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RELATIVE (α,β, γ)-ORDER OF MEROMORPHIC FUNCTION

WITH RESPECT TO ENTIRE FUNCTION

CHINMAY BISWAS, BABLU CHANDRA DAS

Abstract. The growth investigation of meromorphic function has usually

been done through the Nevanlinna’s characteristic function comparing with

the exponential function. Order and type are the classical growth indicators

which are generalized by several authors during the past decades. Beläıdi et

al. [3] have introduced the concepts of (α,β, γ)-order and (α, β, γ)-lower order

of a meromorphic function taking α ∈ L1-class, β ∈ L2-class, γ ∈ L3-class.

But if one is paying attention to evaluate the growth rates of any meromor-

phic function with respect to a entire function, the notions of relative growth

indicators (see e.g. [1, 2]) will come. In order to make some progresses in the

study of growth analysis of meromorphic functions, here in this paper, we have

introduced the denitions of the relative (α,β, γ)-order and relative (α,β, γ)-

lower order of a meromorphic function with respect to an entire function as

well as their integral representations. We have also investigated some growth

properties of meromorphic functions on the basis of relative (α,β, γ)-order and

relative (α, β, γ)-lower order as compared to the growth of their corresponding

left and right factors.

1. Introduction

The standard notations of the Nevanlinna value distribution theory of entire
and meromorphic functions are available in [4, 6, 7, 8, 9], so we do not explain
those in details. For x ∈ [0,+∞) and k ∈ N where N be the set of all positive
integers, dene iterations of the exponential and logarithmic functions as exp[k] x =

exp

exp[k−1] x


and log[k] x = log


log[k−1] x


, with convention that log[0] x = x,

log[−1] x = expx, exp[0] x = x, and exp[−1] x = log x. For meromorphic function f ,
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the Nevanlinna’s characteristic function Tf (r) is dened as

Tf (r) = Nf (r) +mf (r),

where mf (r) and Nf (r) are respectively called as the proximity function of f and
the counting function of poles of f in |z| ≤ r. For details about Tf (r), mf (r)
and Nf (r) one may see [4, p.4]. If f is an entire function, then the Nevanlinna’s
characteristic function Tf (r) is dened as

Tf (r) = mf (r) =
1

2π

2π

0

log+ |f(reiθ)|dθ, where

log+ x = max(log x, 0) for all x ⩾ 0.

Moreover, if f is non-constant entire function, then Tf (r) is also strictly

increasing and continuous function of r. Therefore its inverse T−1
f : (Tf (0),+∞) 

(0,+∞) exists and is such that lim
s→+∞

T−1
f (s) = +∞. To start our paper, we just

recall the following denition:

Dnton 1.1. The order ρf and the lower order λf of a meromorphic function
f are dened as:

ρf = lim sup
r→+∞

log T (r, f)

log r
and λf = lim inf

r→+∞
log T (r, f)

log r
.

Now rst of all, let L be a class of continuous non-negative functions α
dened on (−∞,+∞) such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x)  +∞
as x0 ≤ x  +∞. We say that α ∈ L1, if α ∈ L and α(a + b) ≤ α(a) + α(b) + c
for all a, b ≥ R0 and xed c ∈ (0,+∞). Further we say that α ∈ L2, if α ∈ L
and α(x + O(1)) = (1 + o(1))α(x) as x  +∞. Finally, α ∈ L3, if α ∈ L and
α(a+ b) ≤ α(a) + α(b) for all a, b ≥ R0, i.e., α is subadditive. Clearly L3 ⊂ L1.

Particularly, when α ∈ L3, then one can easily verify that α(mr) ≤ mα(r),
m ≥ 2 is an integer. Up to a normalization, subadditivity is implied by concavity.
Indeed, if α(r) is concave on [0,+∞) and satises α(0) ≥ 0, then for t ∈ [0, 1],

α(tx) = α(tx+ (1− t) · 0)
≥ tα(x) + (1− t)α(0) ≥ tα(x),

so that by choosing t = a
a+b or t = b

a+b , we obtain

α(a+ b) =
a

a+ b
α(a+ b) +

b

a+ b
α(a+ b)

≤ α


a

a+ b
(a+ b)


+ α


b

a+ b
(a+ b)



= α(a) + α(b), a, b ≥ 0.

