Overshoot 0.016446 2.2594e-

04 

0.0023701 7.2402e-04 0.0015471 1.2071e-

04 

Steady State 

Errors 

(SSE) 

0.00612 -0.001 0.00807 -0.002 0.001256 -0.003 

Table 9 comparing different defuzzification strategies of FLC controllers. 

System properties 

Defuzzification 

method 

Rise time 

(rt) 

Steady 

State Errors 

(SSE) 

Overshoot  Settling Time 

(st) 

COG 0.0086253 1.9507e-05 0.00044694 0.011897 

SOM 0.0063461 0.01309 7.8937 0.99954 

MOM 0.0066253 0.01304 0.00044694 0.011897 

BOA 0.0064803 0.0033492 3.1163 0.99958 



109 

 

7.4 ROBOT ARM CONTROL USING FK AND IK IN MODEL SIMULATION   

FK and IK blocks were applied to the control system connected to the robot arm as 

shown in Fig. 26. 

 

7.4.1 Using forward kinematics  

In the FK of a robotic arm, given the angles of the joints, the kinematics equations 

give the location of the tip of the arm. Matlab R2016B was used for model creation 

and simulation. The RVC feature, which includes the robotic 3D capabilities, is 

initialized in the Matlab tool.  With the RVC feature, the robot arm can be developed, 

controlled, and manipulated [49]. The file startup_rvm.m calls several robot 

functions by calling the respective (.m files) of each function. A Matlab link file 

performs the process of link creation. All of the details about a robot link, including 

the motor, transmission, rigid body inertial, and kinematics characteristics, are 

contained in this file. In addition, there are classes and functions to receive the four 

parameters of the D-H convention and construct the link. The type of link is 

determined by its fifth parameter, which can be either prismatic (1) or revolute (0). 

The robot is constructed by joining all of the links in a serial fashion. The robot's 

dimensions and all of the links' information are provided by the Matlab file 

SerialLink.m, which connects the vector of link objects to form a serial-link robot 

object. Fig. 27(a) shows the output of SerialLink.m (Serial-Link robot). The D-H 

parameters of each link are also shown in Fig. 27(b). A robot with 5 links in revolute 

configuration is developed, and  robot positions with joint angles (0, 0, 0, 0, 0) are 

presented in Fig. 28. Further, the D-H parameters (forward kinematics) of the 5 DOF 

robot arm with joint angles (0, -60, -30, -30, 0) and robot position are shown in Fig. 

29(a) and (b), respectively.  

 

 
Fig. 26 Robot arm subsystem using FK and IK. 

 



110 

 

                   
(a)                                                                                   (b) 

 Fig. 27 (a) Forward kinematics with joint angles (0, 0, 0, 0, 0), (b) The D-H 

parameters of each link. 

 

 
Fig. 28 Robot position with joint angles (0, 0, 0, 0, 0). 

       
                                 (a)                                                                                     (b) 

Fig. 29 5 DOF robot arm with joint angles (0, -60, -30, -30, 0): (a)Forward 

kinematics, (b) Robot position.  

 

7.4.2 Using  Inverse Kinematics  

In IK given a desired location for the tip of the robotic arm, what should the angles 

of the joints be so as to locate the tip of the arm at the desired location. Typically, 

there are multiple solutions available, and occasionally, solving the problem can be 

challenging. To operate the robotic arm, this common robotics issue must be resolved 

to perform tasks it is designated to do with the robotic arm, and given the desired 

coordinate, the problem is finding the joint angles involved. Fig. 30 shows the 

simulation results: (a) input and output values of joint angles; (b) output values of 



111 

 

joint speed; (c) output values of joint acceleration; (d) output values of joint torque; 

(e) end effector position. 

 
(a) 

 
(b) 

 
(c) 

 



112 

 

(d) 

 
(e) 

Fig. 30 The simulation results of IK. (a)Input and output values of joints angles, 

(b)output values of joints speed, (c) output values of joints acceleration, (d) output 

values of joints torque,(e) end effector position. 

