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Abstract 
 

The rapid evolution of deep learning techniques, particularly through generative adversarial networks (GANs), has 

enabled the creation of hyper-realistic synthetic media, heightening concerns in domains such as politics, 

entertainment, and security. Consequently, there has been a heightened interest in developing robust deepfake creation 

and detection systems. This paper provides a comprehensive survey of state-of-the-art deepfake detection 

methodologies, more specifically we focus on video-based, and image based approaches and their applications. It seeks 

to enhance the reader's understanding of recent developments, vulnerabilities in existing security measures, and areas 

for improvements. This research is among the few studies that extensively review datasets, highlighting their strengths 

and weaknesses. Which are crucial for training and validation purposes of deepfake models, such as: FaceForensics++, 

DeepFake Detection Challenge (DFDC), and Celeb-DF, emphasizing the need for diverse and realistic datasets to 

ensure robust model generalization. It thoroughly addresses every aspect of identifying and creating deepfakes, 

providing the reader with a comprehensive understanding of these topics in a single study. Recent studies primarily 

use Convolutional Neural Networks (CNNs) for deepfake detection, with the main goal of optimizing detection 

accuracy, also focuses on comparing different approaches. From previous studies we conduct that XceptionNet, 

EfficientNet, and I3D are top models for deepfake detection, each excelling in different areas: XceptionNet identifies 

subtle manipulations, EfficientNet offers balanced and efficient video frame analysis, and I3D specializes in real-time 

video sequence processing.  

     Keywords:  Deepfake, Detection, Generation, CNN, RNN, GAN; 

1. Introduction  

         In recent years, advancements in multimedia manipulation techniques have achieved unprecedented levels of 

realism, making it difficult to differentiate between authentic and synthetic media [1]. This development has opened 

up new possibilities for innovative applications in various fields, including creative arts, advertising, film production, 

video games and character assassination, and deepfake pornography [2]. Examples include a manipulated video of 

U.S. Speaker of the House Nancy Pelosi appearing inebriated [3], President Donald Trump supporting his political 

opponent [4] and a deepfake video on tiktok [5]. However, it has also posed significant security risks. These 

deepfakes, generated using advanced DL techniques such as GANs and Auto-encoders [6].  

   T. Zhang, et al [1] provides an overview of the latest deepfake generation techniques, detection methods and 

available datasets. The authors focus on only two categories of deepfake generation: face swapping and facial 

reenactment. Patil, Kundan et al [7] focuses on the generation and detection of deepfakes, examining existing 

detection techniques and their challenges. They focus on only biological indicators, such as eyebrow recognition, eye 

blink detection, and pulse monitoring, and compares their effectiveness using various classifiers and methods. Also 

discusses the difficulty in verifying integrity in GAN-generated images, highlighting the role of the discriminator in 

this process. Heidari, Arash et all [8], provide a comprehensive analysis of deep learning (DL) in deepfake detection, 

including an overview of the field, a detailed review of existing methods, key DL techniques used for detection, and 

an evaluation of critical features in various strategies. It also identifies areas where these techniques can be 

improved. But the authors focus on deepfake detection without delving into any details related to deepfake creation.  
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This article explores the application of DL techniques in deepfake detection and addresses various related 

concerns. Additionally, it provides a detailed discussion of future research directions, emphasizing key issues that 

need to be resolved. In summary, the key contributions of this article are as follows: 

 Offering a comprehensive overview of DL approaches in the field of deepfake detection. 

 Explore the underlying algorithms and architectures used for deepfake creation, highlighting their 

strengths, limitations, and advancements 

 Critically analyzing each DL-based strategy for deepfake detection and generation, focusing on their 

distinctive features. 

 Examines the most widely used datasets in deepfake research, detailing their scope, diversity. 

The remainder of our survey is organized as follows. In section 2 approaches of deepfake creation is introduced. In 

section 3, a discussion of deepfake detection approaches is provided. Available datasets used for deepfake creation 

and detection are explored in section 4. Section 5, provides a comparison of the state-of-the-art detection 

approaches. A conclusion and future work directions are discussed in section 6.  

2.  Deepfake Creation Techniques for Images and Videos 

     The term "deepfake" merges "deep learning" and "fake," emphasizing the utilization of deep neural networks to 

generate or alter audio, images, text, and videos in a very realistic way[9]. However, alongside the advancements 

in deepfake generation, there has been substantial progress in detection methodologies. Researchers are developing 

sophisticated algorithms to identify subtle inconsistencies and artifacts that escape human eyes but can be detected 

through DL techniques [10]. In this section, we will explore the roles of DL Methods and Traditional Tools in 

Media Creation with a particular emphasis on images and videos. 

A. Conventional Media Editing Tools  

 
        Conventional media editing tool also called a traditional method that is frequent operations includes adding, 

duplicating, or removing objects.  Fig. 1 illustrates the process of image splicing, where multiple image segments 

or pieces are meticulously combined to form a cohesive whole. As demonstrated in the splicing section, parts a and 

b have been seamlessly integrated to generate a new composite image, represented as c. This technique is 

commonly used in photography, digital art, and graphic design to create larger compositions or to merge different 

elements seamlessly. In the copy-move [11] section, a new object can be introduced by duplicating it either from 

another image or even from the same image itself, a process known as copy-move. 

 

     In contrast, an existing object can be removed by expanding the background to seamlessly conceal it, a 

technique known as inpainting, similar to the widely recognized exemplar-based inpainting method [12]. These 

tasks can be efficiently executed using widely accessible image editing software. Furthermore, post-processing 

steps, such as resizing, rotation, or color adjustments, may be essential to ensure the object is flawlessly integrated 

into the scene, enhancing its visual coherence and maintaining consistent perspective and scale  

     

 
 

Fig 1.  Examples for manipulated image by traditional method.. 

 

 

     Weiwei et al [12], introduced PiiGAN, an innovative generative adversarial network for pluralistic image 

inpainting that achieves not only higher quality results but also a diverse range of realistic outputs. Additionally, 
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developed a new extractor to enhance the GAN by capturing the style vectors of training samples during each 

iteration and incorporating a consistency loss to enable the generator to learn various styles corresponding to the 

semantics of the input image. This model has been validated to inpaint the same missing regions with multiple 

plausible results that align with the high-level semantics of the image, and its effectiveness have been assessed on 

several datasets. 

     Khalid M. Hosny et al [13], introduced a CNN-based method for detecting copy-move forgery in images. The 

model distinguishes between forged and original images by generating feature vectors and using a fully connected 

layer to identify feature correspondences. Once trained, it accurately detects tampered images. The method was 

evaluated on different benchmark datasets, such as MICC-F2000, MICC-F600, and MICC-F220—where it 

outperformed other techniques, yielding 100% accuracy within 35 epochs. Additionally, the model achieved fast 

processing time within 47.48 seconds.   
 
 

B. Deep Learning Methods 

 
        Several advanced techniques are employed to manipulate images and videos, harnessing the capabilities of 

DL [9, 14] such as: entire face synthesis, identify swap, attribute manipulation, expression swap, [15] as shown in 

Fig.2. 

 

 

Fig 2.  Examples for manipulated image by deep learning method [35]. 

 

I.   Expression Swap 

 

            Expression swapping, also known as face reenactment, entails transferring a facial expression from a source 

image or video to another person's face in a target image or video, as illustrated in Fig.2(A). This technique alters 

the target's expression to match that of the source, creating a reenactment effect. Current approaches employ 

image-level manipulation using well-known GAN architectures such as Face2Face [16]. Stehouwer et al [17] 

implement an attention mechanism to enhance feature maps specifically for classification, rather than using multi-

task learning to simultaneously detect manipulated images and identify altered regions. The attention maps focus 

on the most pertinent areas, improving the binary classification of real versus fake faces while also visualizing the 

modified regions. This research also developed a large-scale database of various facial forgeries to aid in detecting 

(A) Expression Swap      (B) Entire Face Synthisis 

 
 

(C) Attribute Manipulation (D) Aging /De-Aging 
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and localizing manipulated faces and performed a comprehensive analysis of data-driven fake face detection. Their 

results indicate that the attention mechanism significantly enhances both the detection and localization of forgeries. 

