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WAVELET BASED LIFTING SCHEMES FOR THE NUMERICAL

SOLUTION OF BURGERS-FISHER EQUATIONS

L. M. ANGADI

Abstract. There are many areas of practical mathematics that use partial

dierential equations (PDEs), such as quantum physics, hydrodynamics, elas-

ticity, and electromagnetic theory. The analytical behavior of these equations

is a rather involved process and requires the application of advanced math-

ematical methods. The wavelet is a powerful mathematical tool that plays

an important role in science and technology. The Burgers-Fisher equation is

a non-linear partial dierential equation and has important applications in

nancial mathematics, gas dynamics, trac ow, number theory, heat con-

duction, and elasticity, among many other problems in applied mathematics

and physics. In this paper, we presented a wavelet-based lifting scheme for the

numerical solution of Burgers-Fisher equations using orthogonal and biorthog-

onal wavelet lter coecients. The numerical results obtained by this scheme

are compared with the exact solution to demonstrate the accuracy and also

speed up convergence in less computational time as compared with the existing

scheme. Some test problems are presented about the applicability and validity

of the scheme.

1. Introduction

Most of the problems arisen in the nature are modeled by using the non-linear partial
dierential equations. In this connection, Burgers-Fisher equation is prevalent in various
domains of applied physics. Notable applications include uid dynamics, turbulence, the
generation of shock waves, and nancial mathematics. The Burgers-Fisher equation serves
to elucidate a range of physical phenomena, particularly the interactions among reaction
mechanisms, diusion transport, and convection eects. It incorporates diusion trans-
port characteristics derived from the Fisher dierential equation and convection attributes
from the renowned Burgers dierential equation. The analysis conducted by Burgers and
Fisher [10] employed nonlinear partial dierential equation techniques to address this
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equation. Furthermore, the diusion, reaction, and convection terms in this equation
combine to form a parabolic-hyperbolic kind of nonlinear partial dierential equation.
Numerous methodologies have been developed to nd the solution to this problem. In
recent decades, several researchers have employed various iterative techniques to obtain
both analytical and numerical solutions for nonlinear partial dierential equations. No-
table methods include the Homotopy perturbation method [8] the Adomian decomposition
method [2], the Biorthogonal wavelet based multigrid and Full approximation scheme [11]
, as well as the Adaptive grid Haar wavelet collocation method [12].

Wavelet analysis emerged as a signicant eld in the 1980s due to its successful appli-
cation in signal and image processing. The method involves the hierarchical translation
and dilation of a single function, resulting in a smooth orthonormal basis that proved in-
valuable for the creation of compression algorithms tailored for signals and images within
specied amplitude thresholds. Key advancements in this area encompass wavelet series
expansion in applied mathematics, sub-band coding designed for voice and image com-
pression, and multiresolution signal processing employed in computer vision.
The wavelet-based full approximation scheme (WFAS) has demonstrated signicant eec-
tiveness and advantages over the traditional full approximation scheme (FAS) in address-
ing various challenges within computational science and engineering. References [3]-[5]
introduced a set of discrete wavelet transforms (DWT) alongside the FAS. The WFAS
has been shown to be a highly ecient and benecial method for a wide range of is-
sues in the elds of computational science and engineering [4]. These techniques can
function as either iterative solvers or preconditioning methods, often yielding superior
performance compared to several contemporary and advanced FAS algorithms. Further
investigations have been conducted to enhance the eciency and capabilities of WFAS.
To achieve this objective, a construction utilizing the orthogonal/biorthogonal discrete
wavelet transform through a lifting scheme has been developed [6]. In [15], Sweldens
introduced a wavelet-based lifting technique that allows for enhancements in the charac-
teristics of current wavelet transforms. Additionally, Shiralashetti et al. [13] presented a
wavelet-based numerical approach to address elasto-hydrodynamic lubrication issues using
a lifting scheme.
In [1], the numerical analysis of the Burger-Fisher equation was examined utilizing Haar
wavelet operational matrices through the integration of Haar wavelet bases. As the number
of iterations increases, the computational time and costs also rise, making it challenging
to formulate operational matrices for higher orders. To address this issue and reduce both
error and CPU time consumption, lter coecients are crucial. Therefore, this study
focuses on the wavelet lifting scheme, employing the lter coecients of both orthogonal
and biorthogonal wavelets.
Filter coecients serve as essential instruments in image processing, facilitating the ac-
quisition of clear images. This principle is similarly employed by numerous researchers in
the eld of numerical analysis. In this study, the wavelet lifting scheme, recognized for its
eciency in error minimization, is utilized. This approach incorporates both orthogonal
and biorthogonal wavelet lter coecients to reduce error and computational time for the
problem at hand.