As a non-decreasing, subadditive and unbounded function, α(r) satises

α(r) ≤ α(r +R0) ≤ α(r) + α(R0)

for any R0 ≥ 0. This yields that α(r) ∼ α(r+R0) as r  +∞. Throughout this
paper we assume α ∈ L1, β ∈ L2, γ ∈ L3.
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Heittokangas et al. [5] have introduced the concept of φ-order of entire and
meromorphic functions considering φ as subadditive function. For details one may
see [5]. Later on Beläıdi et al. [3] have extended the above idea and have introduced
the denitions of (α,β, γ)-order and (α,β, γ)-lower order of a meromorphic function
f, which are as follows:

Dnton 1.2. [3] The (α,β, γ)-order denoted by ρ(α,β,γ)[f ] and (α,β, γ)-lower
order denoted by λ(α,β,γ)[f ], of a meromorphic function f are dened as:

ρ(α,β,γ)[f ] = lim sup
r→+∞

α(log(Tf (r)))

β (log(γ(r)))

and λ(α,β,γ)[f ] = lim inf
r→+∞

α(log(Tf (r)))

β (log(γ(r)))
.

Mainly the growth investigation of meromorphic function has usually been
done through the Nevanlinna’s characteristic function comparing with the expo-
nential function. But if one is paying attention to evaluate the growth rates of
any meromorphic function with respect to a entire function, the notions of relative
growth indicators (see e.g. [1, 2]) will come. Now in order to make some progresses
in the study of relative order of meromorphic function, one may introduce the de-
nitions of relative (α,β, γ)-order and relative (α,β, γ)-lower order of a meromorphic
function with respect to an entire function in the following way:

Dnton 1.3. The relative (α,β, γ)-order denoted by ρ(α,β,γ)[f ]h of a meromor-
phic function f with respect to an entire function h is dened as:

ρ(α,β,γ)[f ]h = lim sup
r→+∞

α(log[2] T−1
h (Tf (r)))

β (log(γ(r)))
.

Dnton 1.4. The relative (α,β, γ)-lower order denoted by λ(α,β,γ)[f ]h of a mero-
morphic function f with respect to an entire function h is dened as:

λ(α,β,γ)[f ]h = lim inf
r→+∞

α(log[2] T−1
h (Tf (r)))

β (log(γ(r)))
.

Rmrk 1.1. An entire function f is said to have regular relative (α,β, γ)-order
with respect to an entire function h if ρ(α,β,γ)[f ]h = λ(α,β,γ)[f ]h.

Dnton 1.5. The growth indicator ρ(α,β,γ)[f ]h is alternatively dened as: The

integral
+∞
r0

exp[α(log[2] T−1
h (Tf (r)))]

[exp[β(log(γ(r)))]]t+1 dr (r0 > 0) converges when t > ρ(α,β,γ)[f ]h and

diverges when t < ρ(α,β,γ)[f ]h.

Dnton 1.6. The growth indicator λ(α,β,γ)[f ]h is alternatively dened as: The

integral
+∞
r0

exp[α(log[2] T−1
h (Tf (r)))]

[exp[β(log(γ(r)))]]t+1 dr (r0 > 0) converges when t > λ(α,β,γ)[f ]h and

diverges when t < λ(α,β,γ)[f ]h.

Here in this paper, we have introduced integral representations of the rel-
ative (α,β, γ)-order and relative (α,β, γ)-lower order of a meromorphic function
with respect to an entire function. We are also investigating some basic proper-
ties of entire and meromorphic functions on the basis of relative (α,β, γ)-order and
relative (α,β, γ)-lower order as compared to the growth of their corresponding left
and right factors.
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2. Lemma

In this section, we establish a lemma which will be needed in the sequel.

Lmm 2.1. If the integral
+∞
r0

exp[α(log[2] T−1
h (Tf (r)))]

[exp[β(log(γ(r)))]]t+1 dr (r0 > 0) is convergent for

0 < t < +∞, then

lim
r→+∞

exp

α(log[2] T−1

h (Tf (r)))


[exp [β (log(γ(r)))]]t
= 0.

Proof. As the integral
+∞
r0

exp[α(log[2] T−1
h (Tf (r)))]

[exp[β(log(γ(r)))]]t+1 dr converges for 0 < t < +∞, so

for given ε (> 0) there exists a number n = n(ε) such that

+∞

r0

exp

α(log[2] T−1

h (Tf (r)))


[exp [β (log(γ(r)))]]t+1
dr < ε for r0 > n,

i.e., for r0 > n,

r0+r

r0

exp

α(log[2] T−1

h (Tf (r)))


[exp [β (log(γ(r)))]]t+1
dr < ε.