 
 

II. Identity Swap 

 

            The identity swap technique, also known as face-swapping, is widely used to replace one individual's face 

in an image or video with that of another person, In this process, the source image contributes the identity while 

the target image provides the features, resulting in a face that has been swapped.as illustrated in Fig. 2(A). This 

manipulation is usually done with GANs such as Face Swap-GAN [20]. Ruben et al [21] provide an extensive 

analysis of deepfake advancements, emphasizing facial regions and detection accuracy. They compare early 

DeepFake datasets like UADFV and FaceForensics++ with newer datasets such as Celeb-DF [22] and DFDC [23]. 

Two detection approaches were evaluated: one using the entire face and the other focusing on specific regions like 

the eyes and nose. The results indicate that second-generation deepfakes are significantly harder to detect, showing 

equal error rates (EER) of 20-30% compared to 1-3% in first-generation datasets. Enhanced realism, especially in 

areas like the nose, mouth, and face edges, resulted in EERs of 24-44% for these regions. This study provides 

valuable insights into improving detection by analyzing various facial regions under different conditions such as 

lighting and camera distance. 

III. Entire Face Synthesis 

        These set of approaches typically generate syhtnetic face images which are completely new, as shown in 

Fig.2(B), artificial face is created that does not actually exist, using advanced GANs like styleGan[34]. Nicholas 

and Hany [18] demonstrate the forensic classifiers that are susceptible to a variety of attacks that drastically lower 

their accuracy, in some cases to nearly 0%. They conducted five case studies on attacks against a state-of-the-art 

classifier that achieves an area under the ROC curve (AUC) of 0.95 for nearly all image generators, even when 

trained on just one generator. With complete access to the classifier, the authors discovered that flipping the lowest 

bit of each pixel in an image reduces the AUC to 0.0005; changing just 1% of the image area lowers the AUC to 

0.08; and adding a single noise pattern in the synthesizer’s latent space decreases the AUC to 0.17. Furthermore, 

they developed a black-box attack that does not require access to the classifier, which reduced the AUC to 0.22. 

These results reveal significant vulnerabilities in certain image-forensic classifiers. 

IV. Attribute Manipulation 

          Face editing, or retouching, involves modifying facial features like skin color, gender and hair style, as 

illustrated in Fig.2(C). This process is usually done with GAN models, such as CycleGAN [31]. Christian et al. 

[20] studied the effects of moderate facial retouching on advanced face recognition systems. Their results indicate 

that while minor retouching has little impact on recognition accuracy if image quality is preserved, it becomes 

important for applications like social media and automated border control. For contexts like anti-photoshop 

legislation, detecting retouched images is crucial. To address this, they developed a detection system based on 

Photo Response Non-Uniformity features, using score-level fusion for final detection. This system, requiring 

minimal training, performed well but struggled with compressed images when matching the retouched images' 

average file size in JPEG format. Despite this, the PRNU-based approach successfully distinguished between 

original and edited images, attaining an average detection rate of 86.3% across different retouching techniques. 
 

V. Aging/ De-Aging 

    These methods primarily rely on deep neural networks, including CNNs and GANs, to model the complex 

transformations that occur as a person ages. In aging, the models enhance certain facial attributes such as wrinkles, 

skin sagging, and graying hair, simulating the natural progression of time. Conversely, de-aging techniques work 

by reversing these changes, effectively rejuvenating the face to appear younger by reducing wrinkles, firming skin, 

and adding features commonly associated with youth. As shown in Fig.2 (D).  

 

   Martis, J. E et al [28] this study demonstrated the potential of combining de-aging networks with sketch 

generation to improve forensic facial recognition. The authors proposed system effectively addresses aging 

challenges, enhancing identification accuracy and reliability. Tested on the CUHK and AR Face Sketch Databases, 

it showed significant improvements in realism, with better FID scores, SSIM, and PSNR. The system uses a 

deepfake-based neural network for de-aging and a pix2pix-based GAN for sketch generation, producing highly 

realistic sketches across diverse facial features. This approach outperforms existing methods and emphasizes the 

need for ongoing advancements in de-aging technology for forensic applications. 
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3. Techniques for Detecting DeepFakes 

 
      This section delves into the various techniques available for detecting deepfake images and videos. Before 

exploring these methods, we will provide an overview of the deepfake detection process.  

 

 
Fig 3.  Generalized Schematic of DeepFake Detection Process. 

 

3.1 DeepFake Detection Pipeline 

         Figure 3 illustrates the main phases involved in the deepfake detection process. The process begins with the 

input media, which undergoes pre-processing to prepare the data for analysis. Next, feature extraction is performed 

to identify and isolate key attributes indicative of deepfakes. These features are then passed to a classification 

phase, where the media is categorized as either real or fake. The final result indicates the outcome of this 

classification, distinguishing between authentic and manipulated content. We will present all the above process in 

the form of sequential steps to explain each part in detail, including the techniques and features used at each stage. 

3.1.1 First Step: Pre-Processing Phase 

              This step covers important elements of handling feature and target variables for exploratory data analysis 

and model building. It emphasizes that feature variables can include person-specific data such as age, height, and 

weight, or image data that must be flattened and normalized. Data preprocessing is essential and varies based on 

the data type, whether it’s time series, audio, image formats (PNG/JPEG), or structured and unstructured data. 

Table 1 provides commonly used pre-processing techniques in detection approaches [27]. 

 
Table 1.  Pre-Processing Techniques 

Pre-Processing Techniques Description 

  

Face Detection Detecting and isolating faces from images or video frames allows the analysis to concentrate on the 

relevant areas of interest 

Face Alignment Standardizing the orientation and size of the extracted faces ensures uniformity across samples, 

minimizing variability from pose and angle differences. 

Scaling Normalizing pixel values to a standard range, like [0, 1] or [-1, 1], helps stabilize the training process. 

Mean Subtraction Subtracting the dataset's mean pixel value from each pixel centers the data, which can facilitate faster 

convergence during training. 

Geometric Transformations Implementing random rotations, translations, flips, and cropping enhances the variability of the training 

data and strengthens the model's robustness. 

Color Jittering Begin by adjusting the brightness, contrast, saturation, and hue of the images to ensure the model is 

resilient to varying lighting conditions. 

Noise Addition Incorporating random noise into the images helps simulate different real-world scenarios and enhances 

the model's robustness. 
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3.1.2 Second Step: Feature Extraction Phase 

          This phase focuses on identifying and analyzing subtle inconsistencies and artifacts that arise during the 

creation of DeepFakes, serving as the foundation for accurate detection. This phase employs a combination of 

advanced techniques to capture critical patterns: (1) Handcrafted features, including geometric features, shape 

descriptors, texture analysis, and color or lighting inconsistencies; (2) DL features, leveraging convolutional neural 

networks (CNNs), pre-trained models, and layer-wise representations for robust high-level embeddings; (3) 

Frequency domain features, (4) Temporal featuresand (5) Hybrid features. 

