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ABSTRACT

Hand veins, being an inner body trait, demonstrated a reliable, secure and anti-spoofing biometric
trait. Vein recognition performance highly depends on the precise detection of the vein Region-of-Interest
(ROI). External influences like poor illumination, noise, blurring, complicated backgrounds, and
incomplete capturing of hand region can affect the quality while capturing, causing performance
degradation of wrist region segmentation that eventually leads to inaccurate ROI detection. In this paper,
we propose a ROI localization method for wrist veins images. It consists of three steps: wrist region
segmentation based on joint-entropy (JE) thresholding method, wrist orientation correction and ROI
detection. The proposed segmentation method is compared with fifteen image segmentation methods
using low quality wrist-vein images from PUT vein dataset and is evaluated by six segmentation
evaluation metrics. Experiments show that the proposed method produced 99.524% accuracy that is
1.022% more accurate than the original JE thresholding method.

KEYWORDS: wrist veins, image segmentation, Joint Entropy thresholding, ROI localization.

1. INTRODUCTION (FIR) imaging or near-infrared (NIR) imaging,
depend on alive body characteristics [2], which
makes it possible to distinguish between real-
live and fake vein images [3-4]. Although EEG
signals are also robust against spoofing,
acquiring EEG signals is not an easy task
because it has to be done with headset, in an
absolutely quiet room. Hand veins capturing
process is more user convenient due to its direct
presence underneath the superficial skin, thus it
can be easily captured using an inexpensive
infrared camera. Hence, hand veins have
become a reliable, secure and accurate
biometric trait.

Recently, biometric-based  recognition
technologies prevail most of individual
recognition systems. One of the strongest
biometrics is the hand veins pattern because of
its universality, stability and uniqueness even
for identical twins [1]. Comparing with other
biometrics, veins are resistant against spoofing
because they are inner features of the human
body and can be clearly visible only under a
specific spectral range of infrared light [2],
while palm-print, fingerprint, face or hand
geometry traits are liable to be copied, forged
and simulated because they are outer features.
In addition, the vein image acquisition Hand veins are divided into four types used
technologies, whether by using far-infrared for identity recognition: hand dorsum veins,
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palm veins, finger veins, and wrist veins of a wrist region segmentation method that is
patterns. Wrist-veins were chosen to be the robust to most of the mentioned factors,
scope of this paper, as it was noted that there is followed by wrist orientation correction and
deficiency in researches using wrist veins ROI detection. Figure 1 shows the three steps of
pattern in identity recognition. The raw vein the proposed methodology. Firstly, noisy
image usually contains portions, with useless regions in the image background are eliminated
information, other than the wrist region. Thus, in order to guarantee purity of the gray level co-
the first step in vein recognition systems is the occurrence matrix (GLCM) of the image. This
ROI detection that aims to detect only the most is followed by applying the joint-entropy
informative region in the image and remove all thresholding  algorithm to compute the
unwanted details, in order to efficiently perform appropriate threshold value. Secondly, wrist
and speed up the subsequent steps of the vein orientation correction step is applied to correct
recognition system. any rotations caused during capturing. Finally,

the ROI detection step which aims to localize
the smallest possible rectangular region that can
contain the whole wrist region. It is worth
noting that extracting aligned ROIs for different
wrist-vein images is not the goal of the
proposed approach, since translation and scale
corrections are not of importance as they can be
resolved by using invariant features for vein
recognition. Only wrist orientation correction
process is considered in order to support
accurately localizing the smallest possible
In this paper, we propose an integrated rectangle containing the wrist region.

wrist-vein ROI localization approach consisting
Raw wrist-vein image

Unfortunately, some external influences can
easily affect the quality of acquired images such
as poor illumination, noise, blurring, shadows or
complicated backgrounds. Moreover, hand
posture variations due to allowing freely hand
positioning during the image acquisition process
can lead to incomplete capturing of the hand
region. All these factors can lead to inaccurate
ROI detection, which in turn results in declining
the performance of recognition systems.

Wrist-vein ROl

Wrist region

segmentation correction

P

Wrist orientation }.