 

7.5 Real Time Control 

To characterize the system and estimate the transfer function of the DC motors, the 

system identification process, which depends on Data Driven Control (DDC) [53], is 

applied to create a simple control system and identify the plant model from the I/O 

data, then using the identified model to design a controller and execute it. DDC is an 

approach that requires measured input-output data and is used to design the 

controller when a plant model is not available. DDC contains four steps: data 

acquisition to get the data set, system identification to get the plant model, controller 

design to control the system, and real-time testing on the hardware. The hardware 

setup includes a DC motor, [47], connected to an Arduino mega board with a L293 

DC motor driver.  

In data collection: The host PC is connected to the Arduino mega board using 

Simulink®, which makes it possible to generate an executable code and run it on the 

required hardware. The Simulink library for use with Arduino hardware is shown 

by Fig. 31. 

 

 
Fig. 31 Simulink block library; Simulink support package for Arduino hardware. 

 

The host PC must communicate with the Arduino board to send voltage commands. 

Hence, a  Simulink model is built to enable this communication. Further, the Arduino 



113 

 

board sends voltage commands to the actuator, and the resulting position of the 

actuator is measured. A second Simulink model is created to permit the data 

transition. 

  

The Simulink model running on the host PC includes three blocks. The first is the 

“Reference Voltage” block, through which the required signal can be created. Then 

there is the “Voltage to Unit8” block, which transforms the signal into an appropriate 

style to suit the IP. The third block is the “Serial Motor Interface” block that sends 

the signal to the selected serial port of the PC. This model is shown in Fig. 32(a), and 

the voltage signal is shown in Fig. 32(b). A step function with a value of 3 volts is 

chosen to excite the actuator. 

 

In the model running on the Arduino mega board shown in Fig. 33, the Simulink 

function block “Serial Receive” receives the voltage signal sent from the PC through 

the serial port. After that, the block “Voltage Command To Pins” reads the signal 

from the block, “Serial Receive” and sends it to the “Analogue Output (PWM) 

Forward” block, which directs the signal to the appropriate PWM pin. The serial 

communication protocol is used to make the host PC able to communicate with the 

Arduino board. 

            

(a) 

 
(b) 

Fig. 32: (a) Simulink model that will run on the host PC, (b) Voltage signal. 

 
Fig. 33 Simulink model that will run on the Arduino board. 

 



114 

 

Different signals can be built by the signal builder block in Matlab. A system 

identification experiment is executed for the control of servo DC motors using PID 

and FL. Using the Simulink program 1 (program on the host PC), the Arduino card 

communicates with the PC, sending and receiving the input and the output voltage to 

the computer, respectively. The Simulink program was used to record and save the 

input voltage and the corresponding output position voltage. Program 2 code was 

uploaded to the Arduino card to send the input voltage and receive the output voltage 

to and from the actuator, respectively. The hardware setup in Fig. 13(a) is used in the 

experiment. Then run the Simulink model. The input voltage and output tracking 

angle are shown in Fig. 34 (a). 

 

Then identify element 1 (voltage) and element 2 (angle), which appear in the 

command window, as shown in Fig. 34(b). By writing the (ident) command in the 

command window and pressing enter, the system identification tool window opens, 

then select the import data, the data object, then the data import. Hence, the import 

data window opens as shown in Fig. 35(a), select the object z1, and select the import 

icon to obtain the object in the system identification tool windows as shown in Fig. 

35(b). 

 

In the Import Data dialog box with the (time-domain signals) option, the options were 

specified as in Fig. 35(a). The imported data was divided into two parts, as in Fig. 

35(b), for model estimation and for model validation. Matlab can compare many 

systems’ performance and give which is the best one. 

In the system identification tool, the transfer function model is estimated after 

specifying the number of poles and zeros of the transfer function block, as shown in 

Fig. 36(a). By clicking on transfer function models, the estimation process will start 

as in Fig. 36(b). 