 

A. Handcrafted Features  

          These features can be categorized into several groups such as: geometric features Concentrate on detecting 

and analyzing facial landmarks, including the eyes, nose, and mouth, by assessing their relative positions, 

distances, and movements to identify anomalies. Shruti at el [25], explained a forensic method for identifying 

deepfake videos by identifying mismatches between phonemes and visemes (mouth shapes). Specifically, sounds 

linked to the phonemes P, M, and B necessitate complete closure of the mouth., which is often not accurately 

reproduced in deepfakes. Two detection methods are proposed: one uses handcrafted features requiring no large 

datasets, and the other is a CNN model. While current results are person-specific (e.g., trained on videos of Barack 

Obama), broader datasets could improve performance. Expanding the analysis to include all visemes could 

enhance detection but poses challenges. Despite limitations, the technique effectively detects lip-sync deepfakes 

and could be refined as part of a broader forensic toolkit for combating deepfake advancements.   

      Shape Descriptors, Which capture the outlines and shapes of facial features, are also effective in detecting 

inconsistencies in altered media.  McCrae et al [26] presented a novel classification model aimed at identifying 

semantic discrepancies between video content and text captions in social media news posts. Unlike existing 

systems focused on text and images, this approach handles the complexities of video, which includes multiple 

scenes and audio. The authors developed a multi-modal fusion framework that combines textual analysis, audio 

transcription, video semantics, object detection, named entity consistency, and facial verification to identify 

mismatches. They curated a dataset of 4,000 Facebook news posts to train and test the model, achieving 60.5% 

accuracy in detecting mismatches, outperforming single-modality models. Ablation studies showed that combining 

multiple modalities is crucial for success. 

 

      Texture Analysis Another significant category involves techniques such as Local Binary Patterns (LBP) [27], 

which analyze textures by comparing each pixel to its neighboring pixels, assisting in the detection of irregularities 

in skin texture and facial features.  The formula for LBP is given by eq. (1): 

                        𝑳𝑩𝑷 = ∑ 𝒔𝒊𝒈𝒏 (𝑰(𝒙𝒑) − 𝑰(𝒙𝒄)) . 𝟐𝒑                                                                  𝒑−𝟏
𝒑=𝟎                             (1) 

Where,   I(xp) is the intensity value of a pixel xp in the neighborhood,I(xc) is the intensity value of the center 

pixelxc, P is the number of neighboring pixels, used 8 pixels , the output is a binary pattern used for texture 

classification. 

Likewise, the Histogram of Oriented Gradients (HOG) [9] captures the gradient orientations in specific regions of 

an image to identify unnatural edges and textures that deepfake algorithms often introduce. It’s formula shown 

below at eq. (2). 

                     𝑯𝑶𝑮𝑭𝒆𝒂𝒕𝒖𝒓𝒆 = ∑ 𝒉𝒊𝒔𝒕𝒐𝒈𝒓𝒂𝒎 𝒐𝒇 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕𝒔 𝒇𝒐𝒓 𝒄𝒆𝒍𝒍 𝒊𝑵
𝒊=𝟏                                          (2) 

Where, N is the number of cells in the image, each histogram is formed by computing gradient directions and 

magnitudes in the local regions. 

    Color and Lighting Features color histograms analyze the color distribution within an image to identify 

inconsistencies that could indicate manipulation, whereas lighting consistency assesses the uniformity of lighting 

and shading across the face, as deepfake algorithms often struggle to accurately reproduce natural lighting. The 

formula shown below at eq. (3). 
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                                  𝑯(𝒄) = ∑ 𝜹(𝒄 − 𝑰(𝒊))𝑵
𝒊=𝟏                                                                                               (3) 

Where, H(C) is the histogram count for color c, I(i) is the color of the i-th pixel in the image, δ is the Kronecker 

delta function (1 if the condition is true,0 otherwise). 

B.  Deep Learning Features  

              There are several feature extraction techniques includes: CNNs are used to automatically learn and extract 

hierarchical features from raw images through layers of convolutions, pooling, and activations, capturing complex 

patterns and details indicative of deepfakes [10].   Pre-trained Models, such as VGG and ResNet, are employed in 

transfer learning, leveraging their pre-training on large datasets to extract features from new images and recognize 

complex and abstract patterns [10, 24].  Layer-Wise Feature Extraction enables the capture of multi-level features 

from different layers of a deep network, spanning from basic edges and textures to more complex semantic 

information. 

 

C. Frequency Domain Features  

            It is essential for identifying manipulations in images includes Fourier transform is used for frequency 

analysis [10], the images are converted into the frequency domain to reveal patterns and artifacts that are not 

visible in the spatial domain, and these frequency anomalies often indicate manipulation. The 2D Discrete Fourier 

Transform (DFT) for an image I(x,y) is given by eq. (4) 

 

                            𝑭(𝒖, 𝒗) = ∑ ∑ 𝑰(𝒙, 𝒚). 𝒆𝒙𝒑 (−𝒋𝟐𝝅(
𝒖𝒙

𝑴
+

𝒖𝒚

𝑵
𝑵−𝟏
𝒚=𝟎

𝑴−𝟏
𝒙=𝟎 ))                                                         (4) 

 

Where,  F(u,v) is the frequency representation of the image, I(x,y) is the spatial domain image at pixel coordinates 

(x,y), M and N are the width and height of the image, respectively, u and v are the frequency domain coordinates, 

J is the imaginary unit. 

 Wavelet Transform complements this by enabling multi-resolution analysis, decomposing images into different 

frequency components for a detailed examination of both fine and coarse features [29]. The Continuous Wavelet 

Transform (CWT) is given by eq. (5). 

                                                           𝑪𝑾𝑻(𝒂, 𝒃) = ∫ 𝒙(𝒕). 𝝍𝒂,𝒃
∗ (𝒕)𝒅𝒕

∞

−∞
                                                          (5) 

 

Where,  ∫ :
∞

−∞
Represents the integral over the entire signal duration. x(t): the input signal to be analyzed.(t) ∶ The 

complex conjugate of the scaled and shifted version of the mother wavelet ψ(t), a: The scale parameter that 

controls the dilation or compression of the wavelet (scale inversely corresponds to frequency),  b: The translation 

parameter that determines the shift in time,  ψa,b(t): The scaled and shifted wavelet function is defined as eq. (6).   

 

                                                                                                    𝛙𝐚,𝐛
∗ (𝐭) =

𝟏

√│𝐚│

𝛙 (
𝐭−𝐛

𝐚
 )                                           (6)                                                                              

D.  Temporal Features 

 

          Are crucial for analyzing videos to detect manipulations using Optical Flow Analysis focuses on motion 

patterns [30] by examining the movement of pixels between consecutive frames, which helps identify 

inconsistencies that may reveal deepfakes.  Temporal Coherence involves ensuring consistency over time [9], 

checking that facial movements, expressions, and audio-visual synchronization remain natural across video frames. 

deepfakes often struggle to maintain this natural temporal coherence, making this an important indicator of 

manipulation. 

 

E. Hybrid Features 

        Enhance detection performance by integrating various methods. This approach involves combining 

handcrafted features with DL features or merging spatial and temporal features. By leveraging the strengths of 

multiple techniques, hybrid methods offer a more comprehensive analysis and improve the overall effectiveness of 

detection systems. 
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3.1.3 Third Step: Classification Phase 

        As a last phase, classification techniques are applied for detection process, there is some classification 

techniques applied in this process such as:  Support Vector Machines (SVMs) [10, 24] categorize data by 

determining the hyper plane that most effectively separates various classes in a high-dimensional feature space 

generated from extracted features. Random Forest [31, 29] classifiers utilize an ensemble of decision trees to make 

classifications based on media features, offering robustness against over fitting and effective handling of high-

dimensional feature spaces. Logistic Regression [33] models predict the probability of a media sample being 

authentic or a deepfake through a linear combination of extracted features, which is then, transformed using a 

logistic function. 