ROI detection }»

Fig 1 Framework of the wrist vein ROI localization methodology

The rest of the paper is structured as In [5-7], an edge-based segmentation
follows: the next section lists the related work. technique was wused for finger region
Section II presents the related work of vein localization by detecting its boundary. By
localization methods. Section III describes the assuming that the boundary between the finger
proposed wrist-vein ROIT detection algorithm and the background has the sharpest edges in
while section IV demonstrates and discusses the the image, it can be detected by passing an edge
results. Finally, section V concludes the paper detector mask on the whole image, then
with a summary of the proposed approach along dividing the image into two halves and
with an outlook for the future work. determining the highest response point for each

column at each half. This technique is not
robust against the incomplete capturing of the

2. RELATED WORK finger region and the complicated backgrounds

During hand region localization step, the [8]. Tt also fails when its main assumption is
hand region in the captured image must be unsatisfied due to existence of some weak
detected and separated from the background by finger edges or other edges in the image sharper
using one of the following image segmentation than the finger edges. Moreover, the finger
techniques: edge-based segmentation, threshold- region supposed to be almost around the middle
based segmentation, region-based segmentation of the acquired image in order to have a part of
and clustering-based segmentation. its boundary at each image half.

190



Engineering Research Journal (ERJ)

Abdelwahab Al-Sammak, et al.

Vol. 1, No.48 Apr. 2021, pp.189-203

Another hand region detection method is
applying an edge detector on the image in order
to detect its edges, such as Sobel edge detector
as in [9-10] or Canny edge detector as in [11-
12], followed by a post-processing step for
connecting the broken hand edges using the
morphological closing operation, then filling
these edges so as to obtain solid regions.
Although its simplicity, this method is not
robust against the complicated background
since any unwanted background details close to
the hand region can be associated to it due to the
usage of closing operation. It is also sensitive to
the sharpness of the hand edges, since the
existence of weak hand edges can result in large
breaks in the hand contour that need a much
bigger structural element to connect them. So, it
is a tradeoff between connecting the broken
hand edges and avoiding connecting the
unwanted background details with it.

Otsu thresholding method is the most used
segmentation method for hand region
localization in vein images [13-15]. It is a
clustering-based image thresholding method
that depends only on the image's intensity
histogram, assuming to be a bimodal histogram
with a sharp deep valley separating its two
peaks. Moreover, the relative size of
background and object regions in the image
must be close to each other in order to satisfy
the histogram bimodality. In spite of its speed,
the segmentation results can be of low quality if
the bimodal histogram assumption isn't
satisfied. Therefore, it is highly sensitive to
uneven illumination, noise, shadows, and

reflection problems that can easily occur during
the image capturing. Existence of one of these
factors in an image affects its histogram shape;
causing it to lose its bimodality. Moreover, it
depends only on the intensity histogram of the
image, ignoring its inter-pixel spatial
relationships. This leads to producing the same
threshold value for different images with
exactly similar histograms [16], and also does
not ensure interconnected segmented regions.

In [17-18], the unsupervised K-means
clustering algorithm has been used to segment
the hand region from the background by
clustering the gray-level samples in the image
into two classes, assuming that the image
consisting of only the background and hand
regions. The drawbacks of this method are the
difficulty of predicting a fixed-k for all images,
and its ability to work only with spherical
clusters. Moreover, segmentation results are un-
stable and highly sensitive to the user-defined
clusters number and their randomly selected
initial centroids, since the final clustering can
significantly vary through several runs of the
algorithm due to the changes of the initial
cluster centers. Furthermore, the random
selection of initial centroids may cause the
algorithm to stick into local minima [19]. A
solution for this is to repeat clustering several
times using different initial centroids and retain
only the best segmentation result, which is very
time consuming. Table 1 summarizes the
advantages and disadvantages of the above
listed methods.

