

Microbes and Infectious Diseases

Journal homepage: https://mid.journals.ekb.eg/

Original article

Antimicrobial effect of meropenem-loaded mesoporous silica nanoparticles against carbapenem-resistant *Pseudomonas aeruginosa*

Esraa Mostafa Mohamed* ¹, Islam M. El-Sewify ², Lamiaa Abd Elmonem Adel ¹, Amira S. Abdelhady ¹

- 1- Medical Microbiology and Immunology Faculty of Medicine Ain Shams University Cairo-Egypt.
- 2- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt.

ARTICLE INFO

Article history:

Received 23 December 2024
Received in revised form 15 January 2025
Accepted 20 January 2025

Keywords:

Pseudomonas aeruginosa Meropenem Meropenem loaded MSNs Efflux pump mexB gene

ABSTRACT

Background: The emergence of antibiotic-resistant strains of Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat to both hospital and community-acquired infections. The growing challenge of meropenem resistance in P. aeruginosa is a notable concern. Among the various mechanisms contributing to this resistance, efflux pumps MexAB-OprM systems are known to be the largest and the only intrinsic multidrug resistant efflux pumps within P. aeruginosa. The broad substrate specificity of the MexAB-OprM efflux pump system makes MexB gene overexpression crucial for the intrinsic resistance of P. aeruginosa to various antimicrobials. Meropenem loaded mesoporous silica nanoparticles (MSNs) have been postulated to act as an efflux pump inhibitor. This study aimed to determine the antimicrobial effect of meropenem-loaded MSNs on carbapenem-resistant P. aeruginosa clinical isolates and to identify its effect on expression of efflux pump (MexB) gene. Methods: Thirty P. aeruginosa isolates were confirmed to be meropenem-resistant using disc diffusion method. Minimum inhibitory concentration (MIC) of meropenem and meropenem-loaded MSNs were determined using microbroth dilution (MBD) test. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure MexB gene expression before and after treatment with meropenem loaded MSNs. Results: The present study found that meropenem resistance occurred in 30/30 (100%) isolates giving MIC > 32 µg/ml by MBD test. On repeating the test using meropenem-loaded MSNs (24/30, 80 %) of the tested isolates showed reduction in MIC with highly statistically significant difference from (512-32 µg/ml) by meropenem alone to (256-8 µg/ml) by using meropenem loaded MSNs. Real-Time RT PCR confirmed the anti-bacterial activity of meropenem-loaded MSNs by revealing a high statistically significant reduction in gene expression (p value <0.001). Conclusion: Our results revealed that meropenem-loaded MSNs have an in vitro antibacterial action against meropenem- resistant P. aeruginosa isolates.

Introduction

Pseudomonas aeruginosa is the most common Gram-negative opportunistic pathogen

linked to hospital-acquired infection [1]. Its colonization and biofilm formation are responsible for numerous infections, including chronic

DOI: 10.21608/MID.2025.347029.2410

^{*} Corresponding author: Esraa Mostafa Mohamed

E-mail address: esraa.mostafa@med.asu.edu.eg

infections in cystic fibrosis of lung, diabetic foot ulcers, burn wounds, urinary tract infections and eye infections, treatment of such infections may be difficult especially with inherited mechanisms of antibiotic resistance [2].

Beta lactams resistance in *P. aeruginosa* is mediated by efflux pumps, structural genes for at least 12 types of resistance-nodulation-cell division (RND) efflux systems have been identified, including MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM. Among these, MexAB-OprM is the most highly expressed multidrug efflux pump in P. aeruginosa, providing resistance to a broad spectrum of antimicrobials; it's composed of three components: MexB, a translocase solute/proton RND antiporter; OprM, an outer membrane porin; and MexA, a membrane fusion protein that connects MexB to OprM [3]. It was proposed that these operons overexpression led to increased P. aeruginosa resistance to carbapenems, chloramphenicol, tetracycline, nalidixic acid, ciprofloxacin, and streptonigrin. Conversely, disrupting these genes caused the mutants to become highly susceptible to these drugs [4].