3.2   Fake Image/Video Detection 

    The current cutting-edge techniques for detecting deepfakes can be divided into feature-based and DL-based 

approaches, as illustrated in Fig. 4. These methods utilize specific traits found in deepfake media to distinguish 

them from genuine content. DL is vital for extracting these identifying features and accurately recognizing 

deepfake media [34, 35]. 
 

 
 

Fig 4. Techniques for Detecting DeepFakes. 
 

 

3.2.1 Features-based Detection Approaches 
 

        Due to their method of creation, deepfake images and videos exhibit distinct characteristics that differentiate 

them from genuine media. These characteristics encompass biometric attributes, model-specific features, and 

media-specific traits [31]. 

 

A. Biometric Features 

         Offer unique traits for differentiating deepfake media from genuine content. These indicators encompass 

factors such as eye blinking, head movements, lip-sync accuracy and head pose, along with cues related to color, 

texture, and shape. Recent research has investigated various approaches to utilize these features for detection.  Li et 

al. [35] observed variations in eye-blinking patterns between deepfake and authentic videos, proposing detection 

methods based on these patterns. DeepVision [36] similarly utilizes eye blinking behaviors to detect GAN-

generated deepfake videos, achieving an accuracy rate of 0.875%. Other approaches include using eyebrow 

movements [37] and 3D head pose estimation [38] for detection. Techniques like Face-Aware Liquify (FAL) [39] 

analyze facial geometry parameters, while methods such as global consistency analysis and illumination estimation 

[40] aim to identify manipulated faces in images. Furthermore, studies have explored features like lip-syncing 

inconsistencies [41], frame-to-frame facial expression differences [42], low-level image patch inconsistencies [43], 

Detection 
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and affective cues related to perceived emotion [44] as indicators of deepfake media. These efforts highlight 

diverse approaches to effectively detect deepfake videos using biometric and model-specific features.  

 

B. Model Features  

       Primarily stem from DL techniques, notably GANs, which are widely used for generating realistic deepfake 

images and videos, as outlined in Table 2. Current research works have identified specific model fingerprints 

embedded within GAN-generated media. Yu et al. [45] highlighted distinctive GAN fingerprints that can be 

employed to detect deepfake content created using GAN-based methods. Similarly, Pu et al. [46] utilized unique 

patterns within the noise space of GAN-generated images to identify deepfake images, achieving a high average F1 

score of 0.9968 across various datasets. Additionally, convolutional traces left during the generative process of 

GANs have been explored for detection purposes by Guarnera et al. [47], who proposed an expectation-

maximization algorithm specifically designed to extract these traces from GAN-generated images. However, the 

reliance on GAN fingerprints for detection has shown limitations in robustness. For instance, methods like 

GANprintR [48] have demonstrated effectiveness in removing GAN fingerprints from deepfake videos, rendering 

GAN fingerprint-based detection methods ineffective in some cases. 

 

C. Media Features 

         In addition to biometric and model features, deepfake media exhibit distinctive characteristics that facilitate 

their detection. These include temporal inconsistencies, frame anomalies, and noise artifacts, all of which serve as 

critical indicators for identifying manipulated content [53].  

 

3.2.2 DL Based Detection Approaches 
 

        DL based detection methods can be further categorized into traditional approaches which employ traditional 

pattern recognition techniques such as SVM and random forest models, and DL techniques such as GANs, CNNs, 

LSTM and RNNs. DL approaches offer automated feature extraction capabilities, leading to improved detection 

accuracy [24] as discussed below:  

  A. CNN  

               CNNs are special type of DL architecture that is used in computer vision and robotics [24]. CNNs were 

further evolved into models such as:  LeNet-5 [31] is a pioneer in CNN architecture, designed for handwritten digit 

recognition and consists of 7 layers including convolutional, subsampling (pooling), and fully connected layers. It 

is simple and computationally efficient, suitable for low-resource environments. The  weakness are limited 

applicability to more complex datasets due to its small and shallow architecture and lacks modern improvements 

like ReLU activation, batch normalization, and dropout. 

 

      AlexNet [10] transformed DL for image classification by introducing ReLU activation and employing dropout 

to mitigate over fitting and demonstrated the effectiveness of GPUs for DL. The weaknesses are computationally 

expensive and memory-intensive due to a large number of parameters and lacks modularity compared to more 

modern architectures. 

 

     VGGNet [50] is deep network with 16-19 layer, Known for its simplicity and use of small convolutional filters, 

achieves high accuracy for image classification and recognition tasks, designed for image classification and 

recognition. The limitation of  VGGNet it is a very large model size, with millions of parameters, leading to high 

memory and computational requirements. Inefficient compared to newer architectures like ResNet or DenseNet.  

 

      GoogLeNet [51] introduced Inception modules to handle different filter sizes, used global average pooling 

instead of fully connected layers, designed for image classification and recognition. But it is more complex 

architecture, making it harder to implement and tune. Also initial versions lacked residual connections, which were 

later shown to improve training of deeper networks. 

 

     Inception-v3 [52] enhanced version of GoogLeNet with more efficient architectures and factorized convolutions 

and efficient grid size reduction. But it is still relatively complex compared to simpler models like VGGNet or 

ResNet. Furthermore, it may not be as parameter-efficient as models like DenseNet or MobileNet for specific 

applications, making it less ideal in certain contexts where computational efficiency is critical. 
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      ResNet [10] used residual connections to enable training of very deep networks, alleviating vanishing 

gradients, very deep networks with up to 152 layers, designed for image classification and recognition. Despite all 

these features it increased depth can lead to higher computational cost and relatively large model size compared to 

more compact architectures like MobileNet. 

 

      DenseNet [9, 10]  improved information flow between layers by densely connecting layers to each other’s, 

resultant in improved gradient flow and parameters efficiency. Its computation is expensive in terms of memory 

usage due to dense connections and the implementation is more complex than simpler architectures like VGGNet. 

    

     MobileNet [52] optimized for Mobile and embedded vision applications, utilizing depth wise separable 

convolutions to reduce computational cost. Slightly lower accuracy compared to larger architectures like ResNet or 

EfficientNet and less effective for very complex datasets without additional tuning.  

 

     EfficientNet [53, 54] employs a balanced scaling approach across network width, depth, and resolution, 

enabling it to deliver high performance with significantly fewer parameters compared to traditional architectures. 

However, achieving its full potential requires precise tuning of compound scaling factors, which adds complexity 

to its configuration. Additionally, EfficientNet heavily depends on pre-training or transfer learning to attain 

optimal results, making it less straightforward to deploy without prior fine-tuned models. 

 

      CNNs have several weaknesses that limit their applicability in certain scenarios. One major challenge is their 

high computational and memory requirements, making them resource-intensive for training and deployment, 

especially on devices with limited hardware capabilities. CNNs also require large labeled datasets to perform well, 

as their numerous parameters make them prone to overfitting on small datasets. Additionally, CNNs struggle to 

model long-range dependencies in data effectively, as they primarily focus on local features through convolutional 

operations. They can also be sensitive to variations in input data, such as rotation, scaling, or translation, unless 

robust data augmentation is applied during training. Furthermore, the design and tuning of CNN architectures often 

involve significant manual effort and expertise, as finding the optimal configuration can be complex and time-

consuming. Lastly, like many DL models, CNNs lack interpretability, making it difficult to understand the 

rationale behind their predictions, which can be a drawback in critical applications requiring transparency. 