Table 1 Comparison between various image segmentation methods commonly used for localizing
hand vein ROI in NIR images.

localization [5-7]
regions.
e Fast and simple

Image segmentation Strength points Weakness points
method
Lee's finger region o Works well for image with High sensitivity to:

high contrast between its

incomplete capturing of finger region
complicated backgrounds

sharpness of the finger edges
existence of other edges in the image
sharper than the finger edges

e Jlocation of the finger region in the
acquired image

L]
L]
L]
L]

[11-12] edge detectors
regions.
e Fast and simple

Sobel [9-10] and Canny | e Works well for image with e Sensitivity to sharpness of the hand
high contrast between its

edges

e difficulty of selecting the proper
structural element size for the closing
operation

e tends to connect objects close to each
other

e cannot distinguish between regions
that are not well separated from each
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other

e Fast and simple

Otsu global thresholding | e Does not need prior
[13-15] knowledge about the image
e Computationally inexpensive |e High sensitivity to uneven

e works well only for images with
bimodal histograms

illumination, noise, shadows, and
reflection problems

e Ignoring the image's spatial
information; leads to producing the
same threshold value for different
images with exactly similar
histograms, and also does not ensure
interconnected segmented regions.

18] number of clusters

from each other

K-means clustering [17- | e computationally fast for small |e High sensitivity to user-defined

e works well for image whose
regions are not well separated

clusters number, in addition to the
difficulty of predicting a fixed-k for
all images

e High sensitivity to randomly selected
initial centroids; resulting in un-
stable segmentation results

e Liable to stick into local minima

e Works well only with spherical
clusters.

3. PROPOSED ALGORITHM

Thresholding is the most popular
segmentation method because of its simplicity
and speed. Unfortunately, the most common
single global thresholding methods depend only
on the intensity histogram that can be
considered as a first-order statistic of the image
regardless of its spatial information, in addition
to the assumption of bimodal histogram that is
hard to be always satisfied. All of these factors
lead to many weaknesses as discussed in section
2. On the other hand, the Gray Level Co-
occurrence Matrix (GLCM), proposed in [16], is
a higher-order statistic of the image. It is
defined as a 2D histogram of the gray-levels
transitions between every two adjacent pixels in
the image. Since the GLCM-based thresholding
methods depend only on the GLCM of the
image instead of its intensity histogram, they
consider the spatial distributions of gray levels
in the image during their threshold values
computation.

color i

(a)

(b)
Fig 2 (a) wrist image, (b) 3D graph of GLCM, (c) top side view of 3D GLCM graph.

The GLCM of a gray-scale image f of size
MxN with gray levels in the range [0, 1. .. L-1]
is an LxL square matrix denoted by T =
[tijlixe. Where t;; is the (i, D element of co-
occurrence matrix that defines the number of
occurrences of the gray transition from the gray
level i to the gray level j between pair of
adjacent pixels in the image by considering only
the horizontally right and vertically lower
transitions. Figure 2 shows an example of wrist
image with different views of its GLCM.

M N
t; = lel PRI y

6(Lk)
1 {f(l,k)ziandf(l,k+1)=‘
=[ Ui = iand FA+1,6) = 2)
0 otherwise

color j

color i

(c)
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By analyzing the general structure of co-
occurrence matrix, we have found that all the
gray transitions along each k** diagonal line
have an equal Standard Deviation (SD) value
that is symmetric around the primary diagonal
line (k = 0). Moreover, the primary diagonal
line has zero-valued SD for all its gray
transitions. The farther the k®* diagonal line
becomes from the primary diagonal, the higher
the SD value it will have along all its gray
transitions, as shown in figure 3(a).

Let S to be the determined threshold value
for segmenting the image into foreground and

background, in a way that the higher gray levels
belong to the foreground region, while the lower
gray levels belong to the background region.
The GLCM is divided into four quadrants that
are categorized into two types. A and C
quadrants are the local quadrants that hold the
local transitions inside background and
foreground respectively, while B and D are the
joint quadrants that hold the joint transitions
from background to foreground and from
foreground to background respectively, as
shown in figure 3(b) [16].

|

s

0 L1
i A B
(B—8) (B—F)
3
D ¢
(F—B8) F—F
1

Fig 3 (a) Diagram of the SD distribution through the GLCM, (b) the four quadrants of the GLCM.