 

       
(a)                                                            (b) 

Fig. 34: (a) Input voltage and output tracking angle, (b) Input/output 

identification in command window 

 



115 

 

      
                     (a)                                                               (b)  

Fig. 35 (a) Import data window, (b) System identification tool window. 

      
                                 (a)                                                 (b) 

Fig. 36 (a) Transfer function toolbox,  (b) Estimation progress viewer. 

 

In real-time testing for PID and FLC controller using a servo DC motor;To 

implement PID controller and FLC controllers on hardware system, and to control 

the position of servo DC motor of robot arm, it is needed to control the input voltage 

supplied to the motor, the control process of input voltage has been done by 

comparing the input voltage with the output voltage measured by the  potentiometer, 

the desired position is set and the controller under testing transmits the control signal 

as PWM to rotate the motor to the corresponding position, the arduino card reads 

the value of the current position of motor as voltage from the output potentiometer, 

and sends this value to the controller, the controller compares the output voltage with 

reference voltage of the desired position and give suitable output signal corresponding 

to difference between them, if the difference equals to zero the controller’s signal will 

equal to zero, the PID algorism outputs the control signal that rotates the motor to 

the desired position. 

 



116 

 

Also, a special code (Simulink) was uploaded to the Arduino card to send the input 

angle and receive the output angle to the DC motor, and a special code on the host 

computer which was used to send the reference position data (angle) and collect the 

actual position feedback and check how the motor tracked the reference. Fig. 37 (a) 

and (b) show the Simulink model on the Arduino board and  the host computer 

Simulink model and slider gain controller. By using typical steps of real-time testing, 

click on the gain slider to produce different angles degree and look to the result by 

clicking on angle look point to obtain the output compared with the input reference 

for the PID controller as shown in Fig. 38 (a), and the desired and actual angle graph 

of the FLC controller reference angle are shown in Fig. 38 (b).  

    
(a)                                           (b) 

Fig. 37 (a) Simulink model on arduino board,  (b) Host computer Simulink 

model and slider gain controller. 

 

 
(a) 



117 

 

 
(b) 

Fig. 38 Desired and actual angle graph in real time testing using DC motor of 

the: (a) PID controller, (b) FLC controller. 

 

CONCLUSIONS 

Modeling and controlling of a 5-DOF robot arm through providing systematic rules 

for analyzing forward and inverse kinematics solutions for the robot manipulator 

with revolute joints using DH parameters are performed, then the mathematical 

model of the DC motor is analyzed, and friction equations are introduced. Then, the 

problem of control technique was discussed. A PID controller was designed and tuned 

using Simmechanics instead of using conventional tuning methods ZN. FLC was 

designed based on Mamadani’s (pro Max) inference. Five different defuzzification 

methods were used and compared to obtain the control signal. These are (1) center of 

gravity (COG), (2) bisector of area (BOA), (3) means of maximum (MOM), (4) 

smallest of maximum (SOM), and (5) largest of maximum (LOM). From results, 

BOA, MOM, and SOM techniques yield almost identical optimum results; however, 

the COG strategy is not suitable. Implementing a simple defuzzification approach 

resulted in system optimization due to the complexity of processes like fuzzification 

and defuzzification. A feedforward method was used to overcome the disturbances, 

which loaded on each motor. Then the results of using the two controllers for 

controlling the robot manipulator were compared in terms of overshoot, transient 

response, and steady state error. Matlab and Simulink, which are extensively utilized 

in control applications, were used to display simulations. 

 

In the control of the 5-DOF robot arm to reach the specified location with minimum 

error while meeting certain specifications, the final position for each motor was set 

using the independent joint control method. The Mamdani method was applied in 

FLC using 49 rules to control the robot arm. In order to adjust the PID controller's 

parameters p, i, and d. By doing this, the PID may be tuned while overcoming the 

tuning limitation of classical tuning methods. When it comes to time response 

behavior, the FLC outperforms the PID controller, FLC yielded a better performance 

in rise and settling time and reduced steady-state error and overshoot. Real time 

control was applied; a data driven control approach was used to design the controller 



118 

 

The system performance was good as the output follows the reference signal in a good 

manner, and the FL gave better results. 