Since exp [β (log(γ(r)))] a increasing function of r, so

r0+exp[β(log(γ(r0)))]

r0

exp

α(log[2] T−1

h (Tf (r)))


[exp [β (log(γ(r)))]]t+1
dr

≥
exp


α(log[2] T−1

h (Tf (r0)))


[exp [β (log(γ(r0)))]]t+1
· exp [β (log(γ(r0)))] ,

i.e.,

r0+exp[β(log(γ(r0)))]

r0

exp

α(log[2] T−1

h (Tf (r)))


[exp [β (log(γ(r)))]]t+1
dr

≥
exp


α(log[2] T−1

h (Tf (r0)))


[exp [β (log(γ(r0)))]]t
for r0 > n,

i.e.,
exp


α(log[2] T−1

h (Tf (r0)))


[exp [β (log(γ(r0)))]]t
< ε for r0 > n,

from which it is clear that

lim
r→+∞

exp

α(log[2] T−1

h (Tf (r)))


[exp [β (log(γ(r)))]]t
= 0.

This proves the lemma. □
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3. Main results

In this section, we present the main results of the paper.

Torm 3.1. The Denition 1.3 implies and is implied by Denition 1.5, i.e.,
they are equivalent.

Proof. Cs 1. ρ(α,β,γ)[f ]h = +∞.
Dnton 1.3 ⇒ Dnton 1.5.
Since ρ(α,β,γ)[f ]h = +∞, by Denition 1.3 for arbitrary positive K, we have a

sequence of real numbers r tending to innity that

α(log[2] T−1
h (Tf (r))) > K · β (log(γ(r))) ,

i.e., exp[α(log[2] T−1
h (Tf (r)))] > [exp β (log(γ(r)))]K . (1)

Let us suppose that the integral
+∞
r0

exp[α(log[2] T−1
h (Tf (r)))

[exp β(log(γ(r)))]K+1 dr (r0 > 0) be convergent.

Then by using Lemma 2.1,

lim sup
r→+∞

exp[α(log[2] T−1
h (Tf (r)))

[expβ (log(γ(r)))]K
= 0.

So for all suciently large values of r,

exp[α(log[2] T−1
h (Tf (r))) < [exp β (log(γ(r)))]K . (2)

Now from (1) and (2) we reach at a contradiction.

Hence
+∞
r0

exp[α(log[2] T−1
h (Tf (r)))

[exp β(log(γ(r)))]K+1 dr (r0 > 0) is divergent whenever K is nite,

which is Denition 1.5.
Dnton 1.5 ⇒ Dnton 1.3.
We choose any positive number K. As ρ(α,β,γ)[f ]h = +∞, from Denition 1.5

the divergence of the integral
+∞
r0

exp[α(log[2] T−1
h (Tf (r)))

[exp β(log(γ(r)))]K+1 dr (r0 > 0) implies that for

any arbitrarily chosen positive number ε and for a sequence of real numbers r
tending to innity,

exp[α(log[2] T−1
h (Tf (r))) > [exp β (log(γ(r)))]K−ε,

i.e, α(log[2] T−1
h (Tf (r))) > (K − ε) · β (log(γ(r))) .

This gives that

lim sup
r→+∞

α(log[2] T−1
h (Tf (r)))

β (log(γ(r)))
≥ (K − ε).

As K > 0 is arbitrarily chosen, it implies that

lim sup
r→+∞

α(log[2] T−1
h (Tf (r)))

β (log(γ(r)))
= +∞.

Thus Denition 1.3 follows.
Cs 2. 0 ≤ ρ(α,β,γ)[f ]h < +∞.
Dnton 1.3 ⇒ Dnton 1.5.
Sus (I). 0 < ρ(α,β,γ)[f ]h < +∞.
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If 0 < ρ(α,β,γ)[f ]h < +∞, then for any arbitrarily chosen ε(> 0) and for all
suciently large values of r,

α(log[2] T−1
h (Tf (r)))

β (log(γ(r)))
< ρ(α,β,γ)[f ]h + ε,

i.e, exp[α(log[2] T−1
h (Tf (r))) < [exp β (log(γ(r)))](ρ(α,β,γ)[f ]h+ε),

i.e,
exp[α(log[2] T−1

h (Tf (r)))

[expβ (log(γ(r)))]t
<

[expβ (log(γ(r)))](ρ(α,β,γ)[f ]h+ε)

[expβ (log(γ(r)))]t
,

i.e,
exp[α(log[2] T−1

h (Tf (r)))

[expβ (log(γ(r)))]t
<

1

[expβ (log(γ(r)))]t−(ρ(α,β,γ)[f ]h+ε)
.