Although the object and background
regions are two distinct regions in the image
with distinct ranges of gray levels, they are not
independent of each other, where knowledge of
one can tell us about the likelihood of the other.
Hence, the joint entropy (JE) thresholding
method, proposed in [16], attempts to maximize
the average amount of information that can be
obtained from the object region considering
knowledge about the background, and vice
versa. This can be achieved by selecting a
threshold value that maximizes conditional
entropy of the object given the background
(Hg-g) along with conditional entropy of the
background given the object (Hg_). Therefore,
by using the joint quadrants from the GLCM,
the threshold value S is calculated as follows:

H]‘oint(s)
= (Hobjectﬁbackground + Hbackgroundﬁobject?’)

S]E = arg[maxs=0...L—1 Hjoint(s)] 4)

3.1  Wrist region segmentation

Accurate wrist region segmentation is a
crucial step that ultimately supports proper
ROIs localization. The joint entropy (JE)
thresholding method has been used for wrist
region segmentation since it is a GLCM-based
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thresholding method that exploits the inter-pixel
spatial dependencies in the image. As a single
global thresholding method, JE thresholding
algorithm assumes that the image consists of
only two regions, e.g. object and background,
with distinct gray ranges in order to be able to
calculate the optimal threshold that separates
them. Figure 4 shows how accurate the JE
detected the wrist region for different wrist
images. From Figure 4.c1, it is obvious that the
JE thresholding method accurately separates the
wrist region from the background, by using the
joint transitions between them.

On the other hand, the inaccurate
segmentation in figures 4(c2-c3) arose because
of the occurrence of flaws in the background
region, as shown in figures 4(a2-a3). These
flaws are considered extra regions with different
properties, gray ranges and inter-pixel spatial
correlations, causing deformation of the four
quadrants of the GLCM by their gray
transitions. Figures 4(b2-b3) show the resulting
noisy GLCM, which leads to inaccurate
threshold calculation. Therefore, these extra
regions must be removed from the image before
computing its GLCM. This guarantees
satisfaction of the main assumption of single
global thresholding and the GLCM purity
before applying the JE thresholding method.
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color i

(a1)

(c1)

(c2)

(a3)

(b3)
Fig 4

(c3)

(al-a3) wrist-vein images (b1-b3) top view of GLCM (c1-¢c3) detected regions using JE thresholding
method

Let ‘normal images’ be the images that
contain only two regions with distinct gray
ranges, ‘abnormal images’ be those whose
background has flaws, and ‘noisy region’
correspond to the region with the flaw. The
GLCMs of the normal wrist images show that
almost all gray transitions for both background
and object regions are concentrated around the
GLCM's primary diagonal line with high
occurrence values as depicted in figure 5(b1, cl,
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dl). In the GLCMs of the abnormal wrist
images, shown in figure 5(b2, c2, d2), it can be
seen that there are many gray transitions that
diffused across the GLCM with very small
occurrences and much higher SD values. Let
‘suspicious gray transitions’ be the gray
transitions that diffuse in the noisy GLCM with
high SD and small occurrence, which are
marked with red in figure 6.b.
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(a2)

(€2)

colori

colori

(b1)

(d1)

color j

(b2)

(d2)

Fig S (al-a2) wrist-vein images, (b1-b2) top view of the GLCM, (c1-c2) Left Side View of the
GLCM, (d1-d2) Right Side View of the GLCM.

When the SD value between two adjacent
pixels is very small, it means that their gray
levels are close to each other and they belong to
the same region in the image. In contrast, when
the SD value between two adjacent pixels
becomes higher, it means that there is a sharp
gray transition between these pixels, and one of
them might be an edge pixel between two
different regions or just a noisy pixel. Based on
these facts, when the suspicious gray transitions
were re-projected to the image, it was found that
most of them are corresponding to the edges of
the noisy regions, as shown in Figure 6(c).
Local and joint transitions of the flaw regions
will have small number of occurrences
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compared to the occurrences of gray transitions
belonging to the background and object regions,
since these flaw regions have different inter-
pixel spatial dependencies and they are smaller
in size compared to the other two main regions
in the image. It is worth noting that both joint
transitions between the object and background
regions and that between the noisy regions and
another region in the image will have high SD
values. Nonetheless, only the high SD values
between adjacent pixels that faintly occurred in
the image could be considered as the SD-values
of the suspicious gray transitions, from which
the edges of noisy regions can be detected.
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(a) (b)

