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ABSTRACT

This research presents a comprehensive neural network-based simulation to delve into the
intricate relationship between waste tire rubber and polyester fiberglass composites. By
meticulously investigating the effects of varying mesh sizes and volume percentages of
rubber particles, the fabrication process utilizes hand lay-up and vacuum degassing to ensure
optimal composite quality. The study aims to accurately predict the mechanical and dynamic
properties of these composites. These properties, including ultimate tensile strength (UTS),
strain, impact resistance, natural frequency, and damping factor, are critical determinants of
the composite's performance in various applications. A neural network model was
meticulously crafted and trained using the backpropagation algorithm, with a mean squared
error of 108, This exceptional accuracy underscores the model's ability to effectively capture
the complex interactions between the composite components. The model demonstrated
remarkable proficiency in predicting UTS, impact resistance, natural frequency, and damping
factors, achieving regression coefficients of R= 96.30%, 96.50%, 97.80%, and 97.40%,
respectively. Moreover, the strain prediction accuracy was commendable, with a regression
coefficient of R= 94.20%. These findings collectively underscore the immense potential of
neural networks in optimizing the design of composite materials incorporating waste tire
rubber. By leveraging the predictive capabilities of these models, researchers and engineers
can develop sustainable materials that not only exhibit superior performance but also
contribute to a more environmentally responsible future. The integration of waste tire rubber
into composite materials offers a promising avenue for reducing waste and promoting circular
economy principles.

KEYWORDS: Neural Networks, Recycling, Polyester-Fiberglass Composites,
Waste Tire Rubber Particles, Mechanical and Dynamic Properties.
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Neural Network-Based Simulation of the Influence of Waste Tire Rubber on Polyester-Fiberglass Composites
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1. INTRODUCTION

Neural networks, inspired by the biological architecture of the human brain, have emerged
as a potent computational paradigm for modeling and predicting intricate systems [1]. Within the
domain of materials science and engineering, these networks have exhibited exceptional
proficiency in processing voluminous datasets, discerning complex correlations, and generating
precise forecasts [2,3]. By capitalizing on their data-driven learning capabilities, neural networks
offer the potential to accelerate materials development, minimize costs, and expand the exploration
of the design space [4].

Artificial neural networks (ANNs) have garnered significant attention as a computational
paradigm capable of learning complex patterns from data. These networks are trained on datasets
to establish intricate relationships among input and output variables. Once trained, ANNs can
generalize their knowledge to predict or classify new, unseen data. Their adaptability and ability to
handle complex, nonlinear problems have made them invaluable tools in various domains. Notably,
ANNSs have demonstrated efficacy in modeling and predicting the properties of materials, such as
composites [5].

The escalating global waste crisis, characterized by the persistent accumulation of non-
biodegradable materials, demands innovative strategies for environmental remediation and
sustainable resource management [6]. Waste tires, a prominent component of this issue, pose a
significant challenge owing to their recalcitrance to degradation and associated environmental risks
[7,8]. Exploring the potential of repurposing waste tire rubber particles as reinforcement within
polyester-fiberglass composite laminates is an approach to address this environmental concern [9],
[10].

Composite materials have garnered considerable attention across diverse industries due to
their exceptional strength-to-weight ratios and design flexibility. Nevertheless, the manufacturing
processes of these materials often rely on non-renewable resources [11]. Polyester fiberglass
composites are advanced materials comprising a matrix of thermosetting polyester resin reinforced
with continuous or discontinuous glass fibers [12]. The glass fibers, typically composed of E-glass,
impart exceptional tensile strength, stiffness, and dimensional stability to the composite. The
polyester resin, acting as a binding medium, encapsulates the fibers, facilitating load transfer and
providing corrosion resistance, chemical inertness, and dielectric properties [13]. The resulting
composite exhibits a complex microstructure characterized by the interphase region between the
fiber and resin, significantly influencing the material's overall mechanical behavior. This unique
combination of properties renders polyester fiberglass composites as versatile engineering
materials with applications spanning from automotive and aerospace to marine and construction
industries [14].