Therefore
+∞
r0

exp[α(log[2] T−1
h (Tf (r)))

[exp β(log(γ(r)))]t+1 dr (r0 > 0) is convergent when t > ρ(α,β,γ)[f ]h

and divergent when t < ρ(α,β,γ)[f ]h.
Sus (II).
When ρ(α,β,γ)[f ]h = 0, Denition 1.3 gives for all suciently large values of r

that
α(log[2] T−1

h (Tf (r)))

β (log(γ(r)))
≤ ε.

Then as previous we get that
+∞
r0

exp[α(log[2] T−1
h (Tf (r)))

[exp β(log(γ(r)))]t+1 dr (r0 > 0) is convergent

when t > 0 and divergent when t < 0.
By Subcase (I) and Subcase (II), we get Denition 1.5.
Dnton 1.5 ⇒ Dnton 1.3.
By Denition 1.5, for arbitrary ε (> 0) the integral

+∞
r0

exp[α(log[2] T−1
h (Tf (r)))

[exp β(log(γ(r)))]
ρ(α,β,γ)[f ]h+ε+1 dr converges. Then using Lemma 2.1, we get

lim sup
r→+∞

exp[α(log[2] T−1
h (Tf (r)))

[expβ (log(γ(r)))]ρ(α,β,γ)[f ]h+ε
= 0,

i.e, for all suciently large values of r and for any arbitrarily chosen ε0(> 0),

exp[α(log[2] T−1
h (Tf (r)))

[expβ (log(γ(r)))]ρ(α,β,γ)[f ]h+ε
< ε0,

i.e, exp[α(log[2] T−1
h (Tf (r))) < ε0 · [expβ (log(γ(r)))]ρ(α,β,γ)[f ]h+ε,

i.e, α(log[2] T−1
h (Tf (r))) < log ε0 + (ρ(α,β,γ)[f ]h + ε) · β (log(γ(r))) ,

i.e,
α(log[2] T−1

h (Tf (r)))

β (log(γ(r)))
<

log ε0
β (log(γ(r)))

+ (ρ(α,β,γ)[f ]h + ε),

i.e, lim sup
r→+∞

α(log[2] T−1
h (Tf (r)))

β (log(γ(r)))
≤ ρ(α,β,γ)[f ]h + ε.

Since ε (> 0) is arbitrarily chosen, from above we get

lim sup
r→+∞

α(log[2] T−1
h (Tf (r)))

β (log(γ(r)))
≤ ρ(α,β,γ)[f ]h. (3)
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As the integral
+∞
r0

exp[α(log[2] T−1
h (Tf (r)))

[exp β(log(γ(r)))]
ρ(α,β,γ)[f ]h−ε+1 dr is divergent, so from Denition

1.5 we have a sequence of values of r tending to innity for which

exp[α(log[2] T−1
h (Tf (r)))

[expβ (log(γ(r)))]ρ(α,β,γ)[f ]h−ε+1
>

1

[expβ (log(γ(r)))]1+ε
,

i.e, exp[α(log[2] T−1
h (Tf (r))) > [exp β (log(γ(r)))]ρ(α,β,γ)[f ]h−2ε,

i.e, α(log[2] T−1
h (Tf (r))) > (ρ(α,β,γ)[f ]h − 2ε) · β (log(γ(r))) ,

i.e,
α(log[2] T−1

h (Tf (r)))

β (log(γ(r)))
> (ρ(α,β,γ)[f ]h − 2ε).

As ε (> 0) is arbitrarily chosen, we have

lim sup
r→+∞

α(log[2] T−1
h (Tf (r)))

β (log(γ(r)))
≥ ρ(α,β,γ)[f ]h. (4)

Thus from (3) and (4) it follows that

lim sup
r→+∞

α(log[2] T−1
h (Tf (r)))

β (log(γ(r)))
= ρ(α,β,γ)[f ]h.

This is the Denition 1.3.
Hence by Case 1 and Case 2, we reach at the conclusion. □

As Theorem 3.1, we can state Theorem 3.2 without its proof.

Torm 3.2. The Denition 1.4 and Denition 1.6 are equivalent.

Torm 3.3. Let f , g be meromorphic functions and h be an entire function such
that 0 < λ(α,β,γ)[f ]h ≤ ρ(α,β,γ)[f ]h < +∞ and λ(α,β,γ)[f ◦ g]h = +∞, then

lim
r→+∞

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

= +∞.