Fig 6 detection of noisy regions in a wrist image, (a) wrist-vein image, (b) GLCM with suspicious
transitions in red, (c) detected edges of noisy regions

Therefore, the edges of the noisy regions one suspicious transition with its four neighbors
can be detected by measuring the SD values for including at least one suspicious transition at
every pixel with each of its neighbors each region. Hence, a pixel belongs to the edges
separately, considering only the horizontally of noisy regions if it is common in at least two
right and vertically lower neighbors, then consecutive suspicious transitions. This means
determining the high SD values that have small that, it must satisfy one or more of the transition
number of occurrences in the image. These SD cases shown in figure 7, where the red pixel is
values will be used for detecting the suspicious the edge pixel. Finally, by filling the areas
transitions in the image, by getting the adjacent inside these detected edges we can detect the
pixels that produced these SD values between whole noisy regions and delete them from the
each other. The edge pixel in each suspicious image before computing its GLCM.
gray transition is the pixel that causes more than

Transition 1 Transition 1
Transition 1 Transition 1 Transition 2
Transition.’zl RS Transition 2

Fig 7 Four cases of two consecutive transitions

During the wrist images collection phase of controls the hand position to ensure satisfying
the PUT vein database [20], which is used in this condition. This led to the appearance, in
this research, the volunteers were required to some images, of the external lights in the
put his/her hand on the device to cover the surrounding space around the volunteer. In the
whole acquisition window, cutting off external images that the volunteer's wrist doesn't cover
light sources. Thus, it was assumed that the the whole acquisition window, most of the
wrist regions were illuminated in controlled regions that appeared from the surrounding
stable lighting conditions with NIR uniform space seemed to be in green color. This means
light. Unfortunately, covering the whole that some of the noisy regions are prevailed by
acquisition window condition wasn't satisfied in green color, which may or may not be directly
all images, since only a construction that allows connected to the wrist region but they can't be
placing palm and wrist in a convenient way was considered as a part of the wrist region of
used without using an additional element that interest, as shown in Figure 8.
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(d) (e) (f)

Fig 8 Examples of wrist images with green flaw regions in their backgrounds

Before converting the image into gray-scale two easy methods that were used together to
image, any green color must be detected and complete each other. The first method
removed in order to accelerate the wrist region determines the green color in an image by
segmentation algorithm and remove some of the detecting those colors with green component
useless data. Then, the proposed noisy regions higher than the other two components, while the
detection approach must be applied on the gray- second method defines the greenness of each
scale image to detect the remaining noisy pixel in the image by subtracting its gray scale
regions and remove them before computing its image from its green channel. The whole green
GLCM. The green regions can be detected by regions in the image can be detected by:

Greenness, (x,y) = green(x,y) — max(red(x,y) , blue(x, y)) %)
Igreen1 (x,y) = Greenness, (x,y) > Ty (6)
Greenness, (x,y) = green(x,y) — gray(x,y) 7
Igreen2 (%, y) = Greenness,(x,y) > T, )

lgreen(xf Y) = [greenl(xf Y) I [greenZ(X' Y) (9)

Where red, green, blue are the three channels of the original RGB image, while gray is its gray scale
image. T; and T, are two predefined values that control the range of green colors that will be detected in
the original image, producing the Ig,qe, binary image. Algorithm 1 presents the proposed wrist region
segmentation algorithm. T; is predefined as the threshold for high SD values, and T, is predefined as the
threshold for small occurrence values.

Algorithm 1 Proposed Wrist Region Segmentation

Input: I —original wrist-vein image
Output: b —binary image of the segmented wrist region
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for each wrist image (I) in the PUT dataset
remove green colors
calculate separately SD between each two adjacent pixels, in only the horizontally right &
vertically lower directions
calculate occurrence of each SD value
for each SD value
if SD > T; & its occurrence < T,
list pixels pairs that produced this SD value as suspicious transitions
end
end
for each pixel (p) in the suspicious transitions list
if pixel (p) is common in at least two consecutive suspicious transitions
list pixel (p) as an edge pixel along boundary of a noisy region
end
end
fill areas inside the detected edges
remove the detected regions
compute the GLCM
apply joint entropy thresholding

