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  ABSTRACT   

  
This research presents a comprehensive neural network-based simulation to delve into the 

intricate relationship between waste tire rubber and polyester fiberglass composites. By 

meticulously investigating the effects of varying mesh sizes and volume percentages of 

rubber particles, the fabrication process utilizes hand lay-up and vacuum degassing to ensure 

optimal composite quality. The study aims to accurately predict the mechanical and dynamic 

properties of these composites. These properties, including ultimate tensile strength (UTS), 

strain, impact resistance, natural frequency, and damping factor, are critical determinants of 

the composite's performance in various applications.  A neural network model was 

meticulously crafted and trained using the backpropagation algorithm, with a mean squared 

error of 10-8. This exceptional accuracy underscores the model's ability to effectively capture 

the complex interactions between the composite components. The model demonstrated 

remarkable proficiency in predicting UTS, impact resistance, natural frequency, and damping 

factors, achieving regression coefficients of R= 96.30%, 96.50%, 97.80%, and 97.40%, 

respectively. Moreover, the strain prediction accuracy was commendable, with a regression 

coefficient of R= 94.20%.  These findings collectively underscore the immense potential of 

neural networks in optimizing the design of composite materials incorporating waste tire 

rubber. By leveraging the predictive capabilities of these models, researchers and engineers 

can develop sustainable materials that not only exhibit superior performance but also 

contribute to a more environmentally responsible future. The integration of waste tire rubber 

into composite materials offers a promising avenue for reducing waste and promoting circular 

economy principles. 
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محاكاة تأثير المطاط المستخرج من الإطارات المستعملة على المواد الموتلفة من البوليستر و الألياف الزجاجية  

 باستخدام الشبكة العصبية 

 أحـمد عــمر مــصلح  ،إبــراهــيم مـوســى إبــراهــيم ،تـامر ســمير مــحمود ،عــبدالـونـيسأحــمد ســـيد 

 .القاهرة، مصر ،14116، الـساحـل  ،جـامـعة بـــنهــا ،كـلـية الهــندسـة  ،قــسـم الهنــدسة المــيكانــيكية

 ahmed.abdallah18@feng.bu.edu.eg :*البريد الاليكتروني للباحث الرئيسي 

 لملخصا

- للبحث في العلاقة المعقدة بين المطاط المستخرج من الإطارات المستعملة ومواد البوليستر  يةهذا البحث يقدم محاكاة شاملة تعتمد على الشبكات العصب

مصنّعة باستخدام الترصيف اليدوي وإزالة .من خلال التحقيق الدقيق في تأثيرات الأحجام المتفاوتة للجزيئات المطاطية والنسب المئوية لحجمها،  .الزجاج

يهدف البحث إلى التنبؤ بدقة بالخصائص الميكانيكية والديناميكية لهذه المواد    لضمان جودة التصنيع.   الغازات في غرفة تفريغ للقضاء على فقاعات الهواء

تشمل هذه الخصائص القوة القصوى للشد، والاجهاد، ومقاومة الصدم، والتردد الطبيعي، وعامل التخميد، وهي عوامل حاسمة في أداء المواد  .المركبة
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تشير  10-8 قدره  خطأ تربيعي متوسط  مع  وتدريبه باستخدام خوارزمية الانتشار العكسي،    يةتم إنشاء نموذج الشبكة العصب  .المركبة في مختلف التطبيقات

بمقاومة أظهر النموذج كفاءة رائعة في التنبؤ   .هذه الدقة الاستثنائية إلى قدرة النموذج على التقاط التفاعلات المعقدة بين مكونات المواد المركبة بشكل فعال

علاوة  .على التوالي ٪97.40و   ٪97.80و   ٪96.50و   R = 96.30٪ ومقاومة الصدم والتردد الطبيعي وعوامل التخميد، محققاً معاملات الانحدارالشد  

في تحسين ية  الإمكانات الهائلة للشبكات العصب  تؤكد هذه النتائج مجتمعة  R = 94.20٪. مع معامل الانحدار  يدةعلى ذلك، كانت دقة التنبؤ بالانفعال ج

المستعملة الإطارات  من  المستخرج  المطاط  تستخدم  التي  المركبة  المواد  للباحثين   .تصميم  يمكن  النماذج،  لهذه  التنبؤية  القدرات  من  الاستفادة  من خلال 

يمثل دمج المطاط المستخرج من الإطارات   .والمهندسين تطوير مواد مستدامة لا تظهر فقط أداءً متفوقاً بل تساهم أيضًا في مستقبل أكثر مراعاة للبيئة

 المستعملة في المواد المركبة طريقاً واعداً للحد من النفايات وتعزيز مبادئ الاقتصاد الصديق للبيئة. 