The lifting scheme commences with a collection of established lters, followed by the ap-
plication of lifting steps aimed at enhancing the characteristics of the associated wavelet
decomposition. This approach oers several mathematical advantages, including a de-
crease in the number of operations, which is crucial for iterative solvers. Furthermore,
this paper demonstrates the utilization of the lifting scheme in the numerical resolution
of Burger-Fisher equations.

This paper is structured in the following manner: Section 2 discusses the preliminary
wavelet lter coecients and the lifting scheme. The solution methodology is outlined in
Section 3. Section 4 presents numerical simulations of the test problems. Lastly, Section
5 concludes the proposed work.
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2. Preliminaries of wavelet filter coefficients and Lifting scheme

The lifting scheme starts with a set of well-known lters; thereafter, lifting steps are used
in an attempt to improve the properties of corresponding wavelet decomposition. Now,
we have discussed dierent wavelet lters as follows:

2.1. Haar wavelet lter coecients. We know that low pass lter [h0, h1]
T =


1√
2
, 1√

2

T

and high pass lter coecients [g0, g1]
T =


1√
2
, 1√

2

T
play an important role in decompo-

sition. Thus, it is natural to wonder if it is possible to model the decomposition in terms
of linear transformations, i.e., matrices. Moreover, since digital signals and images are
composed of discrete data, we need a discrete analog of the decomposition algorithm so
that we can process signal and image data.

2.2. Daubechies wavelet lter coecients. Daubechies introduced scaling functions
having the shortest possible support. The scaling function ϕN has a support [0, N − 1],
while the corresponding wavelet ΨN has support in the interval [1− N

2
, N

2
].

We have low pass lter coecients [h0, h1, h2, h3]
T =


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√
3
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2
, 3+

√
3

4
√

2
, 3−

√
3

4
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2
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√
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4
√

2

T
.

and high pass lter coecients [g0, g1, g2, g3]
T =


1−

√
3

4
√

2
,− 3−

√
3

4
√

2
, 3+

√
3

4
√

2
,− 1+

√
3

4
√

2

T
.

2.3. Biorthogonal (CDF (2,2)) wavelets. Lets consider the (5, 3) biorthogonal spline
wavelet lter pair are

[h0, h1, h2]
T =


1

2
√

2
,− 1√

2
, 1

2
√

2


, and


h̃−2, h̃−1, h̃0, h̃1, h̃2

T
=


−1

4
√

2
, 1

2
√

2
, 3

2
√

2
, 1

2
√

2
, −1

4
√

2



Similarly, high pass lters: gk = (−1)kh̃4−k and gk = (−1)k+1h̃2−k

2.4. Foundations of lifting scheme. The wavelet transform utilizes averages and dif-
ferences, leading us to the concept of the lifting procedure. The operations of averaging
and dierencing can be regarded as specic instances of broader operations. When two
data points are nearly identical, the dierence is minimal, suggesting that the rst data
point serves as a reasonable prediction for the second.