 

      Kohli et al [55] used the leverages frequency domain features to detect facial forgeries. They utilizes a 

frequency-based CNN to distinguish between authentic and manipulated faces. The effectiveness of the fCNN is 

evaluated using the FaceForensics++ dataset, demonstrating that it reliably detects forgeries in both high-quality 

and low-quality video scenarios. Visualization of activation maps shows that their proposed architecture learns 

unique frequency features for various manipulation techniques like DeepFake, Face2Face, and FaceSwap. The 

fCNN achieves the highest recall for detecting DeepFakes, with scores of 0.9256, 0.8639, and 0.8399 for raw, c23, 

and c40 formats, respectively. It is also tested on the Celeb-DF (v2) dataset and the automatic FaceForensic 

benchmark, where it outperforms state-of-the-art methods, confirming its effectiveness in detecting facial 

manipulations.  

 

       The basic structure of a Convolutional Neural Network (CNN), illustrated in Fig. 5, consists of several 

essential components.  The input layer represents the input image or data. The convolutional layers apply a set of 

filters to extract key features such as edges, corners, and curves; each filter is convolved with the input to generate 

a feature map that captures specific patterns in the data.  

 

      The pooling layers reduce the dimensionality of the extracted features by down-sampling, which decreases 

computational complexity and the number of model parameters while preserving critical information. The fully 

connected layers handle the final classification or regression tasks by processing the features extracted by earlier 

layers. Finally, the output layer provides the ultimate result, which can be a single value for regression tasks or a 

probability distribution over possible classes for classification tasks [24]. 
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Fig 5.  CNN Architecture [13]. 

 

 

B.  GANs  

        GANs are first introduced in 2014 and consists of [24, 33, 56-58] a generative model and a discriminative 

model. GANs operate through an adversarial process where the Generator creates data to mimic real examples, 

while the Discriminator distinguishes between real and generated data. This dynamic interplay improves both 

models over time, with G aiming to capture data distribution and D assessing sample authenticity. Widely applied 

in image classification and generation, GANs have also used in medical research due to it is effective at 

distinguishing sophisticated forgeries. Despite challenges are training can be complex and time-consuming [31]. 

 

       Kianoush et al [59] this study presents a diagnostic quality images generated using particular semantic 

information via SHI-GAN, which allows for the creation of an endless range of histologic images. These synthetic 

images can be used to expand datasets, improve model generalization by increasing image variety, and generate 

test cases for evaluating algorithm robustness. Tissue classifiers trained on synthetic data were found to have 

accuracy comparable to those trained on real data, demonstrating the quality and realism of the generated images. 

Expert pathologists were also able to assign Gleason grades to the synthetic images with consistency similar to real 

images, highlighting the potential of these images in testing human diagnostic ability and training pathologists.  

 

        GANs are powerful tools for data generation but come with several weaknesses. A significant challenge is 

their instability during training, as the adversarial process between the generator and discriminator often leads to 

issues such as vanishing gradients, mode collapse, or failure to converge. Mode collapse is particularly 

problematic, where the generator produces limited variations of outputs rather than the full diversity of the target 

distribution. GANs are also highly sensitive to hyper parameter tuning and require careful design and calibration of 

network architectures to achieve optimal performance, making them difficult to train effectively. Furthermore, 

GANs are computationally intensive, requiring significant resources for training, especially when applied to high-

dimensional data like images or videos. Another drawback is their lack of interpretability; understanding how 

GANs generate data or why they fail in certain cases remains a challenge. Lastly, GANs may inadvertently 

reproduce biases present in the training data, raising ethical concerns, particularly in applications where fairness 

and diversity are crucial. 

C. LSTM  

              LSTM [61, 62, and 50] network is an improvement of RNN. LSTMs excel at managing long-term 

dependencies, making them essential for tasks that require retaining information across extended sequences, such 

as language translation and time-series forecasting. The inclusion of gated mechanisms, such as input, output, and 

forget gates, provides precise control over information flow, improving learning efficiency and accuracy. Their 

capacity to process sequential data makes LSTMs ideal for applications like speech recognition and video analysis, 

offering flexibility and versatility in various fields. Moreover, the persistent cell state in LSTMs allows them to 

retain values over time, effectively capturing patterns in data that extend over long periods, while RNN can only 

handle short sequences.  

 

      Shobha Rani B R et al [63], present a hybrid architecture that combines ResNet50 and LSTM for deepfake 

video detection within a web framework using Python. By integrating ResNet50 and LSTM, the model takes 

advantage of the strengths of both architectures, enhancing the accuracy of deepfake video detection, particularly 

for videos that include both image-based and sequential data. A comparative analysis of different models was 

conducted using various datasets, including Celeb-DF and Face Forensic++. This developed model was evaluated 

https://www.researchgate.net/scientific-contributions/Kianoush-Falahkheirkhah-2166439076?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
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for 20 and 40 epochs due to runtime constraints, yielding accuracy rates of 84.75% and 87.48%, respectively. The 

generated graphs indicate that both validation and testing accuracy improve as the number of epoch’s increases. By 

utilizing the confusion matrix created during testing, the effectiveness of the system can be assessed. 

 

       Fig.6 presents the LSTM cell where is composed of several important elements that allow it to efficiently 

handle long-term dependencies in sequential data. The input gate regulates the transfer of information from both 

the current input and the previous hidden state into the memory cell, while the forget gate determines which 

information from the previous memory cell should be retained or discarded. The memory cell holds information 

that is modified according to the input and forgets gates, and the output gate governs the flow of information from 

the memory cell to the current hidden state and output. During the forward pass, the LSTM updates its memory 

cell and hidden state with each input in the sequence. The gates utilize sigmoid functions to control the information 

flow into and out of the memory cell, and the output gate combines sigmoid and tanh functions to generate the 

current hidden state and output. This selective process of remembering and forgetting information enables LSTMs 

to effectively capture long-term dependencies, making them well-suited for tasks such as language translation or 

sentiment analysis. 

 

Fig 6.  Architecture of LSTM [65].  

          LSTM networks address some of the weaknesses of traditional RNNs but still have their own limitations. 

One major drawback is their high computational cost, as the intricate gating mechanisms require more parameters 

and operations compared to simpler RNNs. This makes LSTMs slower to train and more resource-intensive, 

especially for large-scale datasets or long sequences. Despite their ability to handle longer dependencies, LSTMs 

can still struggle with extremely long sequences, as their memory cells have a finite capacity to store and manage 

information.  

     Additionally, like other DL models, LSTMs are prone to over fitting on small datasets unless regularization 

techniques, such as dropout or weight decay, are applied. They also require careful tuning of hyper parameters, 

such as the number of units, learning rate, and sequence length, which can be a complex and time-consuming 

process. Furthermore, LSTMs, like most neural networks, lack interpretability, making it difficult to understand 

their internal decision-making processes. These limitations have led to the adoption of alternative architectures like 

Transformers, which often outperform LSTMs in tasks involving very long sequences or large-scale datasets. 

D. . RNN 

                RNN [24, 50, and 52] is a special type of neural network that are designed to process sequence data by 

maintaining a recurrent hidden state across multiple time steps. Unlike traditional feed forward networks, RNNs 

leverage sequential connections that allow them to capture temporal dependencies within data, making them 

particularly effective for tasks like speech recognition and natural language processing [24, 60]. RNNs operate in a 

loop, where the output from one time step serves as input to the next, enabling them to remember previous inputs 

and incorporate them into current predictions. This memory capability is crucial for handling sequential data and 

has been further enhanced by advancements like LSTM networks. 

 

         The unfolded RNN diagram in fig.7 processes an input vector X and produces an output vector y by scanning 

the data sequentially from left to right. At each time step, the hidden state is updated, resulting in an output. The 

network applies the same parameters at every time step, which means the parameters U, V, and W are uniformly 

used throughout. In this context, U is the weight matrix that controls the connection between the input layer X and 
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the hidden layer h, W is the weight matrix that manages connections between hidden layers, and V denotes the 

weight linked to the connection from the hidden layer h to the output layer y. This parameter sharing allows the 

RNN to effectively capture temporal dependencies and handle sequential data by retaining information from prior 

inputs in the hidden state. 