ة  الميكانيكي  خواصال  ⸲جزيئات مطاط الإطارات المستعملة    ⸲و الالياق زجاجية    مركبات البوليستر  ⸲  إعادة التدوير  ⸲ الشبكات العصبية    الكلمات المفتاحية :

 و ديناميكية. 

1. INTRODUCTION 
Neural networks, inspired by the biological architecture of the human brain, have emerged 

as a potent computational paradigm for modeling and predicting intricate systems [1]. Within the 

domain of materials science and engineering, these networks have exhibited exceptional 

proficiency in processing voluminous datasets, discerning complex correlations, and generating 

precise forecasts [2,3]. By capitalizing on their data-driven learning capabilities, neural networks 

offer the potential to accelerate materials development, minimize costs, and expand the exploration 

of the design space [4]. 

Artificial neural networks (ANNs) have garnered significant attention as a computational 

paradigm capable of learning complex patterns from data. These networks are trained on datasets 

to establish intricate relationships among input and output variables. Once trained, ANNs can 

generalize their knowledge to predict or classify new, unseen data. Their adaptability and ability to 

handle complex, nonlinear problems have made them invaluable tools in various domains. Notably, 

ANNs have demonstrated efficacy in modeling and predicting the properties of materials, such as 

composites [5].  

The escalating global waste crisis, characterized by the persistent accumulation of non-

biodegradable materials, demands innovative strategies for environmental remediation and 

sustainable resource management [6]. Waste tires, a prominent component of this issue, pose a 

significant challenge owing to their recalcitrance to degradation and associated environmental risks 

[7,8]. Exploring the potential of repurposing waste tire rubber particles as reinforcement within 

polyester-fiberglass composite laminates is an approach to address this environmental concern [9], 

[10]. 

Composite materials have garnered considerable attention across diverse industries due to 

their exceptional strength-to-weight ratios and design flexibility. Nevertheless, the manufacturing 

processes of these materials often rely on non-renewable resources [11]. Polyester fiberglass 

composites are advanced materials comprising a matrix of thermosetting polyester resin reinforced 

with continuous or discontinuous glass fibers [12]. The glass fibers, typically composed of E-glass, 

impart exceptional tensile strength, stiffness, and dimensional stability to the composite. The 

polyester resin, acting as a binding medium, encapsulates the fibers, facilitating load transfer and 

providing corrosion resistance, chemical inertness, and dielectric properties [13]. The resulting 

composite exhibits a complex microstructure characterized by the interphase region between the 

fiber and resin, significantly influencing the material's overall mechanical behavior. This unique 

combination of properties renders polyester fiberglass composites as versatile engineering 

materials with applications spanning from automotive and aerospace to marine and construction 

industries [14]. 

The constitutive behavior of nitrile butadiene rubber under varying hardness, strain rate, 

and strain conditions has been studied. Results indicate a pronounced strain-dependent Young's 

modulus, amplified by increased hardness and strain rate. The proposed artificial neural network 
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architecture comprising two hidden layers, with twelve and seven neurons respectively, 

demonstrated optimal performance in this study. A novel self-adjusting particle swarm optimization 

algorithm was employed to dynamically optimize the inertial and learning factors during the 

network training process, resulting in accelerated convergence and enhanced accuracy. The 

proposed model achieved a mean squared error of 1.607 × 10-4 on the testing set, corresponding to 

a root mean squared error of 1.268 × 10-2 and a coefficient of determination of 0.9917. Compared 

to traditional artificial neural networks and those optimized using standard particle swarm 

optimization, the proposed model exhibited significant improvements in mean squared error, with 

reductions of 56.5% and 26.5%, respectively. Cross-validation results corroborated the model's 

reliability, indicating consistent predictive performance across different data subsets [15]. 

A convolutional neural network (CNN) model has been developed to accurately predict the 

mechanical properties (modulus, strength, and toughness) of two-dimensional checkerboard 

composites. The model was trained on finite element data and subsequently validated on unseen 

data, demonstrating robust predictive capabilities. By integrating this CNN model with a genetic 

algorithm optimizer, optimal composite configurations for enhanced performance were identified. 