The constitutive behavior of nitrile butadiene rubber under varying hardness, strain rate,
and strain conditions has been studied. Results indicate a pronounced strain-dependent Young's
modulus, amplified by increased hardness and strain rate. The proposed artificial neural network
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architecture comprising two hidden layers, with twelve and seven neurons respectively,
demonstrated optimal performance in this study. A novel self-adjusting particle swarm optimization
algorithm was employed to dynamically optimize the inertial and learning factors during the
network training process, resulting in accelerated convergence and enhanced accuracy. The
proposed model achieved a mean squared error of 1.607 x 10 on the testing set, corresponding to
a root mean squared error of 1.268 x 10 and a coefficient of determination of 0.9917. Compared
to traditional artificial neural networks and those optimized using standard particle swarm
optimization, the proposed model exhibited significant improvements in mean squared error, with
reductions of 56.5% and 26.5%, respectively. Cross-validation results corroborated the model's
reliability, indicating consistent predictive performance across different data subsets [15].

A convolutional neural network (CNN) model has been developed to accurately predict the
mechanical properties (modulus, strength, and toughness) of two-dimensional checkerboard
composites. The model was trained on finite element data and subsequently validated on unseen
data, demonstrating robust predictive capabilities. By integrating this CNN model with a genetic
algorithm optimizer, optimal composite configurations for enhanced performance were identified.
These findings highlight the potential of CNN-based approaches to accelerate materials design and
optimization [16].

Constitutive models, including Arrhenius-type and artificial neural network (ANN), were
developed based on experimental stress-strain data to investigate the superplastic deformation
behavior of near-a titanium alloy (Ti-2.5A1-1.8Mn) within the temperature range of 840-890 °C
and strain rate range of 2x10* to 8x10* s™!. Comparative analysis revealed that the ANN model
exhibited superior accuracy and efficiency in predicting the alloy's superplastic flow behavior
under modeled conditions. However, the Arrhenius-type model demonstrated better predictive
capabilities for unmodeled conditions, indicating potential limitations of the ANN model in
extrapolating to new data regimes [17].

The efficacy of various neural network training algorithms in predicting the bending
strength and hardness of particulate-reinforced (Al-Si-Mg) metal matrix composites (MMCs) has
been explored. The influence of the number of neurons in the hidden layer was also assessed.
Results indicate that neural networks trained using different algorithms can accurately predict these
properties, offering a potential alternative to time-consuming experimental methods. Among the
tested algorithms, Levenberg-Marquardt demonstrated the fastest convergence and highest
prediction accuracy, suggesting its suitability for modeling the mechanical behavior of this material
system [18].

The research aims to address the development of a neural network model capable of
predicting the dynamic and mechanical properties of polyester-fiberglass composites reinforced
with varying amounts of waste tire rubber particles. By correlating material composition,
processing parameters, and experimental data, this study seeks to provide valuable insights into
composite properties for specific applications.

2. Materials and Methods

The materials used in this study were unsaturated polyester resin, recycled rubber particles,
and fiberglass. The resin, sourced from SUNPOL in Turkey, had a 1.23 g/cm? density. Recycled
rubber particles, with sizes of 40 mesh (0.420 mm) and 20 mesh (0.841 mm), which were added in
different volume percentages of 10 %, 20 %, and 30 % were obtained from HOPPEC in Egypt and
exhibited an average density of 0.4 g/cm?. Fiberglass, product number E01, was supplied by Jushi
Chinese-Egyptian company. That had an area weight of 300 g/m? and a roll width of 1524 mm.
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Composite laminates were fabricated using a hand lay-up technique, a common method for
creating custom composite parts [19]. This process involved constructing a silicone rubber mold
based on standard dimensions for tensile and impact specimens. The polyester resin was then mixed
with a hardener and degassed before being poured into the mold to cure. To incorporate rubber
particles, the resin mixture was prepared again, with the particles added before the curing process.
Finally, fiberglass was positioned within the mold, and the resin mixture was applied to create the
desired composite structure [20].

The mechanical properties of the composites were determined through standardized testing
procedures. Tensile strength was evaluated using a Zwick universal tensile testing machine
according to ASTM D 3039 / D 3039M. Rectangular specimens with dimensions of 250x25x3 mm
were subjected to a tensile load at a constant crosshead speed of 2 mm/min [21]. Impact resistance
was assessed using a JB-300B impact tester following ASTM D 6110-04. Notched specimens with
dimensions of 127x13x7 mm were employed for these tests.

A non-destructive free vibration test, following ASTM E756-05 guidelines, was conducted
to determine the stiffness and damping properties of the composite materials. A rectangular
composite beam was subjected to controlled impacts and its vibrational response was measured
using specialized equipment. The data obtained was analyzed using modal analysis software to
extract key dynamic parameters. These findings were then correlated with the material properties.