 

       RNNs have several weaknesses that limit their effectiveness in certain tasks. One major drawback is their 

difficulty in capturing long-term dependencies due to the vanishing or exploding gradient problem, which often 

arises during back propagation through time (BPTT) in deep or lengthy sequences. This limitation makes RNNs 

less effective at handling tasks requiring the retention of information across long time spans. Additionally, RNNs 

are computationally expensive to train because their sequential nature prevents parallelization, leading to slower 

training times compared to architectures like Transformers. They are also prone to over fitting, especially on small 

datasets, and require careful regularization and tuning to perform well. Moreover, RNNs often struggle with 

handling highly complex or hierarchical sequences of data due to their relatively simple structure. Lastly, their 

training is sensitive to hyper parameter choices, and achieving convergence can require substantial expertise and 

computational resources. These limitations have led to the development of advanced RNN variants, such as 

LSTMs and GRUs, as well as the adoption of alternative architectures like Transformers. 

 

 

Fig 7.  RNN architecture [65]. 

E. Error Level Analysis (ELA)     

       By utilizing ELA and DL-based forgery feature extraction, they effectively detect face-swap images. Rather 

than training the CNN model with original photos, they use ELA images, which enhance training efficiency 

because ELA images contain less information. ELA images emphasize regions where the error level surpasses a 

specific threshold, making differences more visible. This enhancement in contrast boosts the training effectiveness 

of the CNN model.  

 

    The model is specifically trained to detect counterfeit features in ELA images and assess image authenticity with 

precision. Leveraging just two convolutional layers, this method streamlines the process of identifying fake 

characteristics and evaluating the credibility of images. The study shows that features derived from ELA-processed 

images are effective for verifying authenticity and significantly improve the training efficiency of the CNN model. 

ELA is straightforward, quick, and suitable for initial screening; however, it is less effective on uniformly 

compressed images and is restricted to specific file formats [10].    

 

        Chakraborty et al, [64] proposed a hybrid approach that combines traditional handcrafted features with a DL 

model to distinguish between authentic and tampered images. They developed a dual-branch CNN that operates in 

conjunction with Error Level Analysis and noise residuals obtained from the Spatial Rich Model. The experiments 

utilized the publicly available CASIA dataset, and after training the dual-branch network for 16 epochs, it reached 

an accuracy of 98.55%. Furthermore, they performed a comparative analysis with earlier studies in the area of 

image forgery detection. The authors' results indicate that integrating DL models with traditional techniques can 

lead to enhanced outcomes in identifying image manipulation. 

 

        ELA has several weaknesses that limit its effectiveness. One of the primary challenges is its reliance on 

multiple compressions. This dependency can lead to false negatives in detecting edits on high-quality or 

uncompressed images. Additionally, ELA struggles with distinguishing between authentic image inconsistencies 
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and those introduced by normal editing processes, such as resizing, color correction, or reformatting, which can 

result in false positives. It is also heavily influenced by the format and quality of the image; for example, highly 

compressed JPEG images may obscure traces of manipulation due to the dominance of compression artifacts. 

Furthermore, ELA requires manual interpretation of results, which can introduce subjectivity and depends on the 

expertise of the examiner. Its limited automation and lack of standardization make it less scalable or reliable in 

large-scale forensic analyses. Finally, ELA is not effective against advanced editing techniques that produce 

minimal compression differences, such as those generated by modern deepfake or AI-based tools. 

 

4. Datasets 
 

     Table 2 provides an extensive overview of available datasets used for deepfake evaluation, used in deepfake 

research, highlighting their modalities, sizes, and unique characteristics. We emphasize the strengths and 

weaknesses of each dataset, which impact its usefulness for particular tasks.   
 

      FaceForensics++ [66] is a comprehensive dataset of controlled deepfake videos, primarily featuring face-

swapping techniques. It stands out for its well-lit, meticulously controlled conditions and a focus on young 

celebrity faces. Widely used for benchmarking and evaluating deepfake detection systems, the dataset includes 

over 1,000 videos and showcases diverse manipulation techniques, The primary facial manipulation methods are 

representative and include DeepFakes, Face2Face, FaceSwap, FaceShifter, and Neural Textures. The data vary in 

compression levels and sizes.  However, its demographic limitations (predominantly young celebrities) and 

relatively modest size (1,000+ videos) pose challenges to its applicability in real-world scenarios with greater 

diversity and complexity.  

 

    Celeb-DF [22] contains high-resolution deepfake videos that manipulated using FaceSwap and DFaker as the 

primary techniques. Although the dataset provides high-quality content, it is limited in demographic diversity, 

focusing mainly on celebrities. Publicly available with 5,000+ videos, Celeb-DF is primarily used for model 

training and evaluation, helping to test the robustness of detection systems in deepfake contexts. Yet, like 

FaceForensics++, it suffers from limited demographic diversity and focuses on celebrity faces, which limits its 

applicability for broader audiences. 

 

       FakeAVCeleb [69] offers high-quality deepfake videos that combine audio-visual manipulation, focusing on 

celebrity faces. The dataset includes over 10,000 videos available publicly and is useful for benchmarking 

deepfake detection systems. The dataset features a variety of manipulations, including face-swapping, lip-syncing, 

and voice cloning, created using state-of-the-art tools like GANs and voice synthesis technologies. Its strength lies 

in combining modalities, but the limited diversity in terms of age and ethnicity, along with its domain-specific 

nature, narrows its generalizability.  

 

       DFDC [23] dataset includes diverse subjects in deepfake videos, though the quality varies due to mixed 

lighting and conditions. With more than 119 k videos available publicly divided to 999 k fake and 19k real videos, 

DFDC is mainly used for large-scale deepfake detection challenges. The manipulation data are produced using 

deepfake methods, GAN-based techniques, and non-learned approaches, with resolutions varying from 320 × 240 

to 3840 × 2160 and frame rates ranging from 15 fps to 30 fps. Despite limited ethnic representation, it remains a 

valuable resource for testing detection models on varied video quality and manipulation types. The dataset lacks 

sufficient representation of certain ethnic groups, which may bias detection models.  

         DeepFormantics-1.0 dataset [67] is a comprehensive resource designed for research in multimodal analysis, 

focusing on the relationship between visual forms and their semantic meanings. It includes a wide variety of 

annotated images, such as diagrams, info graphics, and stylized visual content, paired with corresponding textual 

descriptions and metadata. The dataset provides annotations for both low-level attributes, like shapes, colors, and 

spatial layouts, and high-level semantics, including thematic categories, relational structures, and inferred 

meanings. DeepFormantics-1.0 aims to advance research in areas such as computer vision, natural language 

processing, and cognitive computing by supporting tasks like visual-text alignment, diagrammatic reasoning, and 

content extraction driven by form. With its versatility, the dataset serves as a valuable tool for applications ranging 

from educational resources to automated content generation, fostering the development of more sophisticated 

multimodal AI systems. 

 

        DF-TIMIT dataset [68] is a widely used benchmark for research on deepfake detection and facial 

manipulation. It consists of deepfake videos created by applying face-swapping techniques using advanced deep 

learning models. The dataset is derived from the TIMIT dataset, which contains high-quality audio-visual 

recordings of individuals speaking various sentences. In DF-TIMIT, the faces in the videos are replaced with 

synthetic or altered versions while preserving the original audio. The dataset is available in two variations: one 
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with high-resolution videos and another with lower-quality, compressed videos that mimic real-world conditions. 

This range of video quality makes DF-TIMIT an essential resource for testing the effectiveness and robustness of 

deepfake detection methods, playing a critical role in advancing research to combat the growing threat of 

deepfakes. 