These findings highlight the potential of CNN-based approaches to accelerate materials design and 

optimization [16]. 

 Constitutive models, including Arrhenius-type and artificial neural network (ANN), were 

developed based on experimental stress-strain data to investigate the superplastic deformation 

behavior of near-α titanium alloy (Ti-2.5Al-1.8Mn) within the temperature range of 840-890 °C 

and strain rate range of 2x10-4 to 8x10-4 s-1. Comparative analysis revealed that the ANN model 

exhibited superior accuracy and efficiency in predicting the alloy's superplastic flow behavior 

under modeled conditions. However, the Arrhenius-type model demonstrated better predictive 

capabilities for unmodeled conditions, indicating potential limitations of the ANN model in 

extrapolating to new data regimes [17]. 

The efficacy of various neural network training algorithms in predicting the bending 

strength and hardness of particulate-reinforced (Al-Si-Mg) metal matrix composites (MMCs) has 

been explored. The influence of the number of neurons in the hidden layer was also assessed. 

Results indicate that neural networks trained using different algorithms can accurately predict these 

properties, offering a potential alternative to time-consuming experimental methods. Among the 

tested algorithms, Levenberg-Marquardt demonstrated the fastest convergence and highest 

prediction accuracy, suggesting its suitability for modeling the mechanical behavior of this material 

system [18]. 

The research aims to address the development of a neural network model capable of 

predicting the dynamic and mechanical properties of polyester-fiberglass composites reinforced 

with varying amounts of waste tire rubber particles. By correlating material composition, 

processing parameters, and experimental data, this study seeks to provide valuable insights into 

composite properties for specific applications.  

2. Materials and Methods 

The materials used in this study were unsaturated polyester resin, recycled rubber particles, 

and fiberglass. The resin, sourced from SUNPOL in Turkey, had a 1.23 g/cm³ density. Recycled 

rubber particles, with sizes of 40 mesh (0.420 mm) and 20 mesh (0.841 mm), which were added in 

different volume percentages of 10 %, 20 %, and 30 % were obtained from HOPPEC in Egypt and 

exhibited an average density of 0.4 g/cm³. Fiberglass, product number E01, was supplied by Jushi 

Chinese-Egyptian company. That had an area weight of 300 g/m² and a roll width of 1524 mm. 
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Composite laminates were fabricated using a hand lay-up technique, a common method for 

creating custom composite parts [19]. This process involved constructing a silicone rubber mold 

based on standard dimensions for tensile and impact specimens. The polyester resin was then mixed 

with a hardener and degassed before being poured into the mold to cure. To incorporate rubber 

particles, the resin mixture was prepared again, with the particles added before the curing process. 

Finally, fiberglass was positioned within the mold, and the resin mixture was applied to create the 

desired composite structure [20]. 

The mechanical properties of the composites were determined through standardized testing 

procedures. Tensile strength was evaluated using a Zwick universal tensile testing machine 

according to ASTM D 3039 / D 3039M. Rectangular specimens with dimensions of 250x25x3 mm 

were subjected to a tensile load at a constant crosshead speed of 2 mm/min [21]. Impact resistance 

was assessed using a JB-300B impact tester following ASTM D 6110-04. Notched specimens with 

dimensions of 127x13x7 mm were employed for these tests. 

A non-destructive free vibration test, following ASTM E756-05 guidelines, was conducted 

to determine the stiffness and damping properties of the composite materials. A rectangular 

composite beam was subjected to controlled impacts and its vibrational response was measured 

using specialized equipment. The data obtained was analyzed using modal analysis software to 

extract key dynamic parameters. These findings were then correlated with the material properties. 

The simulation and modeling have been done using MATLAB software The neural 

network, was constructed with two input nodes, each representing a significant input variable. 

MATLAB 2021b's neural network toolkit was employed to train the network  

3. Results and Discussion  

3.1 . Designing and training of neural networks. 

A multilayer perceptron (MLP) is a feedforward artificial neural network model that 

employs multiple layers of interconnected nodes to map input data to corresponding outputs. Each 

node, or neuron, within a layer, is fully connected to the nodes in the subsequent layer, except for 

the input nodes. Non-linear activation functions are applied to each neuron to introduce complexity 

and enable the network to learn non-linear relationships. MLPs are typically trained using 

supervised learning techniques, such as backpropagation, to adjust the weights and biases of the 

connections. Unlike the standard linear perceptron, MLPs can effectively handle non-linearly 

separable data. 