 

In future work, different fuzzy approaches can be studied. The Takagi-Sugeno model 

may be used in place of the Mamdani approach and compared with it.  A future work 

may focus  on different types of controllers like adaptive fuzzy controller, and extend 

the system to more degrees-of-freedoms. This may improve the results obtained and 

minimize errors between the actual arm and the simulation. As with other robots, 

future developments such as path planning and computer vision are expected for this 

robotic arm. 

 

REFERENCES 

1. Tsai L-W., “Robot analysis: the mechanics of serial and parallel manipulators,” 

,The Mechanics of serial and parallel manipulators. p. 520, (1999). Wiely, ISBN: 978-

0-471-32593-2.  

2. Craig J. J., "Introduction to robotics: mechanics and control". Pearson Educacion, 

(2005). 

3. Zhao Z.-Y., Tomizuka M., and Isaka S., “Fuzzy gain scheduling of PID 

controllers,” IEEE Trans. Syst. Man. Cybern., Vol. 23, No. 5, pp. 1392–1398, (1993). 

4. Wang X., Chen X., Jia W., Sun Y., and Pu H., “Forward kinematics analysis and 

3-dimmision gait simulation of a MiniQuad walking robot,” in 2007 International 

Conference on Mechatronics and Automation, pp. 1932–1937, (2007). 

5. Elgazzar, Shadia. “Efficient kinematic transformations for the PUMA 560 

robot.” IEEE J. Robotics Autom. 1,pp.142-151, (1985).doi: 10.1109/JRA. 1985. 

1087013 

6. Chakraborty, B., Mukhopadhyay, R., Chattopadhyay, P.," Multi-objective 

optimization for complex trajectory tracking of 6-DOF robotic arm manipulators", 

In: Das, A.K., Nayak, J., Naik, B., Vimal, S., Pelusi, D. (eds) Computational 

intelligence in pattern recognition. CIPR 2022. Lecture Notes in Networks and 

Systems, vol 480. Springer, Singapore, (2022). https://doi.org/10.1007/978-981-19-

3089-8_48 

7. B. Melih Yilmaz , Enver Tatlicioglu Aydogan Savran, and Musa Alci” Self-

adjusting fuzzy logic based control of robot manipulators in task space”,  IEEE 

TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Vol. 69, No. 2,pp. 1620-1629, 

FEBRUARY (2022). 

8. Feng, Zhi & Hu, Guoqiang & Sun, Yajuan & Soon, Jeffrey.," An overview of 

collaborative robotic manipulation in multi-robot systems", Annual Reviews in 

Control. 49, (2020). 10.1016/j.arcontrol.2020.02.002. 

9. Li, Jianfei & Liu, Li & Wang, Yaobing & Liang, Wenyuan." Adaptive hybrid 

impedance control of robot manipulators with robustness against environment's 

uncertainties", pp. 1846-1851, (2015). 10.1109/ICMA.2015.7237767. 

10. Chen J. and Tao G., "Adaptive control of robot manipulators in varying 

environments", Systems and Information Engineering Design Symposium (SIEDS), 

Charlottesville, VA, USA, pp. 211-216, (2022) doi: 10.1109/SIEDS55548.2022. 

9799418. 

11. Alassar A. Z., Abuhadrous I. M., and Elaydi H. A., "Modeling and control of 5 

DOF robot arm using supervisory control," 2010 The 2nd International Conference 

https://doi.org/10.1109/JRA.1985.1087013
https://doi.org/10.1109/JRA.1985.1087013


 

 

 

on Computer and Automation Engineering (ICCAE), Singapore, pp. 351-355, (2010), 

doi: 10.1109/ICCAE.2010.5451398. 