The simulation and modeling have been done using MATLAB software The neural
network, was constructed with two input nodes, each representing a significant input variable.
MATLAB 2021b's neural network toolkit was employed to train the network

3. Results and Discussion

3.1. Designing and training of neural networks.

A multilayer perceptron (MLP) is a feedforward artificial neural network model that
employs multiple layers of interconnected nodes to map input data to corresponding outputs. Each
node, or neuron, within a layer, is fully connected to the nodes in the subsequent layer, except for
the input nodes. Non-linear activation functions are applied to each neuron to introduce complexity
and enable the network to learn non-linear relationships. MLPs are typically trained using
supervised learning techniques, such as backpropagation, to adjust the weights and biases of the
connections. Unlike the standard linear perceptron, MLPs can effectively handle non-linearly
separable data.

Artificial Neural Networks (ANNs) are trained through backpropagation (BP) is the
predominant algorithm employed for training Artificial Neural Networks (ANNs), owing to its
efficacy in adjusting network parameters through gradient descent optimization [22]. The process
involves forward propagation of input training patterns, subsequent error calculation,
backpropagation of the error, and weight adjustment [17, 23]. A single-hidden-layer ANN possesses
the capability to approximate any continuous function, making it a versatile tool for addressing
numerous practical problems.

The influence of the hidden layer's neuron count on network performance was investigated,
corroborating findings [24]. A simple ANN architecture exhibited limitations in capturing the
intricate relationship between input and target variables, leading to convergence issues and
potential overfitting [25]. To optimize the model, a systematic exploration of various neuron
configurations was undertaken. Commencing with a single neuron, the number of neurons was
incrementally increased through a trial-and-error approach. The optimal number of hidden layer
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neurons was determined by minimizing the mean squared error (MSE), This analysis revealed that
an architecture with 20 neurons yielded the lowest MSE, indicating superior performance.

A standard artificial neural network (ANN) architecture is typically developed through a
series of sequential stages. These steps often involve (a) data acquisition and collection, (b)
identification of input and output variables, (c) data analysis and preprocessing, (d) ANN training,
(e) model evaluation with a testing dataset, and (f) performance assessment of the trained ANN
[26].

Both input and target variables were normalized within the range from 0 to 1 before training
the supposed model. It was necessary to achieve the network in the right form to be read. As a
result, the initial data should be unified to make the ANN training more efficient [27]. The typical
method for unifying is expressed in the following equation.

x —0.95 x,in
"~ 1.05 X5 — 0.95 X i

Define Xmin and Xmax as the bounds of the data variable X. The associated data

XI

corresponding to X is denoted by X,

An artificial neural network (ANN) was employed to predict the influence of rubber particle
content and size on the composite material's mechanical properties, including ultimate tensile
strength, strain, impact resistance, and dynamic behavior characterized by damping factors and
natural frequency. After trying different algorithms and settings for the designed network, the
network was trained with setting parameters shown in Table 1. Using a backpropagation algorithm,
optimizing weights through iterative adjustments to minimize mean squared error (MSE) to 1078,
A tan-sigmoid transfer function was implemented for the two hidden layers comprising 20 neurons
each, while a PURELIN function was used for the five output neurons. The network's architecture
shown in Figure 1 was configured with two input neurons, corresponding to the relevant input
parameters. The training was conducted with regression results shown in Figure 2, converging after
approximately 8000 epochs. The model's efficacy was evaluated based on its ability to predict
experimental data accurately.

Table 1. The setting of the designed ANN

Networks parameters Settings
Network algorithms Back-Propagation
Training function Levenberg-Marquardt (TRAINLM)
Performance Mean Square Error (MSE)
Epoch 8000
Goal 1x10°*
The function of the hidden layer Tan-sigmoid (TANSIG)
Function of output PURELIN
Hidden Layer 1 Hidden Layer 2 Output Layer
Input ! ! . utEn
. Y| 2Pl a5
2 B .J =
20 20 5

Figure 1. ANNSs block diagram for mechanical and dynamic tests
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Figure 2. ANNs training regressions

3.2. Verification of ANN model.

The model's performance was assessed using standard statistical metrics, including the
correlation coefficient (R), average absolute relative error (AARE), and root mean square error
(RMSE) as shown in the given equations.