Artificial Neural Networks (ANNs) are trained through backpropagation (BP) is the 

predominant algorithm employed for training Artificial Neural Networks (ANNs), owing to its 

efficacy in adjusting network parameters through gradient descent optimization [22]. The process 

involves forward propagation of input training patterns, subsequent error calculation, 

backpropagation of the error, and weight adjustment [17, 23]. A single-hidden-layer ANN possesses 

the capability to approximate any continuous function, making it a versatile tool for addressing 

numerous practical problems. 

The influence of the hidden layer's neuron count on network performance was investigated, 

corroborating findings [24]. A simple ANN architecture exhibited limitations in capturing the 

intricate relationship between input and target variables, leading to convergence issues and 

potential overfitting [25]. To optimize the model, a systematic exploration of various neuron 

configurations was undertaken. Commencing with a single neuron, the number of neurons was 

incrementally increased through a trial-and-error approach. The optimal number of hidden layer 
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neurons was determined by minimizing the mean squared error (MSE), This analysis revealed that 

an architecture with 20 neurons yielded the lowest MSE, indicating superior performance. 

A standard artificial neural network (ANN) architecture is typically developed through a 

series of sequential stages. These steps often involve (a) data acquisition and collection, (b) 

identification of input and output variables, (c) data analysis and preprocessing, (d) ANN training, 

(e) model evaluation with a testing dataset, and (f) performance assessment of the trained ANN 

[26]. 

Both input and target variables were normalized within the range from 0 to 1 before training 

the supposed model. It was necessary to achieve the network in the right form to be read. As a 

result, the initial data should be unified to make the ANN training more efficient [27]. The typical 

method for unifying is expressed in the following equation. 

𝑋′ =  
𝑥 − 0.95 𝑥𝑚𝑖𝑛

1.05 𝑥𝑚𝑎𝑥 − 0.95 𝑥𝑚𝑖𝑛
 

Define Xmin and Xmax as the bounds of the data variable X. The associated data 

corresponding to X is denoted by X'. 
An artificial neural network (ANN) was employed to predict the influence of rubber particle 

content and size on the composite material's mechanical properties, including ultimate tensile 

strength, strain, impact resistance, and dynamic behavior characterized by damping factors and 

natural frequency. After trying different algorithms and settings for the designed network, the 

network was trained with setting parameters shown in Table 1. Using a backpropagation algorithm, 

optimizing weights through iterative adjustments to minimize mean squared error (MSE) to 10-8. 

A tan-sigmoid transfer function was implemented for the two hidden layers comprising 20 neurons 

each, while a PURELIN function was used for the five output neurons. The network's architecture 

shown in Figure 1 was configured with two input neurons, corresponding to the relevant input 

parameters. The training was conducted with regression results shown in Figure 2, converging after 

approximately 8000 epochs. The model's efficacy was evaluated based on its ability to predict 

experimental data accurately. 

Table 1. The setting of the designed ANN 

Networks parameters Settings 

Network algorithms Back-Propagation 

Training function Levenberg-Marquardt (TRAINLM) 

Performance Mean Square Error (MSE) 

Epoch 8000 

Goal 1 × 10−8 

The function of the hidden layer Tan-sigmoid (TANSIG) 

Function of output PURELIN 
  

 

Figure 1. ANNs block diagram for mechanical and dynamic tests 
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Figure 2. ANNs training regressions  

3.2. Verification of ANN model.  

The model's performance was assessed using standard statistical metrics, including the 

correlation coefficient (R), average absolute relative error (AARE), and root mean square error 

(RMSE) as shown in the given equations. 

𝑅 =
∑𝑖=1

𝑁  (𝐸𝑖 − �̅�) −  (𝑃𝑖 − �̅�)

√∑𝑖=1
𝑁  (𝐸𝑖 − �̅�)2 ∑𝑖=1

𝑁  (𝑃𝑖 − �̅�)2 

 

𝐴𝐴𝑅𝐸 =
1

𝑁
∑ |

𝐸𝑖 −  𝑃𝑖

𝐸𝑖
|

𝑁

𝑖=0

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑(𝐸𝑖 − 𝑃𝑖)2

𝑛

𝑖=0

 

The correlation coefficient, R, is a statistical measure that assesses the strength and direction 

of the linear relationship between experimental mechanical and dynamic properties results (Ei) and 

fitted results (Pi) derived from the modified constitutive equation. E and P represent the mean 

values of the experimental and fitted results, respectively. A significant number of data points (N) 

are essential for a reliable R-value. Insufficient data can lead to spurious relationships between 

experimental and predicted stresses. The average absolute relative error (AARE) is another 
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unbiased statistical parameter that quantifies the accuracy of the equation's predictions, calculated 

on a term-by-term basis [28]. 