12. Soh A. C., Alwi E. A., Rahman R. Z. A., and Fey L. H., “Effect of fuzzy logic 

controller implementation on a digitally controlled robot movement,” Kathmandu 

Univ. J. Sci. Eng. Technol., Vol. 4, No. 1, pp. 28–39, (2008). 

13. Khoury G. M., Saad M., Kanaan H. Y., and Asmar C., “Fuzzy PID control of a 

five DOF robot arm,” J. Intell. Robot. Syst., Vol. 40, No. 3, pp. 299–320, (2004). 

14. Anavatti S. G., Salman S. A., and Choi J. Y., “Fuzzy + PID controller for robot 

manipulator,” CIMCA 2006 Int. Conf. Comput. Intell. Model. Control Autom. 

Jointly with IAWTIC 2006 Int. Conf. Intell. Agents Web Technol.(2006), doi: 

10.1109/CIMCA.2006.103. 

15. Bekit B. W., Seneviratne L. D., Whidborne J. F., and Althoefer K., “Fuzzy PID 

tuning for robot manipulators,” in IECON’98. Proceedings of the 24th Annual 

Conference of the IEEE Industrial Electronics Society (Cat. No. 98CH36200), Vol. 4, 

pp. 2452–2457, (1998). 

16. Delibaşı A., Türker T., and Cansever G., “Real–time DC motor position control 

by fuzzy logic and PID controllers using Labview.” Yildiz Technical University, 

(2010). http://www.yildiz.edu.tr/~adelibas/pdf/AD_101_mechrob04.pdf . 

17. Visioli A., “Tuning of PID controllers with fuzzy logic,” IEE Proceedings-Control 

Theory Appl., Vol. 148, No. 1, pp. 1–8, (2001). 

18. Banga V. K., Kaur J., Kumar R., and Singh Y., “Modeling and simulation of 

robotic arm movement using soft computing,” World Acad. Sci. Eng. Technol., vol. 

51, pp. 616–619, (2011). 

19. Tao Y., Zheng, Jiaqi,  Lin, Yuanchang, Wang, Tianmiao, Xiong, Hegen, He, 

Guotian, Xu, Dong, “Fuzzy PID control method of deburring industrial robots,” J. 

Intell. Fuzzy Syst., Vol. 29, No. 6, pp. 2447–2455, (2015), DOI: 10.3233/IFS-151945.  

20. Tavoosi J., Jokandan A. S., and Daneshwar M. A., “A new method for position 

control of a 2-DOF robot arm using neuro-fuzzy controller,” Indian J. Sci. Technol., 

Vol. 5, No. 3, pp. 2253–2257, (2012). 

21. Baghli, F.Z., El Bakkali, L. (2016). Design and simulation of robot manipulator 

position control system based on adaptive fuzzy PID controller. In: Zeghloul, S., 

Laribi, M., Gazeau, JP. (eds) Robotics and Mechatronics. Mechanisms and Machine 

Science, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-22368-1_24 

22. Ghaleb N. M. and Aly A. A., “Modeling and control of 2-DOF robot arm,” Int. J. 

Emerg. Eng. Res. Technol., Vol. 6, No. 11, pp. 24–31, (2018). 

23. Kabir U., Hamza M. F., Haruna A., and Shehu G. S., “Performance analysis of 

PID, PD and fuzzy controllers for position control of 3-DOF robot manipulator,” 

arXiv Prepr. arXiv1910.12076, (2019). 

24. Ying Liu, Du Jiang, Juntong Yun, Ying Sun, Cuiqiao Li, Guozhang Jiang, Jianyi 

Kong, Bo Tao, and  Zifan Fang, “Self-tuning control of manipulator positioning based 

on fuzzy PID and PSO algorithm”, Front. Bioeng. Biotechnol., 11 February 2022, Sec. 

Bionics and Biomimetics, Vol. 9,  (2021), DOI: https://doi.org/10.3389/fbioe. 2021. 