Efflux pump inhibition can be achieved through several methods; reducing the expression of efflux pump genes by disrupting their genetic regulation, altering antibiotics so they are no longer recognized as substrates, blocking the active site to prevent drug binding and breaking down the energy system that powers these pumps [5].

Multidrug resistant (MDR) *P. aeruginosa* has evolved resistance to the majority of current antibiotics, including carbapenems [6]. Alternative therapies for carbapenem-resistant *P. aeruginosa* isolates include loading of antibiotic on nanoparticles as mesoporous silica nanoparticles (MSNs) [7]. Medical nanotechnology has emerged as an effective approach for curing some of the most difficult medical problems. This is achieved either through the direct antimicrobial activities of nanomaterials or by serving as drug delivery systems [8].

Mesoporous silica nanoparticles have been reported as an efficient delivery system for various antimicrobial agents, including but not limited to vancomycin, tetracycline, polymyxin B, gentamicin, rifampicin, and linezolid. Antibioticloaded MSNs has good antimicrobial activity against a wide range of microbes such as *Staphylococcus aureus*, as well as *P. aeruginosa*,

Enterobacteriaceae and Acinetobacter baumannii [9].

This study aimed to determine the antimicrobial effect of meropenem loaded MSNs on carbapenem-resistant *P. aeruginosa* clinical isolates and to identify its effect on expression of efflux pump (MexB) gene.

Methods

This experimental study was conducted on 30 meropenem resistant *P. aeruginosa* isolates obtained from laboratories of Ain Shams University hospitals. The study was approved by the Research Ethical Committee of Faculty of Medicine, Ain Shams University (No. FMASU MS 494/2023).

Data collection and species confirmation using conventional methods:

For each isolate, the type of specimen and its hospital distribution were recorded. Identification of the isolates was performed using traditional culture and identification techniques. The isolates were then preserved in glycerol at -80° C [10].

Antibiotic susceptibility testing using disc diffusion method:

Antibiotic susceptibility of all isolates was done by disk diffusion method and results interpretation was done according to CLSI 2022 guidelines [11]. The following antibiotic discs were used: piperacillin- tazobactam (100 /10 µg), aztreonam (30 µg), ceftazidime (30 µg), cefepime (30 μg), ciprofloxacin (5μg), fosfomycin (200 μg), colistin (10 µg), meropenem (10 µg), tobramycin (10 μg) and amikacin (30 μg) (Himedia, India) The diameter of the zones of inhibition was interpreted according to the standard cut off points to CLSI 2022 guidelines [11]. Pseudomonas aeruginosa ATCC (27853) was used as a control strain and isolates were classified as MDR if they showed resistance to at least one agent in at least three antibiotic classes.

Synthesis of meropenem-loaded MSNs [12]:

At room temperature, tetraethoxy saline (TEOS) was hydrolyzed using ammonia and cetyl trimethyl ammonium bromide as a surfactant template to create mesoporous silica nanospheres. In the beginning, the surfactant was dissolved in 100 mL of deionized water, and then an acetone, diethyl ether, and TEOS mixture were added to the mixture. After stirring the mixture overnight at room temperature, white MSN precipitate was formed. Methanol and deionized water were used to wash the

white powder that was collected and calcined at 550°C for 8 hours.

To load meropenem onto MSN, 50 mL of meropenem (200 mg) in a methanol/water solution was mixed with 200 mg of the calcined MSNs. After 24 hours stirring at room temperature, the solution was centrifuged and washed with deionized water. The loaded meropenem onto MSN nanoparticles was dried. After dissolving 100 mg of the meropenem-loaded MSNs in EDTA and stirring for 30 minutes, the drug loading efficiency was evaluated. Afterward, an ultraviolet- visible spectrophotometer was used to measure the meropenem loading effectiveness at 297 nm using 1 ml of the solution and using the following equations:

- Drug loading content = (drug content/total amount of drug-loaded MSNs) x100%.
- Drug loading efficiency = (drug content/total drug added) x100%.