3.2  Wrist orientation correction represents the wrist central line. Thus, for each
column y; the corresponding x; value of the

Allowing freely wrist positioning during wrist middle points can be defined as:

image acquisition leads to random wrist posture

deflections in different images for the same _up; + low; a
person. Therefore, the wrist orientation must be X = 2 ’ 0)
corrected by rotating it to the horizontal before =12,....,n

localizing the ROI. By using the same approach
used in [7,9.21] for finger orientation
correction, the wrist orientation can be defined
as the slope of the wrist central line. Hence, the
wrist orientation can be corrected by rotating
the image by an angle (o) that is between the
wrist central line and the horizontal line.

Where up; and low; are the x values of the
upper and lower edge points on the i** column
respectively. For accurate wrist central line
calculation, we have to neglect some columns
from the left and right parts of the wrist contour
in order to avoid the left and right wrist edges.
As shown in figure 9.b, only the wrist edges

The wrist contour image denoted by C(x, y) between the two red lines will be used for the
is shown in figure 9.b. To obtain the wrist wrist central line calculation. This central line is
central line, the middle points between the fitted to a straight line using the least-squares
upper and lower edge points in all columns estimation (L.SE) method, in order to obtain its
having wrist contour points are calculated, to slope that is used for determining the direction
form an approximately straight line which and magnitude of the rotation angle (o).

(a) (c)

Fig 9 (a) wrist-vein image, (b) wrist region contour in white, estimated wrist central line in blue, (c)
corrected wrist image

3.3  ROI detection detected hand region, in order to eliminate the
background region and reduce the image size
for reducing the computational cost of the vein
recognition system subsequent steps. Even if the

Many researches have defined the hand
vein ROI as a rectangular region inside the

198



Engineering Research Journal (ERJ)

Abdelwahab Al-Sammak, et al.

Vol. 1, No.48 Apr. 2021, pp.189-203

ROI is considered to be the largest possible
inner rectangular region that could be located
inside the wrist region, shown as the red
rectangle in figure 10.b, it may lead to losing
some portions of the wrist vein structure.
Therefore, in order to avoid this drawback, the

whole detected wrist region has been considered
to be the ROI and the image is cropped at the
coordinates of the smallest possible outer
rectangle that contains this region. Figure 10
shows the difference between the two ways of
detecting ROL

(a)

(b) (c)

Fig 10 a) orientation corrected image, (b) ROI: largest inner rectangular region, (c¢) ROI: smallest
outer rectangular region

4. EXPERIMENTAL RESULTS AND
DISCUSSION

In order to examine the efficiency of the
proposed segmentation method, it was
necessary to compare its performance and
processing time with other segmentation
methods. Therefore, most of segmentation
methods that have been used for hand region
localization purpose in the vein pattern
recognition researches (like finger vein, palm
vein, dorsal vein, and wrist vein recognition
researches), and other segmentation methods are
implemented for comparison. All the 1200
wrist-vein images from the freely available PUT
vein dataset have been used throughout our
comparative analysis, which are 24-bit color
images with a resolution of 1280%960 [20]. The
wrist-vein images were acquired from both
hands of 50 volunteers, resulting in 100 unique
vein patterns for the wrist region. For each
volunteer, for each hand, pictures were taken in
3 series, 4 pictures each, with at least one week
interval between each series. Furthermore, all
the experiments have been performed using
MATLAB (R2017a) on Intel core i7 2.40 GHz
laptop with 8 GB RAM.

For evaluating the performance of all the
implemented segmentation methods, it was
necessary to have a pre-defined wrist location in
the dataset images to compare the output
segmented images of each segmentation method
with it. Therefore, we had to localize the wrist
region in the images manually to be our ground-
truth, by marking the boundaries of the wrist

region for all wrist images in the PUT vein
database.

The quality of segmented images has been
measured by using six different evaluation
metrics that can be classified into three
categories: similarity metrics, distance metrics
and popular classical metrics. The higher the
values are for the similarity metrics and the
lower the values are for the distance metrics, the
better is segmentation performance. The
Sensitivity (Recall, True Positive Rate) and
Specificity (True Negative Rate) metrics haven't
been used for segmentation evaluation. This is
because the sensitivity can achieve its ideal
value for a poor segmentation much bigger than
the ground-truth, also the specificity can
achieve its ideal value for a very poor
segmentation that does not detect the object
region at all. Thus, the accuracy metric can be
more accurate and meaningful.