817723 

25. El-Khatib M. F., and Maged S. A., “Low level position control for 4-DOF arm 

robot using fuzzy logic controller and 2-DOF PID controller,” 2021 Int. Mobile, 

Intelligent, Ubiquitous Comput. Conf. MIUCC 2021, pp. 258–262, (2021), DOI: 

10.1109/MIUCC52538.2021.9447617. 

https://content.iospress.com/search?q=author%3A%28%22Zheng,%20Jiaqi%22%29
https://content.iospress.com/search?q=author%3A%28%22Lin,%20Yuanchang%22%29
https://content.iospress.com/search?q=author%3A%28%22Wang,%20Tianmiao%22%29
https://content.iospress.com/search?q=author%3A%28%22Xiong,%20Hegen%22%29
https://content.iospress.com/search?q=author%3A%28%22He,%20Guotian%22%29
https://content.iospress.com/search?q=author%3A%28%22He,%20Guotian%22%29
https://content.iospress.com/search?q=author%3A%28%22Xu,%20Dong%22%29
https://loop.frontiersin.org/people/1513782
https://loop.frontiersin.org/people/1488063
https://loop.frontiersin.org/people/1513780
https://loop.frontiersin.org/people/1493953
https://loop.frontiersin.org/people/1488544
https://loop.frontiersin.org/people/1563760


 

 

 

26. Solouki M., Ansarin M., Torabi M., Nematia A., and Bakhshizadeh Y., 

“Optimization of PID controller with supervisory fuzzy control for industrial robots,” 

J. Artif. Intell. Electr. Eng., Vol. 7, No. 28, pp. 27–36, (2019). 

27. Amin Rashidifar M., Amin Rashidifar A., Ahmadi D., “Modeling and control of 

5DOF robot arm using fuzzy logic supervisory control,” International Journal of 

Robotics and Automation (IJRA), Vol. 2, No. 2, June (2013), pp. 56~68, ISSN: 2089-

4856 

28. Kharidege A. , Jianbiao D., And  Zhang Y., " Performance study of PID and fuzzy 

controllers for position control of 6 DOF arm manipulator with various 

defuzzification strategies", MATEC Web of Conferences, 77, 01011, (2016), doi: 

10.1051/ 010 (2016)  

29. Dulaidi D., “Modeling and control of 6 DOF industrial robot using fuzzy logic 

controller.” MSC thesis, University of Tun Hussein Onn Malaysia, (2014). 

30. Tavoosi J., Alaei M., and Jahani B., “Neuro–fuzzy controller for position control 

of robot arm,” Pap. Ref., No. 0113–795, pp. 12–17, (2011). 

31. Zhu Q., “Real-time DC motor position control by (FPID) controllers and design 

(FLC) using labview software simulation,” in 2010 The 2nd International Conference 

on Computer and Automation Engineering (ICCAE), Vol. 2, pp. 417–420, (2010). 

32. Kuo Y.-L., and Liu S.-M., “Position control of a serial manipulator using fuzzy-

PID controllers,” Int. J. Autom. Smart Technol., Vol. 5, No. 1, pp. 18–26, (2015). 

33. Carignan C. R., Gefke G. G., and Roberts B. J., “Intro to space mission design: 

space robotics,” in Seminar of Space Robotics, University of Maryland, Baltimore, 

Vol. 26, (2002). 

34. Boyce R. and Mull J., “Complying with the occupational safety and health 

administration: Guidelines for the dental office,” Dent. Clin. North Am., Vol. 52, No. 

3, pp. 653–668, (2008). 

35. Rahman A., Khan A. H., Ahmed T., and Sajjad M., “Design, analysis and 

implementation of a robotic arm- the animator”, American Journal of Engineering 

Research (AJER):Vol. 2, Issue 10, pp-298-307, (2013). www.ajer.org. 

36. Elfasakhany A., Yanez E., Baylon K., and Salgado R., “Design and development 

of a competitive low-cost robot arm with four degrees of freedom,” Mod.Mech. Eng., 

vol. 1, No. 2, pp. 47–55, (2011), DOI: 10.4236/mme.2011.12007. 