 

      CIFAR-10 [70] is a well-known dataset containing high-quality images of various objects, without specific 

manipulation. It features 60,000 images of diverse objects, making it useful for general object classification tasks. 

While not focused on deepfake detection, it is widely used for image recognition models, offering a large and 

varied collection of non-manipulated data for testing and development. COCO: includes a vast collection of images 

with common objects in various settings. It is a general-purpose dataset with 330,000 images that feature broad 

diversity in terms of object categories and settings. While not related to deepfake detection, COCO is widely used 

in various image recognition and segmentation tasks, providing a rich resource for general computer vision 

projects. 

 
 
Table 2.  Publicly accessible datasets 

 

Dataset  

Name 
Content Overview 

Quality of 

Media 

Manipulation 

Types 

Demographics 

& Diversity 

Size and 

Availability 
Modality Metrix 

FaceForensics

++ 

[66] 

Controlled 

deepfake videos 

(face swapping) 

Well-lit, 

controlled 

conditions 

Face swapping 
Primarily young, 

celebrity faces 

1,000+ videos, 

academic access 
Video F1, Accuracy 

Celeb-DF 

 [22] 

Deepfake videos 

featuring celebrity 

faces 

High-

resolution, 

well-lit videos 

Face swapping, 

expression 

manipulation 

Limited diversity 

(ethnicity, 

gender, age) 

5,000+ videos, 

publicly 

available 

Video F1, AUC 

FakeAVCeleb 

[69] 

Deepfake videos 

with audio-visual 

content 

High-quality 

videos 

Audio-visual 

manipulation 

Limited diversity 

(age, ethnicity) 

10,000+ videos, 

open access 

Audio/ 

Video 
Precision 

DFDC 

 [23] 

Diverse subjects in 

deepfake videos 

Mixed quality 

(varied 

lighting, 

conditions) 

Face swapping, 

expression 

changes 

Limited ethnic 

representation 

3,000+ videos, 

open access 
Video 

F1, Recall, 

accuracy 

DeepFormant

ics-1.0  

[67] 

Manipulated 

videos with 

comprehensive 

techniques 

Mixed-quality 

media 

GAN-based 

manipulation 

Limited 

demographic 

diversity 

50,000 videos, 

not fully 

detailed 

availability 

Video Precision 

DF-TIMIT 

 [68] 

GAN-generated 

facial 

manipulations 

Small-sized 

dataset 

Expression 

manipulation 

Limited subject 

diversity 
620 videos Video Accuracy 

CIFAR-10 

 [70] 

Images of various 

objects 

High-quality, 

small-size 

No specific 

manipulation 

Diverse (objects 

only) 
60,000 images Images Precision 

COCO 

 [71] 

Common objects in 

various settings 

Mixed-quality 

images 

No specific 

manipulation 
Broad diversity 330,000 images Images F1, AUC 

 

 

5. Benchmark 

         Table 3 presents an analysis of state-of-the-art deepfake detection methods due to their diversity in 

technology, datasets, and performance metrics. Shobha Rani B R et al. [72] utilized a ResNet50 + LSTM 

combination, achieving accuracies of 84% at 20 epochs and 87% at 40 epochs on the FaceForensics++ and Celeb-

DF datasets. Ismail et al. [73] employed YOLO + CRNN, achieving a notable accuracy of 89.35% on Celeb-DF 

and FaceForensics++ (c23), emphasizing its potential for real-time applications. Priti Yadav et al. [87] used 

InceptionResNetV2 + LSTM, where increasing the epochs from 20 to 40 significantly improved accuracy from 

84.75% to 91.48% across multiple datasets, including DFDC, FaceForensics++, and Celeb-DF.  

 

       Suratkar et al. [74] achieved high AUC scores (94% on DFDC and 98% on FaceForensics++) with CNN + 

RNN, while D. M. Montserrat et al. [75] attained 92.61% accuracy using CNN + GRU on DFDC. Fei et al. [76] 

leveraged CNN + LSTM to achieve 99.25% accuracy on FaceForensics++, demonstrating exceptional performance 

but raising potential overfitting concerns. Badrinarayan et al. [77] integrated Xception Net (CNN) with 

interpretability tools like LRP and LIME, achieving 90.17% accuracy on FaceForensics++. Finally, Usha Kosarkar 

[92] employed LSTM with GRU and VARMA on a comprehensive dataset of 200,000 samples, reaching an 

impressive accuracy of 99.8%, showcasing the potential of advanced hybrid architectures.  



75International Journal of Computers and Information 12-2(2025) 60-80                                                                                                                                      

         

 
 

 

     For future research, we recommend exploring advanced hybrid models to achieve high accuracy. If you are 

prepared to manage increased complexity, consider utilizing CNN combined with LSTM [76] or integrating LSTM 

with GRU and VARMA [78]. These approaches offer robust performance for complex tasks and data modeling. 

These approaches are yielding near-perfect results and offer cutting-edge potential. For real-time applications, 

YOLO + CRNN [73] is an excellent choice due to its ability to process data quickly while maintaining high 

accuracy. For interpretability in deepfake detection, Xception Net with interpretability tools [77] could be an 

interesting angle to explore. If you're looking for a simpler yet effective baseline, ResNet50 + LSTM or CNN + 

RNN could be good starting points. They strike a balance between performance and complexity. 

 

 
Table 3. Deepfake Detection Methods analysis. 

 

Best performance Dataset Technologies Research 

Acc = 84%  at epoch= 20 FaceForensics++ 

+ 

Celeb-DF 

 

Resnet50 + LSTM Shobha Rani B R et al 

[72] Acc = 87% at epoch= 40 

Acc = 89.35% CelebDF + 

FaceForencics ++ (c23) 

 

YOLO + CRNN 

 
et al Ismail 

 [73] 

Acc = 84.75% at epoch= 20 The Dataset has been collected from 

DFDC dataset available on Kaggle, 

FaceForenscis and Celeb-

deepfakeforensics 

InceptionResNetV2 

+ LSTM 
Priti Yadav et al  

[52] Acc = 91.48 % at epoch= 40 

AUC = 94% On DFDC 

AUC = 98% On 

FaceForencics++ 

DFDC 

Caleb-DF 

 

CNN + RNN 

 
Suratkar et al  

[74] 

Acc = 92.61% DFDC CNN + GRU D. M. Montserrat et al 

[75] 

    

Acc =  99.25% Faceforensics++ CNN + LSTM Fei et al  

[76] 

Acc = 90.17% Faceforensics++ Xception net (CNN) 

 + 

LRP and LIME 

 

Badhrinarayan et al 

[77] 

ACC=99.8% Collection of the DeepFake Datasets 

& Samples =200k  

LSTM with GRU 

and VARMA 

Usha Kosarkar 

 [78] 

 

6.  Conclusion and future work 
 

      This paper offers a comprehensive overview of deep learning (DL) approaches in the field of deepfake 

detection, examining the various strategies employed to identify and combat manipulated content. It delves into the 

underlying algorithms and architectures used in deepfake creation, emphasizing their strengths, limitations, and 

recent advancements. By critically analyzing each DL-based method for both deepfake detection and generation, 

the study highlights their distinctive features, providing insight into their performance and potential applications. 

Additionally, the paper explores the most widely used datasets in deepfake research, detailing their scope, 

diversity, and the implications these factors have on the development and evaluation of deepfake detection 

systems. 

 

       The technologies for both generating and detecting deepfakes are continually advancing, but the accuracy of 

current detection methods remains inadequate. As new techniques for creating deepfakes are developed, the 

effectiveness of existing detection methods diminishes, making it increasingly difficult to identify them. In contrast 

to previous studies [78] reaching an impressive accuracy of 99.8% by using LSTM with GRU and VARMA and 

200000 images sample. Fei et al [76] leveraged CNN + LSTM to achieve 99.25% accuracy on FaceForensics++. 