This prediction is deemed eective if the dierence remains small. Additionally, we
computed the average of the two data points, which can be interpreted in two ways: either
as an operation that retains certain characteristics of the original data or as a means of
extracting a fundamental property of the data. The nal perspective emphasizes that the
pair-wise average values encapsulate the overall structure of the data while utilizing only
half the original data points. The lifting procedure has three steps i.e. split, prediction
and update. Finally, a wavelet transform built through lifting consists of three steps:
split. Predict and update as given in the gure 1 [9]. Split: Splitting the signal into two
disjoint sets of samples.
Predict: If the signal contains some structure, then we can expect a correlation between
a sample and its nearest neighbors, i.e. dj−1 = oddj−1 − P (evenj−1)
Update: Given an even entry, we have predicted that the next odd entry has the same
value and stored the dierence. We then update our even entry to reect our knowledge
of the signal, i.e. sj−1 = evenj−1 + U(dj−1)
The general lifting stages for decomposition and reconstruction of a signal are given in
gure 2.

The detailed algorithm using dierent wavelets is given in the next section.
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Figure 1. Steps in lifting scheme

Figure 2. Steps in lifting scheme

3. Method of solution

Consider the generalized Burger-Fisher equation

∂u

∂t
=

∂2u

∂x2
− αun ∂u

∂x
+ βu


1− un


, 0 ≤ x ≤ 1, t > 0. (1)

Where β are any constants. After discretizing the equation 1 through the nite dierence
method (FDM), we get systems of algebraic equations. Through this system, we can write
the system as

Au = b (2)

where A is N × N coecient matrix, b is N × N matrix and u is N × N matrix to be
determined. where N = 2J , N is the number of grid points and J is the level of resolution.
Solve equation 2 through the iterative method, and we get an approximate solution. An
approximate solution contains some error; therefore, the required solution equals the sum
of the approximate solution and error. There are many methods to minimize such errors to
get an accurate solution. Some of them are HWLS, DWLS, BWLS, etc. Recently, lifting
schemes have been useful in signal analysis and image processing in the area of science
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and engineering. But currently it extends to approximations in the numerical analysis [4].
Here, we are discussing the algorithm of the lifting schemes as follows:

3.1. Haar wavelet Lifting scheme (HWLS). In [6], Daubechies and Sweldens have
shown that every wavelet lter can be decomposed into lifting steps. More details of the
advantages as well as other important structural advantages of the lifting technique can
be available in [15]. The representation of Haar wavelet via lifting form is presented as;

Decomposition: Consider an approximate solution, S = P̃j like a signal, and then apply
the HWLS decomposition (ner to coarser) procedure as,

d1 = S2j − S(2j − 1),

s1 = S(2j − 1) +
1

2
d1, (3)

S1 =
√
2s1,

D =
1√
2
d1.

In this stage nally, we get new approximation as,

S = [S1D] (4)

Reconstruction: Consider equation 2 and then apply the HWLS reconstruction (coarser
to ner) procedure as,

d1 =
√
2D,

s1 =
1√
2
S1, (5)

S(2j − 1) = s1 − 1

2
d1,

S(2j) = d1 + S(2j − 1).

which is the required solution of the given equation.

3.2. Daubechies wavelet Lifting scheme (DWLS). As discussed in the previous sec-
tion 3.1, we followed the same procedure but used a dierent wavelet, i.e., Daubechies 4th
order wavelet coecient. The DWLS procedure is as follows:
Decomposition:

s1 = S(2j − 1) +
√
3S(2j),

d1 = S(2j)−
√

3
4
s1(j)−

√
3−2
4

s1(j − 1),

s2 = s1 − d1j + 1,

S1 =
√

3−1√
2

s2,

D =
√

3+1√
2

d1.





(6)

Here, we get a new approximation as,

S = [S1D] (7)

Reconstruction: Consider equation 5, then apply the DWLS reconstruction (coarser to
ner) procedure as,

d1 =
√

2√
3+1

D,

s2 =
√

2√
3−1

S1,

s1 = s2 + d1(j + 1),

S(2j) = d1 +
√

3
4
s1 +

√
3−2
4

s1(j − 1),

S(2j − 1) = s1 −
√
3S(2j).





(8)
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which is the required solution of the given equation.

3.3. Biorthogonal wavelet Lifting scheme (BWLS). As discussed in the previous
sections 3.1 and 3.2, we follow the same procedure here; we used another wavelet, i.e., a
biorthogonal wavelet (CDF (2,2)). The BWLS procedure is as follows:
Decomposition:

d1 = S(2j)− 1
2
[S(2j − 1) + S(2j + 2)],

s1 = S(2j − 1) + 1
4
[d1(j − 1) + d1],

D = 1√
2
d1,

S =
√
2s1.