37.  Crage J.J., “Introduction to robotics mechanics and control”, 3rd Edition, 

Prentice Hall, (2005). 

38. Spong M.W., Hutchinson S., and Vidyasagar M., “Robot modeling and control”, 

1st Edition, Jon Wiley & Sons, Inc, (2005).  

39. Angeles J., “Fundamentals of robotic mechanical systems: theory, methods, and 

algorithms”, 2nd Edition, (2003). 

40. Gouda Mohamed M., Said Fatma El-Zahraa, Elmoushi El Sayed, and 

Abdelwahab Sabreen A.,” Performance analysis and improvement of robot arm 

5DOF using PID and fuzzy controllers: A comparative study”, Prot said Engineering 

Research Journal, Vol. 26, No. 3, pp. 110-133, (2022). 

DOI: 10.21608/PSERJ.2022.132466.1177 

41. Tokarz, Krzystof, and Kieltyka, Slawosz., “Geometric approach to inverse 

kinematics for arm manipulator”, International conference on systems- Proceedings-

1, (2010). 

https://doi.org/10.21608/pserj.2022.132466.1177


 

 

 

42. Meriam J.L., Kraige L.G.,”Engineering mechanics: Statics”7th edition. 

B07NWGC2L9, Wiley india Pvt. Ltd; Classic Edition (1 January 2013) ISBN: 978-0-

470-61473-0. ISBN: 978-0-470-91787-9 (BRV).   

43. Armstrong-Helouvry, B., Dupont, P., and Canudas-de-Wit, C., “ A survey of 

models, analysis tools and compensation methods for the control of machines with 

friction”, Automatica, Vol. 30, No. 7, pp. 1083-1138, (1994). 

44. Olsson, H., Åström, K. J., Canudas de Wit, C., Gäfvert, M., & Lischinsky, P. 

“Friction models and friction compensation.”, European journal of control, Vol. 4, 

No. 3, pp. 176-195, (1998). 

45. Sciavicco, L., & Siciliano, B., “Modelling and control of robot manipulators.”, 

Springer Science & Business Media, (2012). 

46. Ziegler J.G. and Nichols N.B., “Optimum settings for automatic controllers,” 

Transaction American Society of Mechanical Engineering, Vol. 64, pp. 759–768, 

(1942). 

47. Venkateswara Rao V. M., “Performance analysis of speed control of DC motor 

using P, PI, PD and PID controllers”,  International Journal of Engineering Research 

& Technology (IJERT),Vol. 2, No. 5, pp. 60–66, (2013). 

48. Ahmad A. Mahfouz, Mohammed M. K., and Farhan A. Salem, “ Modeling, 

simulation and dynamics analysis issues of electric motor, for mechatronics 

applications, using different approaches and verification by MATLAB/Simulink”, 

I.J. Intelligent Systems and Applications, Vol. 05, pp. 39-57, (2013). DOI: 

10.5815/ijisa.2013.05.06. 

49. The MathWorks Inc. MATLAB 7.0 (R14SP2). The MathWorks Inc., (2005). 

50. Lee C.C., “Fuzzy logic in control systems: fuzzy logic controller-Part I”, IEEE 

Transactions on Systems, Man and Cybernetics., Vol. 20, No.2, pp. 404–418, 

March/April (1990). 

51. Mamdani E.H., “Applications of fuzzy logic to approximate reasoning using 

linguistic synthesis,” IEEE Transactions on Computers, Vol. 26, No. 12, pp. 1182–

1191, Dec. (1977). 

52. Feng G., “A survey on analysis and design of model-based fuzzy control systems,” 

IEEE Trans. Fuzzy Syst., Vol. 14, No. 5, pp. 676–697, (2006). 

53. Hou, Zhongsheng & Wang, Zhuo., “From model-based control to data-driven 

control: Survey, classification and perspective”, Information Sciences. Vol. 235. PP. 

3–35, (2012). DOI: 10.1016/j.ins.2012.07.014. 

 