Determination of MIC for meropenem alone and meropenem-loaded MSNs:

MIC of meropenem and meropenemloaded MSNs was determined using the MBD test, according to CLSI 2022 guidelines for antimicrobial susceptibility testing. This involved preparing meropenem and meropenem-loaded MSNs serial dilutions ranging from 2 μg/ml to 512 μg/ml in a two 96-well separate microtiter plates, with the bacterial inoculum adjusted to 10⁶ CFU/ml. After 24 hours of incubation, 30 µL of resazurin was added to each well, and the plate was incubated for an additional 2 to 4 hours to observe color changes. Bacterial growth was indicated by the oxidation of resazurin from blue to pink. MIC results of meropenem were interpreted based on CLSI standard cut-off points: ≤2 µg /ml was considered susceptible, 4 µg /ml as intermediate, and $\geq 8 \mu g$ /ml as resistant [11]. The interpretation of MIC susceptibility break points to meropenem-loaded MSNs was determined as a twofold decrease in MIC means sensitivity to meropenem-loaded MSNs [12].

Genotypic detection of the inhibitory effect of meropenem loaded MSNs on the expression of MexB gene by real time RT-PCR:

The levels of expression of MexB gene were quantified using real time RT-PCR as recommended by **Rodriguez et al., 2009** [13]. Expression levels results were standardized according to the transcription level of the house keeping gene 16S ribosomal RNA (16srRNA). Quantitative RT- PCR was performed using

PureLink™ RNA Mini Kit (Thermo-fisher, USA), GoScript™ Reverse Transcriptase kit (Promega, USA), DreamTaq Green PCR Master Mix kit (Thermo-fisher, USA) and 2 pairs of primers specific for MexB genes[14] (**Table 1**).

RT-PCR was done with and without addition of sub-MIC values of meropenem loaded MSNs corresponding to each isolate.

The gene expression level of treated *P. aeruginosa* isolates was calculated relative to that in the untreated isolates using the livak method; Δ Ct = Ct gene test – Ct endogenous control [15].

- Δ C is calculated for treated and untreated samples.
- Endogenous control =16srRNA
- $\Delta\Delta$ Ct = Δ Ct treated sample Δ Ct untreated sample
- RQ = Relative quantification = 2^{-}
- Fold of change in gene expression = $1/2^{-\Delta\Delta Ct}$

The cut-off value for sensitivity of isolates expressing Mex B gene to meropenem-loaded MSNs is two-fold or more change in gene expression [16].

Statistical analysis: Data were analyzed using the Statistical Package for Social Sciences (SPSS version 25). The Kolmogorov-Smirnov test was used to assess normality for continuous variables. Descriptive analysis was performed to obtain the means and deviations for quantitative data when it is normally distributed, and median, interquartile range for skewed data. Numbers and frequencies for qualitative data.

Different types of graphs were used according to the type and distribution of data (bar, pie and error plot). Bivariate analyses were performed using the ANOVA, independent samples t test, Pearson correlation and paired t test.

Results

Origin of isolates

Over 12 months, 30 clinical isolates that were phenotypically confirmed to be *P. aeruginosa* were obtained from Ain Shams University hospitals.

Most isolates were collected from pus (16/30, **53.3**%) followed by blood (6/30, 20.0%) and others include (urine, drain, central line and pleural fluid (8/30, 26.7%) and were mostly isolated from patients admitted to intensive care units (ICUs) (21/30, 70%) (**Figure 1**).

Antimicrobial susceptibility pattern of isolates as determined by disc diffusion method

16 isolates were resistant to 6 classes of antibiotics (16/30, 53 %), 8 isolates (27%) were resistant to 5 classes of antibiotics, 2 (7%) were resistant to 4 classes of antibiotics and 4 (13%) were resistant to 3 classes of antibiotics (**Figure 2**).