(9)

In this stage, nally, we get a new signal as,

S = [S1D] (10)

Reconstruction: Consider equation 10, and then apply the DWLS reconstruction (coarser
to ner) procedure as

s1 = 1
2
S1,

d1 =
√
2D,

S(2j − 1) = s1 − 1
4
[d1(j − 1) + d1],

S(2j) = d1 +
1
2
[S(2j − 1) + S(2j + 2)].





(11)

which is the required solution of the given equation.

The coecients s
(j)
1 and d

(j)
1 are the average and detailed coecients, respectively, of the

approximate solution ua. The new approaches are tested through some of the numerical
problems, and the results are shown in the next section.

4. Numerical simulation

In this section, we implemented the lifting scheme to numerically solve the Burgers-
Fisher equations, demonstrating the eectiveness and applicability of HWLS, DWLS, and
BWLS. The error is calculated using the formula Emax = max|ue − ua|, where ue and ua

represent the exact and approximate solutions, respectively. I will now focus on Fishers
equation to explain the detailed methodology employed in solving it through the lifting
scheme with various wavelets.
Problem 4.1 Now, we consider the Fishers equation [7]

∂u

∂t
=

∂2u

∂x2
+ 6u(1− u) (12)

subject to I.C.

u(x, 0) =
1

(1 + ex)2
(13)

and to B.C.s:

u(0, t) =
1

(1 + e−5t)2
, u(1, t) =

1

(1 + e1−5t)2
(14)

which has the exact solution

u(x, t) =
1

(1 + ex−5t)2
(15)
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Solving equation 12 using nite dierence, we get the solution as

u =

0.486 0.730 0.876 0.948 0.435 0.685 0.848 0.934

0.380 0.639 0.822 0.922 0.319 0.589 0.797 0.913
T
16×1

The wavelet-based numerical solutions of equation 12 are obtained as per the procedure
explained in Section 3.1 and are as follows:
Assume S = u, and then apply the HWLS as explained in Section 3.1 as,
Decomposition:

d1 = S(1 : 2 : 15)− S(2 : 2 : 16)

=

0.244 0.072 0.250 0.085 0.259 0.100 0.270 0.115



s1 = S(2 : 2 : 16) +
d1
2

=

0.608 0.912 0.560 0.891 0.509 0.872 0.454 0.855



S1 =
√
2s1

=

0.860 1.290 0.792 1.260 0.720 1.233 0.642 1.209



D =
1√
2
d1

=

0.172 0.051 0.177 1.060 0.183 0.071 0.191 0.081



We get new approximation

S =

S1D

 =

0.860 1.290 0.792 1.260 0.720 1.233 0.642 1.209

0.172 0.051 0.177 0.060 0.183 0.071 0.191 0.081
T
16×1

Reconstruction: Then apply the HWLS reconstruction procedure as,

d1 =
√
2D =


0.244 0.072 0.250 0.085 0.259 0.100 0.270 0.115



s1 =
1

2
S1 =


0.608 0.912 0.560 0.891 0.509 0.872 0.454 0.855



S(1 : 2 : 15) = s1 − d1
2

=

0.486 0.876 0.435 0.848 0.380 0.822 0.319 0.797



S(2 : 2 : 16) = d1 + S(1 : 2 : 15)

=

0.730 0.948 0.685 0.934 0.639 0.922 0.589 0.913



Therefore

=

0.860 0.730 0.876 0.948 0.435 0.685 0.848 0.934

0.380 0.639 0.822 0.922 0.319 0.589 0.797 0.913
T
16×1

This is the required HWLS solution of the given equation.
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Similarly, in DWLS, as discussed in Section 3.2, we follow the same procedure as;
Decomposition:

S(1 : 2 : 15) +
√
3S(1 : 2 : 16)