Montserrat et al [75] attained 92.61% accuracy using CNN + GRU on DFDC.  

     Our results suggest that the combination of CNN and GRU provides more robust detection systems. Summary 

of the past three years, we conduct that the XceptionNet has emerged as one of the top-performing pre-trained 

models for deepfake detection, renowned for its use in the FaceForensics++ benchmark. Its efficient separable 

convolutions allow for accurate feature extraction, particularly in identifying subtle manipulations in facial images. 
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EfficientNet, with its balanced architecture that scales depth, width, and resolution, offers exceptional performance 

and efficiency, making it ideal for analyzing video frames while being computationally lightweight.  

     Additionally, I3D (Inflated 3D ConvNet) has proven highly effective in analyzing temporal and spatial features 

simultaneously, processing video sequences directly rather than individual frames, making it a strong contender for 

real-time deepfake video analysis.  

 

        Future work in deepfake detection must address the vulnerabilities of current systems to sophisticated attacks. 

One such challenge is distortion-minimizing attacks, which focus on reducing visible distortions in manipulated 

images or videos, making them appear more realistic and harder to detect. These attacks target the perceptible 

artifacts that detection algorithms typically rely on. Another significant threat is loss-maximizing attacks, designed 

to manipulate the loss function, thereby confusing detection algorithms and causing incorrect results, ultimately 

reducing system accuracy. Additionally, adversarial patch attacks involve introducing small, imperceptible 

changes, known as "patches," to the media. These subtle alterations effectively deceive detection systems, 

preventing them from identifying manipulations. Overcoming these advanced attack strategies is crucial for 

enhancing the robustness of future detection technologies. 

 

       Additionally, many deepfake detection methods lack robustness: the ability of a system to maintain good 

performance under diverse and unforeseen conditions. These systems often fail when exposed to adversarial 

perturbations: small, deliberate changes made to the data to mislead the model, and shallow reconstruction 

techniques: simple or non-deep techniques that do not capture complex manipulations, thus compromising 

performance. A significant challenge lies in the scarcity of high-quality, diverse datasets: datasets that contain 

accurate and diverse information crucial for training effective detection models. While large and varied datasets are 

essential for robust model training, existing datasets are often limited, focusing primarily on human faces, which 

restricts the model’s ability to generalize to other scenarios.  

 

       These datasets also lack real-world complexity, failing to represent a wide range of contexts. Privacy concerns: 

issues related to the protection of personal data, make it difficult to gather diverse and comprehensive datasets, 

especially when they involve real-world data containing identifiable individuals. Current datasets vary greatly in 

terms of resolution, length and diversity: the range of content in the dataset. Without standardized benchmarks, it 

is hard to evaluate and compare different detection techniques effectively. To address these challenges, future 

research must focus on establishing standardized benchmarks and developing automated testing methodologies: 

self-evaluating systems that can test detection models consistently and without human intervention, providing 

reliable results. 

 

      As deepfake generation techniques continue to evolve, the reliability of biometric features unique human 

biological characteristics such as eye blinking or facial movements diminishes, rendering these traditional 

detection methods increasingly ineffective. This calls for the development of more advanced, robust detection 

mechanisms. Moving forward, it is critical for research to focus on systematic approaches—structured, well-

organized methods that integrate multi-modal cues from diverse sources, such as visual and audio data, to improve 

both detection performance and resilience. Recent advancements in deep learning (DL) algorithms have 

significantly elevated the quality of deepfake content, making conventional detection techniques less reliable and 

efficient, particularly for deepfake videos. To address these challenges, future research must prioritize the fusion of 

biometric, media, and model-based features, optimizing detection accuracy and effectiveness. 
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 ملخص البحث:

أتوووووووا  سنفوووووووا  وسوووووووا   لا سووووووويما مووووووون توووووووال الفوووووووبكات التوليديوووووووه التنافسووووووويه وت الوووووووتعلم العميووووووو  السوووووووريا لت نيوووووووا التطوووووووو 

اصووووووطناعية اووووووديدة الواقعيووووووة، ممووووووا ألووووووا  مروووووواون فوووووو  ملووووووالات م وووووو  السياسووووووة والترفيووووووه وا موووووون. ونتيلووووووة لوووووو ل ،  اد 

انفوووووا  كفوووووز التاييوووووز العميووووو . ت ووووودم هووووو ش الو قوووووة د اسوووووة است صوووووا ية اووووواملة لمنهليوووووات لالاهتموووووام بتطووووووير أن موووووة قويوووووة 

الكفوووووز عووووون التاييوووووز العميووووو  الحدي وووووة، موووووا التركيوووووا بفوووووك  توووووا  علوووووى ا سووووواليب المعتمووووودة علوووووى التايوووووز العميووووو  و

ر ا منيووووووة ال غوووووورات فوووووو  التوووووودابيو الفيووووووديو والصووووووو  وتطبي اتهووووووا. تهوووووودن سلووووووى تعايووووووا فهووووووم ال ووووووا   للتطووووووو ات الحدي ووووووة

والملووووووالات التوووووو  تحتوووووواه سلووووووى تحسووووووين. تتعوووووود هوووووو ش الد اسووووووة موووووون بووووووين الد اسووووووات ال ليلووووووة التوووووو  تسووووووتعر   الحاليووووووة

مسوووولطةض ال ووووو   ،Celeb-DFو DFDC  و  ++FaceForensics   م وووو  ملموعووووات البيانووووات بفووووك  اووووام ،

علوووووى ن ووووواع قوتهوووووا وبوووووعفها، وهووووو  أمووووور بوووووالم ا هميوووووة  عووووورا  التووووود يب والتح ووووو  مووووون نموووووا ه التاييوووووز العميووووو ، موووووا 

التأكيووووود علوووووى الحاجوووووة سلوووووى ملموعوووووات بيانوووووات متنوعوووووة وواقعيوووووة ل وووووما  تعمووووويم النموووووا ه بفوووووك  قوووووو . تنووووواق  الد اسوووووة 

ووووووا معم ضووووووا لهوووووو ش  جميووووووا اللوانووووووب المتعل ووووووة بتحديوووووود وسنفووووووا  التاييووووووز العميوووووو  بفووووووك  اووووووام ، ممووووووا يوووووووفر لل ووووووا   فهمض

 الموبوووووووعات فوووووو  د اسووووووة واتوووووودة. تعتموووووود الد اسووووووات الحدي ووووووة بفووووووك    يسوووووو  علووووووى الفووووووبكات العصووووووبية الالتفافيووووووة

وووووا علوووووى  للكفوووووز عووووون التاييوووووز العميووووو ، موووووا الهووووودن ا ساسووووو  المتم ووووو  فووووو  تحسوووووين دقوووووة الكفوووووز، موووووا التركيوووووا أي ض

 XceptionNe   EfficientNet , I3D ,  الد اسوووات السووواب ة، توصووولنا سلوووى أ  م ا نوووة ا سووواليب المرتلفوووة. مووون

         أف ووو  النموووا ه للكفوووز عووون التاييوووز العميووو ، تيوووا يتميوووا كووو  منهوووا فووو  ملوووالات مرتلفوووة  يتميوووا هووو 

XceptionNetفووووو  تحديووووود التعوووووديات الدقي وووووة، ويووووووفر EfficientNet  ،تحلوووووياض متوا نضوووووا وفعوووووالاض  عوووووا ات الفيوووووديو

 .ف  معاللة تسلسات الفيديو ف  الوقت الفعل  I3D بينما يترصص

 )السنة( المجلد )..( العدد )..( 
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