~,(Ei—E)— (P—P)

(Z B— By 5, (- PY?
N
AARE = = Z |Ei _ P"|
" N y E;
1=

n
1
i=0

R =

The correlation coefficient, R, is a statistical measure that assesses the strength and direction
of the linear relationship between experimental mechanical and dynamic properties results (Ei1) and
fitted results (Pi) derived from the modified constitutive equation. E and P represent the mean
values of the experimental and fitted results, respectively. A significant number of data points (N)
are essential for a reliable R-value. Insufficient data can lead to spurious relationships between
experimental and predicted stresses. The average absolute relative error (AARE) is another
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unbiased statistical parameter that quantifies the accuracy of the equation's predictions, calculated
on a term-by-term basis [28].

The AARE and RMSE values with correlation coefficient (R) in Table 2. Figure 3 shows
the fitting of linear relation and R-values of the tested mechanical and dynamic values.

Table 2. Standard statistical metrics of model performance.

Property | Ultimate Tensile Strain Impact Natural Damping
Strength (UTS) Resistance (I.LR) | Frequency Factor
(N.F) (D.F)
AARE 3.51% 2.46% 2.22% 1.39% 5.20%
RMSE 0.49 0.074 0.995 1.92 0.0032
R 96.30% 94.20% 96.50% 97.80% 97.40%
& A B
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Figure 3. The linear fitting of (A) Ultimate tensile ANN predicted values (B) strain ANN predicted values
(C) impact resistance ANN predicted values (D) natural frequency ANN predicted values (E) damping
factor ANN predicted values.
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3.3. The validation of ANN model

The following figure shows the impact of rubber particles' mesh size and volume
percentages on the mechanical and dynamic properties of the investigated composite.
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Figure 4. Comparison of results between experimental and ANN (A) Ultimate tensile values (B) strain
values (C) impact resistance values (D) natural frequency values (E) damping factor values.
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The neural network (NN) predictions were found to be in close alignment with the
experimental results, suggesting a strong correlation between the model's output and the observed
data. Results indicate that while a small amount of rubber can enhance tensile strength, excessive
rubber content can weaken the composite due to disrupted stress transfer between fibers and matrix.
Larger mesh sizes are more tolerant of higher rubber content, likely due to improved particle
dispersion. However, an optimal balance exists between rubber content and mesh size for
maximizing tensile strength.

The strain of fiberglass-polyester composites with rubber particles is influenced by particle
size and volume fraction. Larger particles generally decrease strain at higher concentrations, while
smaller particles can exhibit optimal strain at moderate levels. Excessive rubber content, regardless
of particle size, can negatively impact strain.

Regarding impact resistance, rubber addition generally improves impact strength at low
rubber contents. However, the impact decreases at higher levels, potentially due to void formation
and weakened interfacial bonds. Mesh size also plays a role, with larger mesh sizes showing a more
pronounced reduction in impact strength at high rubber contents. Finally, rubber inclusion
consistently reduces the natural frequency and enhances the damping ratio, suggesting improved
vibration absorption. The effect of mesh size on these properties is less pronounced, with some
exceptions.

Conclusions

In this research, the prediction of mechanical and dynamic properties resulting from
changes in mesh sizes and volume percentages of rubber particles in polyester fiberglass composite
laminates has been performed. The following conclusions are obtained.

e An artificial neural network was designed to predict the mechanical properties of composite
materials based on rubber particle content and size. Trained using backpropagation and
optimized with a mean squared error of 107%, the network accurately predicted experimental
data, demonstrating its potential for optimizing composite material design.

e The model's predictive capabilities are impressive, particularly in predicting ultimate tensile
strength, impact resistance, and natural frequency, as evidenced by the exceptionally low
absolute average relative error (AARE) of 3.51%, 2.22 %, and 1.39 % and root mean
squared error (RMSE) of 0.49, 0.995, and 1.92, and the strong correlations of R= 96.3%,
96.5 % and 97.8% respectively. The model's performance in predicting strain and damping
factor is commendable, with AARE of 2.46 % and 5.20 %, low RMSE of 0.074 and 0.0032,
and strong correlations of R=94.20 % and 97.40% respectively.

The artificial neural network model demonstrated significant efficacy in predicting the
mechanical and dynamic properties of the composite and provided valuable insights into the
correlation between rubber particle content and size. However, the ANN model's generalizability
may be constrained by factors such as the quality and quantity of training data, material
composition, composite preparation conditions, and model complexity.
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