=

1.750 2.518 1.622 2.465 1.486 2.419 1.338 2.378



d1 = S(2 : 2 : 16)−
√
3

4
s1 −

√
3− 2

4
[s1(8)s1(1 : 7)]

=

0.131 −0.025 0.152 −0.025 0.160 −0.026 0.171 −0.027



s2 = s1 − [d1(2 : 8)d1]

=

1.776 2.366 1.647 2.305 1.512 2.248 1.366 2.477



S1 =

√
3− 1√
2

s2

=

0.919 1.225 0.853 1.193 0.783 1.163 0.707 1.163



D =

√
3 + 1√
2

d1

=

0.253 −0.049 0.293 −0.049 0.310 −0.050 0.331 −0.053



We get new approximation

S =

S1D

 =

0.919 1.225 0.853 1.193 0.783 1.163 0.707 1.163

0.253 −0.049 0.293 −0.049 0.310 −0.050 0.331 −0.053


Reconstruction: Then apply the DWLS reconstruction procedure as,

d1 =

√
2√

3 + 1
D =


0.131 −0.025 0.152 −0.025 0.160 −0.026 0.171 −0.027



s2 =

√
2√

3− 1
S1 =


1.776 2.366 1.647 2.305 1.512 2.248 1.366 2.247



s1 = s2 +

d1(8)d1(2 : 7)d1(1)



=

1.750 2.518 1.622 2.465 1.486 2.419 1.388 2.378



s(2 : 2 : 16) = d1 +

√
3

4
s1 +

√
3− 2

4


s1(2 : 8)s1(1)



=

0.730 0.948 0.685 0.934 0.639 0.922 0.589 0.913



S(1 : 2 : 16) = s1 −
√
3S(2 : 2 : 16)

=

0.486 0.876 0.435 0.848 0.380 0.822 0.319 0.797



Therefore
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=

0.486 0.730 0.876 0.948 0.435 0.685 0.848 0.934

0.380 0.639 0.822 0.922 0.319 0.589 0.797 0.913
T
16×1

This is the required DWLS solution to the given equation. Also, BWLS is explained in
Sections 3.3; we follow the similar procedure as follows:
Decomposition:

d1 = S(2 : 2 : 16)− 1

2


S(1 : 2 : 15)


+


S(3 : 8)S(1 : 2)



=

0.144 0.043 0.148 0.049 0.154 0.054 0.064 0.040



s1 = S(1 : 2 : 15) +
1

4


d1(8)d1(2 : 7)d1(1)


+ d1



=

0.532 0.923 0.483 0.897 0.431 0.874 0.348 0.824



D =
1√
2
d1 = [0.102 0.030 0.105 0.034 0.109 0.039 0.046 0.028]

S1 =
√
2s1 = [0.735 1.305 0.683 1.269 0.609 1.236 0.493 1.165]

We get new approximation

S = [S1D]
=


0.735 1.305 0.683 1.269 0.609 1.236 0.493 1.165

0.102 0.030 0.105 0.034 0.109 0.039 0.046 0.028
T
16×1

Reconstruction: Then apply the BWLS reconstruction procedure as,

s1 =
1√
2
S1 =


0.532 0.932 0.483 0.897 0.431 0.874 0.348 0.824



d1 =
√
2D =


0.144 0.043 0.148 0.049 0.154 0.154 0.064 0.040



S(1 : 2 : 15) = s1 − 1

4


[d1(8)d1(1 : 7)


+


d1(1)



=

0.486 0.876 0.435 0.848 0.380 0.822 0.319 0.797



S(2 : 2 : 16) = d1 − 1

2


[S(1 : 2 : 15)] +


S(3 : 8)S(1 : 2)



=

0.730 0.948 0.685 0.934 0.639 0.922 0.589 0.913



Therefore

=

0.486 0.730 0.876 0.948 0.435 0.685 0.848 0.934

0.380 0.639 0.822 0.922 0.319 0.589 0.797 0.913
T
16×1

This is the required BWLS solution to the given equation.
The obtained numerical solutions and compared with the exact solutions are presented in
Table 1, and the maximum absolute errors with CPU time of the methods are presented
in Table 2.
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Table 1. Comparison of numerical solutions with exact solution
of the problem 4.1.