Detection of the MIC of meropenem and meropenem-loaded MSNs on meropenem-resistant *P. aeruginosa* isolates *MBD* method

tested meropenem-resistant aeruginosa isolates were resistant to meropenem (30/30,100%) giving MIC > 32 µg/ml by MDB test. On repeating the test by using meropenem-loaded MSNs, 24/30 (80%) of the tested isolates showed a reduction of MIC from (512-32 µg/ml) by meropenem alone to (256-8 µg/ml) by using meropenem loaded MSNs. The mean (±SD) MIC of meropenem-loaded MSNs was decreased from 227 (± 160) by meropenem alone to 65 (± 74) (more than 2-fold decrease in MIC represents sensitivity to meropenem-loaded MSNs) (p value <0.001). A significant reduction in 95% confidence interval (CI) for MIC of meropenem alone from (165 -290) to (39.2-90) for meropenem- loaded MSNs suggesting enhanced antimicrobial activity (Table 2, Figures 3, 4).

There was statistically significant difference between meropenem MIC& meropenem-loaded MSNs MIC for isolates from different sources, isolates from wounds were the most sensitive (significant *p* value) (**Table 3**).

There was statistically difference between meropenem MIC& meropenem-loaded MSNs MIC for isolates from different healthcare settings; isolates from wards were more sensitive than other samples from ICUs (**Table 4**).

Effect of meropenem-loaded MSNs on the level of MexB gene expression in meropenem-resistant *P. aeruginosa* isolates

Expression of the MexB efflux pump gene was compared in the 30 meropenem-resistant P. aeruginosa isolates before and after treatment with sub-MIC values of meropenem loaded MSNs. The expression of MexB gene showed statistically significant reduction after treatment meropenem-loaded MSNs, a remarkable increase in MexB gene mean cycle threshold from 6.78 (±3.61 SD) to 11.50 (±4.96 SD), median increased from 5.93 to 10.15. The mean fold of decrease of MexB gene expression was 29.3 of MexB gene (±26.1 SD), median 19 (p value <0.001) after treatment by meropenem-loaded MSNs (Table 5, Figures 6, 7).

There was a statistically significant decrease in MexB gene expression after treatment with meropenem loaded MSNs in relation to sample type, isolates from wounds were more affected by treatment than others and in relation to healthcare setting, isolates from ICUs were the most affected by treatment (**Tables 6, 7**).

Table 1. Sequence of primers used in molecular studies [14].

Primer name	Sequence
MexB-forward	5'-CAAGGGCGTCGGTGACTTCCAG-3'
MexB-reverse	5'-ACCTGGGAACCGTCGGGATTGA-3'
16srRNA forward	5'-CAGCTCGTGTCGTGAGATGT- 3'
16srRNA reverse	5'-CGTAAGGGCCATGATGACTT-3'

Table 2. Comparison between MIC results of meropenem and MIC of meropenem-loaded MSNs on meropenem resistant *P. aeruginosa* isolates by paired t test.

	MIC of meropenem	MIC of meropenem-loaded MSNs	Paired t test	
Mean	227.20	64.80	p value<0.001	Highly significant
SD	160.408	74.080	p value<0.001	Highly significant
Min -Max	512-32	256-8		

Table 3. MIC results in relation to sample types

	Sample type							
	Wound		Blood		Others			
	Mean SD Mean SD Mean SD		SD					
Meropenem MIC	194	170	363	170	192	68	0.064	
Meropenem- loaded MSNs MIC	54	67	133	100	36	25	0.029*	

Test of sig "ANOVA" test,*Sig p value

Table 4. MIC results in relation to healthcare setting

	location								
	Ward		ICU						
	Mean	SD	Mean	SD]				
Meropenem MIC	206	135	236	172	0.647				
Meropenem- loaded MSNs MIC	47	38	72	85	0.401				

Table 5. The effect of meropenem-loaded MSNs on the expression of MexB gene among 30 meropenem-resistant *P. aeruginosa* isolates

1. deruguosa isolates								
	Cycle threshold of MexB	Cycle threshold of MexB						
	Before treatment with	Before treatment with After treatment with						
	meropenem-loaded MSNs							
Mean	6.78	11.50	29.3					
SD	3.61	4.96	26.1					
Median	5.93	10.15	19					
p value	<0.001							