Proof. If possible, let the conclusion of the theorem does not hold. Then we can
nd a constant ∆ > 0 such that for a sequence of values of r tending to innity

α(log[2] T−1
h (Tf◦g(r))) ≤ ∆ · α(log[2] T−1

h (Tf (r))). (5)

Again from the denition of ρ(α,β,γ)[f ]h, it follows for all suciently large values of
r that

α(log[2] T−1
h (Tf (r))) ≤ (ρ(α,β,γ)[f ]h + ϵ)β(log(γ(r))). (6)

From (5) and (6), for a sequence of values of r tending to +∞,we have

α(log[2] T−1
h (Tf◦g(r))) ≤ ∆(ρ(α,β,γ)[f ]h + ϵ)β(log(γ(r))),

i.e.,
α(log[2] T−1

h (Tf◦g(r)))

β(log(γ(r)))
≤ ∆(ρ(α,β,γ)[f ]h + ϵ),

i.e., lim inf
r→+∞

α(log[2] T−1
h (Tf◦g(r)))

β(log(γ(r)))
< +∞,

i.e., λ(α,β,γ)[f ◦ g]h < +∞.

This is a contradiction.
Thus the theorem follows. □
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Rmrk 3.2. If we take 0 < λ(α,β,γ)[g]h ≤ ρ(α,β,γ)[g]h < +∞ instead of
0 < λ(α,β,γ)[f ]h ≤ ρ(α,β,γ)[f ]h < +∞ and other conditions remain same, the

conclusion of Theorem 3.3 remains true with α(log T−1
h (Tg(r))) in place of

α(log T−1
h (Tf (r))) in the denominator.

Rmrk 3.3. Theorem 3.3 and Remark 3.2 are also valid with limit superior
instead of limit if λ(α,β,γ)[f ◦ g]h = +∞ is replaced by ρ(α,β,γ)[f ◦ g]h = +∞
and the other conditions remain the same.

Torm 3.4. Let f , g be meromorphic functions and h be an entire function
such that 0 < λ(α,β,γ)[f ◦ g]h ≤ ρ(α,β,γ)[f ◦ g]h < +∞ and 0 < λ(α,β,γ)[f ]h ≤
ρ(α,β,γ)[f ]h < +∞, then

λ(α,β,γ)[f ◦ g]h
ρ(α,β,γ)[f ]h

≤ lim inf
r→+∞

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

≤ min


λ(α,β,γ)[f ◦ g]h
λ(α,β,γ)[f ]h

,
ρ(α,β,γ)[f ◦ g]h
ρ(α,β,γ)[f ]h



≤ max


λ(α,β,γ)[f ◦ g]h
λ(α,β,γ)[f ]h

,
ρ(α,β,γ)[f ◦ g]h
ρ(α,β,γ)[f ]h



≤ lim sup
r→+∞

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

≤ ρ(α,β,γ)[f ◦ g]h
λ(α,β,γ)[f ]h

.

Proof. From the denitions of λ(α,β,γ)[f◦g]h, ρ(α,β,γ)[f◦g]h, λ(α,β,γ)[f ]h, ρ(α,β,γ)[f ]h
and for arbitrary positive ε, we have for all suciently large values of r,

α(log[2] T−1
h (Tf◦g(r))) ⩾


λ(α,β,γ)[f ◦ g]h − ε


β(log(γ(r))), (7)

α(log[2] T−1
h (Tf◦g(r))) ≤


ρ(α,β,γ)[f ◦ g]h + ε


β(log(γ(r))), (8)

α(log[2] T−1
h (Tf (r))) ⩾


λ(α,β,γ)[f ]h − ε


β(log(γ(r))) (9)

and α(log[2] T−1
h (Tf (r))) ≤


ρ(α,β,γ)[f ]h + ε


β(log(γ(r))). (10)

Again for a sequence of values of r tending to innity,

α(log[2] T−1
h (Tf◦g(r))) ≤


λ(α,β,γ)[f ◦ g]h + ε


β(log(γ(r))), (11)

α(log[2] T−1
h (Tf◦g(r))) ⩾


ρ(α,β,γ)[f ◦ g]h − ε


β(log(γ(r))), (12)

α(log[2] T−1
h (Tf (r))) ≤


λ(α,β,γ)[f ]h + ε


β(log(γ(r))) (13)

and α(log[2] T−1
h (Tf (r))) ⩾


ρ(α,β,γ)[f ]h − ε


β(log(γ(r))). (14)

Now from (7) and (10) it follows for all suciently large values of r that

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

⩾
λ(α,β,γ)[f ◦ g]h − ε

ρ(α,β,γ)[f ]h + ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→+∞

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

⩾
λ(α,β,γ)[f ◦ g]h
ρ(α,β,γ)[f ]h

. (15)
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Combining (9) and (11) , we have for a sequence of values of r tending to innity
that

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

≤ λ(α,β,γ)[f ◦ g]h + ε

λ(α,β,γ)[f ]h − ε
.