x t FDM HWLS DWLS BWLS Exact

0.2 0.2 0.486395 0.486395 0.486395 0.486395 0.476065

0.2 0.4 0.729769 0.435155 0.435155 0.435155 0.416872

0.2 0.6 0.876191 0.379759 0.379759 0.379759 0.358427

0.2 0.8 0.947800 0.318678 0.318678 0.318678 0.302317

0.4 0.2 0.435155 0.729769 0.729769 0.729769 0.736420

0.4 0.4 0.685101 0.685101 0.685101 0.685101 0.692255

0.4 0.6 0.848250 0.638659 0.638659 0.638659 0.643499

0.4 0.8 0.933705 0.588617 0.588617 0.588617 0.590630

0.6 0.2 0.379759 0.876191 0.876191 0.876191 0.888638

0.6 0.4 0.638659 0.848250 0.848250 0.848250 0.866503

0.6 0.6 0.822053 0.822053 0.822053 0.822053 0.840572

0.6 0.8 0.921850 0.797432 0.797432 0.797432 0.810449

0.8 0.2 0.318678 0.947800 0.947800 0.947800 0.956716

0.8 0.4 0.588617 0.933705 0.933705 0.933705 0.947513

0.8 0.6 0.797432 0.921850 0.921850 0.921850 0.936452

0.8 0.8 0.912665 0.912665 0.912665 0.912665 0.923203

Table 2. Maximum error and CPU time (in seconds) of the meth-
ods of the problem 4.1.

N×N Method Emax Setup time Running time Total time

4×4 FDM 2.1332e-02 2.9144 0.0004 2.9148

4×4 HWLS 2.1332e-02 0.0011 0.0017 0.0028

4×4 DWLS 2.1332e-02 0.0010 0.0128 0.0138

4×4 BWLS 2.1332e-02 0.0009 0.0044 0.0053

64×64 FDM 2.6256e-03 10.1280 0.0034 10.1314

64×64 HWLS 2.6256e-03 0.0007 0.0012 0.0019

64×64 DWLS 2.6256e-03 0.0006 0.0083 0.0089

64×64 BWLS 2.6256e-03 0.0005 0.0029 0.0034

Problem 4.2 Now, Consider the Fishers equation (In equation 1: α = −1, n = 1 and
β = 2) [14]

∂u

∂t
=

∂2u

∂x2
+ u

∂u

∂x
+ 2u


1− u


, 0 ≤ x ≤ 1, t > 0 (16)
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subject to I.C.

u(x, 0) =
1

2
+

1

2
tanh

x
4


(17)

and to B.C.s:

u(0, t) =
1

2
+

1

4
tanh

1
2

9
2
t


, (18)

u(1, t) =
1

2
+

1

2
tanh

1
4


1 +

9

2
t


which has the exact solution

u(x, t) =
1

2
+

1

2
tanh

1
4


x+

9

2
t


.

By applying the methods explained in the section 3 and in the problem 4.1, we obtain
the numerical solutions and compared with exact solution are presented in Figure 3. The
maximum absolute errors with CPU time of the methods are presented in Table 3.

Table 3. Maximum error and CPU time (in seconds) of the meth-
ods of problem 4.2.