— Similarity metrics:
1. Rand Index (RI)

2. Jaccard  Similarity  Coefficient
(Tanimoto Coefticient)
= Distance metrics:
3. Variations of Information (VOI)
4. Boundary Displacement Error
(BDE)
= Classic metrics:
5. Accuracy
6. Mean Square Error (MSE)

Table 2 shows the comparison between
various segmentation methods for hand region
localization in terms of performance and
processing time. The second column to the
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seventh column represent the performance
recorded for each evaluation metric. The last
column presents the average time, in seconds,

required for each segmentation method to
localize the wrist region in an image from the
used dataset.

Table 2 Comparison between various segmentation methods in terms of performance and average
processing time.

rehniane | gy | T | vor | eoE GRS | o | e
deLtZ‘ZZéflg[‘;“;] 0.8874 | 0.9190 | 0.6097 | 17.161 93.945 | 0.0605 | 0.0270
Sobel ‘Eg%foc]‘etec“’r 0.9794 | 09857 | 0.1427 | 32971 | 98961 | 0.0103 | 0.0551
Can“y[ﬁ%‘;gﬂecmr 0.9862 | 0.9893 | 0.1082 | 1.6649 | 99.262 | 0.0073 | 0.1038
Otsu Efl‘ge_sll;‘]’ldi“g 0.8382 | 0.8742 | 06766 | 25534 | 91.079 | 0.0892 | 0.0219
K'me‘E‘E_Cll'é‘]Ste"i“g 0.8380 | 0.8740 | 0.6774 | 25.584 | 91.063 | 0.0893 | 0.3313

From table 2, it is shown that Otsu
thresholding method produced low performance
records, since there were big losses in the
detected wrist regions due to non-fulfillment of
the bimodal histogram condition in the used
wrist images. The segmentation results of
Canny and Sobel edge detectors suffered from
connecting some unwanted background details
to the wrist regions in images with complicated
backgrounds, in addition to some tiny losses in
the detected wrist regions due to some weak
wrist edges. This caused decreasing their
performance records. Lee's region localization
produced low performance records due to
occurrence of many of its weaknesses in most
images. Hence, in spite of their speed, these
segmentation methods have produced low
performance records when the main assumption
of each method was unsatisfied.

As a result of all these shortcomings,
different segmentation methods have been
tested on the wrist-vein dataset, all belonging to
threshold-based segmentation techniques but

they differ in how each one computes its
threshold value. These thresholding methods are
the IsoData thresholding, Min error thresholding
(MET), Max entropy thresholding (ME), Min
cross entropy thresholding (MCE), Local
entropy thresholding (LE), Joint entropy
thresholding (JE), Global entropy thresholding
(GE), Local relative entropy thresholding
(LRE), Joint relative entropy thresholding
(JRE), and Global relative entropy thresholding
(GRE).

Table 3 shows comparison of the
performance and processing time for these
segmentation methods. In the first column,
thresholding methods are grouped according to
their  dependencies for computing their
threshold values. The third column to the eighth
column represent the performance recorded for
each evaluation metric. The last column
presents the average time, in seconds, required
for each segmentation method to localize the
wrist region in an image from the used dataset.

Table 3 Comparison between different thresholding methods in terms of performance and average
processing time

) . RI Jaccard Accuracy MSE Time
Category Technique [01] [01] VOI BDE [0 100] % [01] (sec)
Histogram- 1 =y o0 | 07788 | 0.8237 | 0.8422 | 36903 | 87.308 | 0.1269 | 0.0287

derived
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thresholding
methods MET 09756 | 0.9828 | 0.1569 | 3.2232 | 98.751 | 0.0124 | 0.0505
ME 0.5485 | 0.4396 | 12962 | 132.07 | 59.666 | 0.4033 | 0.0207
MCE 0.9436 | 09587 | 03124 | 7.7549 | 97.088 | 0.0291 | 0.0324
LE 0.5307 | 03188 | 12902 | 161.53 | 50.884 | 0.4911 | 0.2326
JE 09811 | 09778 | 0.1140 | 4.8110 | 98.501 | 0.0149 | 0.2147
Co- GE 09533 | 09534 | 02390 | 9.7889 | 96.853 | 0.0314 | 0.2619
occurrence