Table 6. MexB gene cycle threshold before and after treatment with meropenem-loaded MSNs in relation to sample type:

	Sample t		p value				
	Wound		Blood		others		
	MexB	SD	Mean	SD	Mean	SD	
58xB gene cycle threshold before	7.58	4.20	4.97	2.87	6.55	2.45	0.324
treatment with meropenem-loaded							
MSNs							
exB gene cycle threshold after	13.35	6.14	8.49	1.52	10.06	1.23	0.075
treatment with meropenem-loaded							
MSNs							

Table 7. MexB gene cycle threshold before and after treatment with meropenem-loaded MSNs in relation to healthcare setting:

						Healthcare setting				p value	
							Ward		ICU		
							Mean	SD	Mean	SD	
MexB	gene	cycle	threshold	before	treatment	with	6.24	2.23	7.02	4.09	0.597
meropenem-loaded MSNs											
MexB gene cycle threshold after treatment with meropenem-						10.24	1.20	12.03	5.83	0.192	
loaded	loaded MSNs										

Figure 1. Origin of isolates.

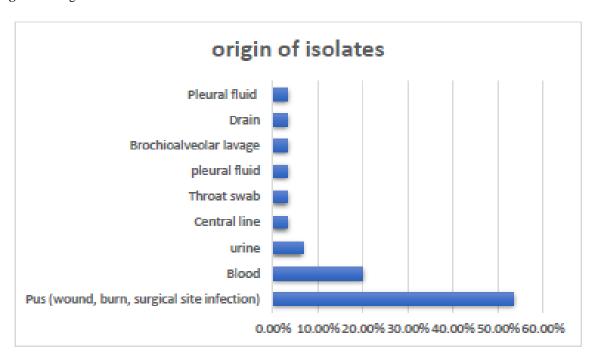
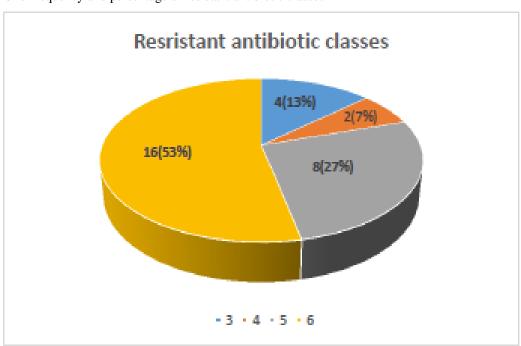



Figure 2. Frequency and percentage of resistant antibiotic classes

Figure 3. Different MIC results for meropenem alone [X] and meropenem-loaded MSNs [Y] against eight meropenem resistant P. aeruginosa isolates on microtiter plates by MDB test.

 \square Rows (A, B, C, D, E, F, G and H) represented testing (one isolate + meropenem) in the upper microtiter plate (X) and (one isolate+ meropenem loaded MSNs) in the lower plate (Y).

 \square +ve and -ve controls were added as shown.