N ×N Method Emax Setup time Running time Total time

4×4 FDM 5.6596e-03 3.2373 0.0020 3.2393

4×4 HWLS 5.6596e-03 0.0009 0.0029 0.0038

4×4 DWLS 5.6596e-03 0.0003 0.0097 0.0100

4×4 BWLS 5.6596e-03 0.0003 0.0040 0.0043

8×8 FDM 2.8678e-03 3.6739 0.0021 3.6960

8×8 HWLS 2.8678e-03 0.0010 0.0031 0.0041

8×8 DWLS 2.8678e-03 0.0003 0.0103 0.0106

8×8 BWLS 2.8678e-03 0.0004 0.0042 0.0046

32×32 FDM 7.6815e-04 5.3950 0.0027 5.3977

32×32 HWLS 7.6815e-04 0.0009 0.0030 0.0039

32×32 DWLS 7.6815e-04 0.0003 0.0096 0.0099

32×32 BWLS 7.6815e-04 0.0003 0.0047 0.0050

64×64 FDM 3.9016e-04 7.7931 0.0040 7.7971

64×64 HWLS 3.9016e-04 0.0009 0.0030 0.0039

64×64 DWLS 3.9016e-04 0.0003 0.0097 0.0100

64×64 BWLS 3.9016e-04 0.0003 0.0041 0.0044

Problem 4.3 Finally, consider another form of the Burger-Fisher equation (In equation
1: α = 1, n = 2 and β = 1) [10]

∂u

∂t
=

∂2u

∂x2
− u2 ∂u

∂x
+ u


1− u2


, 0 ≤ x ≤ 1, t > 0 (19)
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Figure 3. Comparison of numerical solutions with exact solution
of problem 4.2 for (a) N = 8× 8, (b) N = 16× 16.
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subject to I.C.

u(x, 0) =


1

2


1− tanh

x
3

 1
2

(20)

and to B.C.s:

u(0, t) =


1

2


1− tanh

10
9
t
 1

2

, u(1, t) =


1

2


1− tanh

1
3
− 10

9
t
 1

2

(21)

which has the exact solution

u(x, t) =


1

2


1− tanh

x
3
− 10

9
t
 1

2

.

By applying the methods explained in the section 3 and in the problem 4.1, we obtain
the numerical solutions and compared with exact solution are presented in Figure 4. The
maximum absolute errors with CPU time of the methods are presented in Table4.

Table 4. Maximum error and CPU time (in seconds) of the meth-
ods of problem 4.3.

N×N Method Emax Setup time Running time Total time

4×4 FDM 4.4208e-03 3.1919 0.0019 3.1938

4×4 HWLS 4.4208e-03 0.0009 0.0028 0.0037

4×4 DWLS 4.4208e-03 0.0003 0.0096 0.0099

4×4 BWLS 4.4208e-03 0.0003 0.0040 0.0043

8×8 FDM 2.0856e-03 4.6072 0.0019 4.6091

8×8 HWLS 2.0856e-03 0.0008 0.0028 0.0037

8×8 DWLS 2.0856e-03 0.0003 0.0096 0.0099

8×8 BWLS 2.0856e-03 0.0004 0.0039 0.0043

32×32 FDM 5.8218e-04 4.6153 0.0028 4.6181

32×32 HWLS 5.8218e-04 0.0009 0.0028 0.0037

32×32 DWLS 5.8218e-04 0.0003 0.0100 0.0103

32×32 BWLS 5.8218e-04 0.0004 0.0043 0.0047

64×64 FDM 2.9335e-04 7.5337 0.0041 7.5378

64×64 HWLS 2.9335e-04 0.0009 0.0029 0.0038

64×64 DWLS 2.9335e-04 0.0009 0.0098 0.0101

64×64 BWLS 2.9335e-04 0.0003 0.0041 0.0044
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Figure 4. Comparison of numerical solutions with exact solution
of problem 4.3 for (a) N = 8× 8, (b) N = 16× 16.
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5. Conclusions

In this study, I utilized wavelet-based lifting schemes to numerically solve the Burgers-
Fisher equations, employing various wavelet lters, including both orthogonal and biorthog-
onal wavelets. The analysis of the gures and tables presented indicates that.

• The numerical solutions obtained by dierent Lifting schemes are agrees with the
exact solution.

• Convergence of the presented schemes is observed i.e. the error decreases when
the level of resolution N increases.

• In addition the calculations involved in lifting schemes are simple, straight forward
and low computation cost compared to classical method i.e. FDM.

Hence the presented lifting schemes in particular HWLS BWLS are very eective for
solving non-linear partial dierential equations. Moreover, the eciency and reduced
computational CPU time associated with the aforementioned wavelet lifting scheme can
be applied to address divergent nonlinear ordinary and partial dierential equations that
arise in various domains of science and engineering.
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