The AARE and RMSE values with correlation coefficient (R) in Table 2. Figure 3 shows 

the fitting of linear relation and R-values of the tested mechanical and dynamic values.  

Table 2. Standard statistical metrics of model performance. 

Property Ultimate Tensile 

Strength (UTS)  

Strain Impact 

Resistance (I.R) 

Natural 

Frequency 

(N.F) 

Damping 

Factor 

(D.F) 

AARE 3.51% 2.46% 2.22% 1.39% 5.20% 

RMSE 0.49 0.074 0.995 1.92 0.0032 

R 96.30% 94.20% 96.50% 97.80% 97.40% 

 

  

  

 

Figure 3. The linear fitting of (A) Ultimate tensile ANN predicted values (B) strain ANN predicted values 

(C) impact resistance ANN predicted values (D) natural frequency ANN predicted values (E) damping 

factor ANN predicted values. 
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3.3. The validation of ANN model 

The following figure shows the impact of rubber particles' mesh size and volume 

percentages on the mechanical and dynamic properties of the investigated composite.  

 

  

  

 

Figure 4. Comparison of results between experimental and ANN (A) Ultimate tensile values (B) strain 

values (C) impact resistance values (D) natural frequency values (E) damping factor values. 
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The neural network (NN) predictions were found to be in close alignment with the 

experimental results, suggesting a strong correlation between the model's output and the observed 

data. Results indicate that while a small amount of rubber can enhance tensile strength, excessive 

rubber content can weaken the composite due to disrupted stress transfer between fibers and matrix. 

Larger mesh sizes are more tolerant of higher rubber content, likely due to improved particle 

dispersion. However, an optimal balance exists between rubber content and mesh size for 

maximizing tensile strength. 

The strain of fiberglass-polyester composites with rubber particles is influenced by particle 

size and volume fraction. Larger particles generally decrease strain at higher concentrations, while 

smaller particles can exhibit optimal strain at moderate levels. Excessive rubber content, regardless 

of particle size, can negatively impact strain. 

Regarding impact resistance, rubber addition generally improves impact strength at low 

rubber contents. However, the impact decreases at higher levels, potentially due to void formation 

and weakened interfacial bonds. Mesh size also plays a role, with larger mesh sizes showing a more 

pronounced reduction in impact strength at high rubber contents. Finally, rubber inclusion 

consistently reduces the natural frequency and enhances the damping ratio, suggesting improved 

vibration absorption. The effect of mesh size on these properties is less pronounced, with some 

exceptions. 

Conclusions 

In this research, the prediction of mechanical and dynamic properties resulting from 

changes in mesh sizes and volume percentages of rubber particles in polyester fiberglass composite 

laminates has been performed. The following conclusions are obtained. 

• An artificial neural network was designed to predict the mechanical properties of composite 

materials based on rubber particle content and size. Trained using backpropagation and 

optimized with a mean squared error of 10-8, the network accurately predicted experimental 

data, demonstrating its potential for optimizing composite material design. 

• The model's predictive capabilities are impressive, particularly in predicting ultimate tensile 

strength, impact resistance, and natural frequency, as evidenced by the exceptionally low 

absolute average relative error (AARE) of 3.51%, 2.22 %, and 1.39 % and root mean 

squared error (RMSE) of 0.49, 0.995, and 1.92, and the strong correlations of R= 96.3%, 

96.5 % and 97.8% respectively. The model's performance in predicting strain and damping 

factor is commendable, with AARE of 2.46 % and 5.20 %, low RMSE of 0.074 and 0.0032, 

and strong correlations of R= 94.20 % and 97.40% respectively.  

The artificial neural network model demonstrated significant efficacy in predicting the 

mechanical and dynamic properties of the composite and provided valuable insights into the 

correlation between rubber particle content and size. However, the ANN model's generalizability 

may be constrained by factors such as the quality and quantity of training data, material 

composition, composite preparation conditions, and model complexity.  
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