marix LRE 0.6687 | 0.1841 | 0.7388 | 249.48 | 40915 | 0.5908 | 0.2182

derived
thresholding JRE 09386 | 09212 | 02676 | 21.864 | 94254 | 0.0574 | 0.2132

methods
GRE 06470 | 01217 | 07751 | 269.89 | 36.476 | 0.6352 | 0.1941
Proposed | 5905 | 09933 | 0.0830 | 09555 | 99.524 | 0.0047 | 03119

method

From table 3, it can be seen that the
IsoData, Min error thresholding (MET), Max
entropy (ME), and Min cross entropy (MCE)
thresholding methods produced low
performance records. Since all of them depend
only on the image's intensity histogram
neglecting the dependencies between the pixel
intensities in the image and its spatial
information, it was necessary to use other
thresholding methods that compute their
threshold values in different way in order to
overcome this weakness point. Therefore, the
co-occurrence  matrix  based thresholding
methods have been included in our comparison
so as to examine their effectiveness for
segmenting the wrist region in the used NIR
dataset.

From experiments, it was found that the
joint-entropy  thresholding  technique has
produced higher performance records than the
other GLCM-based thresholding techniques, as
shown in table 3. However, its performance
results have been affected due to its failures in

the images containing flaws in their
backgrounds. By applying the proposed
segmentation algorithm, the segmentation
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results have become more accurate, because of
removing the noisy regions from these images
and ensuring their GLCM purity before
applying the JE thresholding method.
Accordingly, it can be seen that the proposed
segmentation method has produced the highest
RI and Jaccard records, and the lowest VOI and
BDE records, while producing 99.524%
accuracy that is 1.022% more accurate than the
original JE thresholding method.

Figure 11 shows three wrist-vein images
with noisy regions in their backgrounds, being
segmented using JE thresholding method and
the proposed segmentation method. The red
lines show the segmentation by JE thresholding
method, while the blue lines define the
segmented region using the proposed
segmentation method. It is obvious that in the
first two images, the JE method didn't detect the
wrist region at all but it detected the noisy
regions in the background instead. In the last
image, the JE output included the noisy regions
in the background as a part of the detected wrist
region. In contrast, the proposed segmentation
method is able to accurately detect the wrist
region in these noisy images.
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Fig 11 Segmentation of wrist images with noisy regions: red line denotes JE thresholding method,
blue line denotes the proposed method.

5. CONCLUSION

In this paper, a wrist-vein ROI localization
algorithm has been proposed that consists of
three steps: wrist region segmentation, wrist
orientation correction and ROI detection. JE
thresholding method has been used for wrist
region segmentation, since it depends on a
higher-order statistic of the image that considers
its local spatial correlations by using its GLCM
instead of relying only on the image global
characteristics. Existence of more than two
regions in the acquired image due to flaws
during capturing causes a deformation of its
GLCM resulting in inaccurate threshold
calculation. Therefore, a pre-processing step has
been proposed to eliminate the useless noisy
regions from the image, in order to guarantee
the GLCM purity before applying the JE
thresholding method. After wrist region
segmentation, the orientation of the detected
wrist region is estimated in order to be
corrected. Finally, the wrist-vein ROI has been
defined as the smallest possible rectangular
region that can contain the whole wrist region,
in order to accelerate the subsequent steps of the
vein recognition system without losses in the
veins structure.

Experiments show that the proposed
segmentation algorithm has produced 1.022%
more accurate wrist region segmentation results
than using joint-entropy thresholding method by
its own, producing totally an accuracy of
99.524%. Moreover, it is applicable for real-
time wrist-vein recognition systems, requiring
average processing time 0.321 sec for a wrist
image.

In the future, we will dedicate our efforts to
build an integrated wrist-vein recognition
system to examine the efficiency of using wrist
veins for individual recognition.
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