Since ε (> 0) is arbitrary it follows that

lim inf
r→+∞

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

≤ λ(α,β,γ)[f ◦ g]h
λ(α,β,γ)[f ]h

. (16)

Again from (7) and (13), for a sequence of values of r tending to innity, we get

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

≥ λ(α,β,γ)[f ◦ g]h − ε

λ(α,β,γ)[f ]h + ε
.

As ε (> 0) is arbitrary, we get from above that

lim sup
r→+∞

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

≥ λ(α,β,γ)[f ◦ g]h
λ(α,β,γ)[f ]h

. (17)

Now, it follows from (8) and (9) , for all suciently large values of r that

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

≤ ρ(α,β,γ)[f ◦ g]h + ε

λ(α,β,γ)[f ]h − ε
.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→+∞

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

≤ ρ(α,β,γ)[f ◦ g]h
λ(α,β,γ)[f ]h

. (18)

Now from (8) and (14) , it follows for a sequence of values of r tending to innity
that

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

≤ ρ(α,β,γ)[f ◦ g]h + ε

ρ(α,β,γ)[f ]h − ε
.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→+∞

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

≤ ρ(α,β,γ)[f ◦ g]h
ρ(α,β,γ)[f ]h

. (19)

So combining (10) and (12) , we get for a sequence of values of r tending to
innity that

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

⩾
ρ(α,β,γ)[f ◦ g]h − ε

ρ(α,β,γ)[f ]h + ε
.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→+∞

α(log[2] T−1
h (Tf◦g(r)))

α(log[2] T−1
h (Tf (r)))

⩾
ρ(α,β,γ)[f ◦ g]h
ρ(α,β,γ)[f ]h

. (20)

Thus the theorem follows from (15) , (16) , (17), (18) , (19) and (20) . □

Rmrk 3.4. If we take 0 < λ(α,β,γ)[g]h ≤ ρ(α,β,γ)[g]h < +∞ instead of
0 < λ(α,β,γ)[f ]h ≤ ρ(α,β,γ)[f ]h < +∞ and other conditions remain same, the
conclusion of Theorem 3.4 remains true with λ(α,β,γ)[g]h, ρ(α,β,γ)[g]h and

α(log[2] T−1
h (Tg(r))) in place of λ(α,β,γ)[f ]h, ρ(α,β,γ)[f ]h and

α(log[2] T−1
h (Tf (r))) respectively in the denominators.
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[3] B. Beläıdi and T. Biswas, Study of complex oscillation of solutions of a second order linear

dierential equation with entire coecients of (α,β, γ)-order, WSEAS Trans. Math., 21, 361-

370, 2022, doi: 10.37394/23206.2022.21.43.

[4] W. K. Hayman, Meromorphic functions, The Clarendon Press, Oxford, 1964.

[5] J. Heittokangas, J. Wang, Z. T. Wen and H. Yu, Meromorphic functions of nite φ-order

and linear q-dierence equations, J. Dierence Equ. Appl., 27, 9, 1280-1309, 2021, doi:

10.1080/10236198.2021.1982919.

[6] I. Laine, Nevanlinna theory and complex dierential equations, De Gruyter Studies in Math-

ematics, 15 Walter de Gruyter & Co., Berlin, 1993.

[7] G. Valiron, Lectures on the general theory of integral functions, Chelsea Publishing Company,

New York, 1949.

[8] L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993.

[9] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its

Applications, 557 Kluwer Academic Publishers Group, Dordrecht, 2003.

Chinmay Biswas

Department of Mathematics, Nabadwip Vidyasagar College,

Nabadwip, Dist.- Nadia, PIN-741302, West Bengal, India.

Emil rss: chinmay.shib@gmail.com

Bablu Chandra Das

Department of Mathematics, Nabadwip Vidyasagar College,

Nabadwip, Dist.- Nadia, PIN-741302, West Bengal, India.

Emil rss: findbablu10@gmail.com