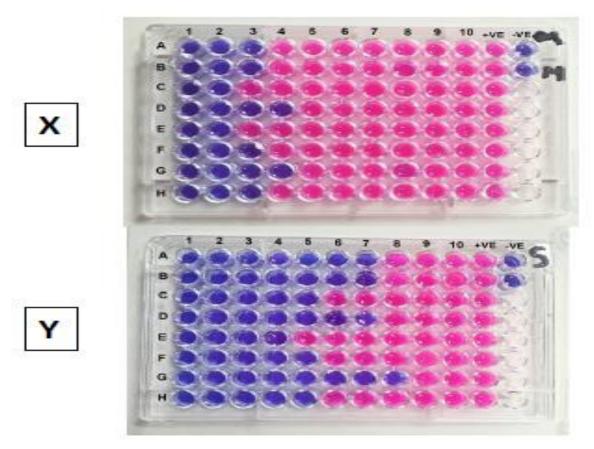
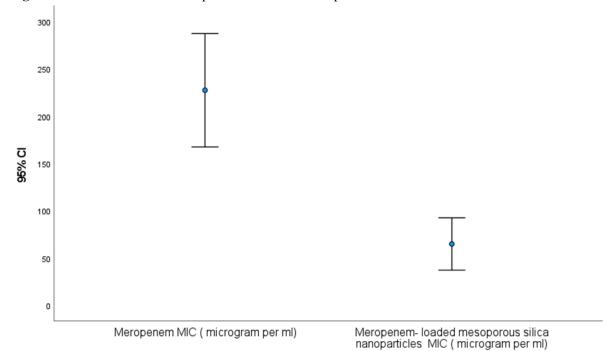
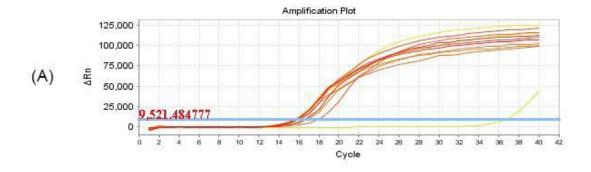
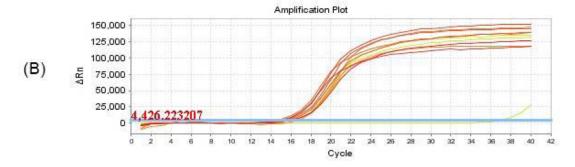
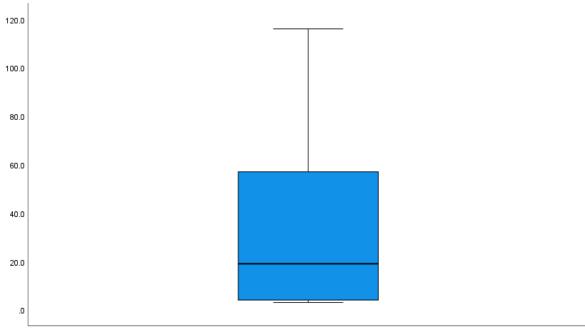





Figure 4. 95 % CI for MIC of meropenem and MIC of meropenem loaded MSNs.


Figure 5. The cycle threshold of Mex B gene in *P. aeruginosa* isolates before (a) and after (b) treatment with the sub-MICs of meropenem-loaded MSNs.

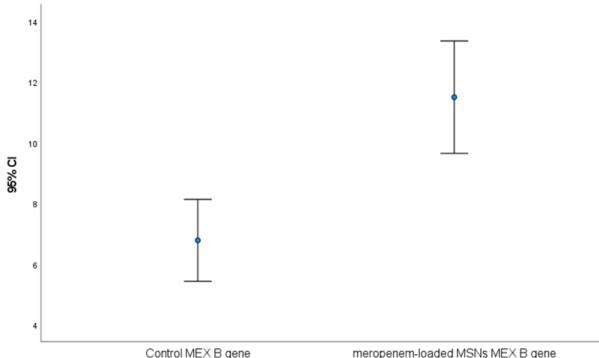

ΔRn: normalized reporter

Figure 6. Boxplot

fold of decrease in gene expression

Figure 7 . Error bar

Discussion

Pseudomonas aeruginosa an opportunistic pathogen that can cause outbreaks of hospital-acquired and life-threatening infections, especially among immunocompromised critically ill patients. The mortality rate among burn patients infected with P. aeruginosa is higher compared to those who are not infected, especially when the infection involves MDR strains [17].

The present study was conducted on 30 isolates of meropenem-resistant P. aeruginosa. Most isolates were from pus samples (16/30, 53.3%) followed by blood (6/30, 20%) and others include (urine, drain, central line, pleural fluid (8/30, 26.7%). These results agree with Hassuna et al. [18] as they stated that most of meropenem-resistant P. aeruginosa isolates were from pus samples (227/634 isolates, 36%) but followed by tracheal aspirates 18% (116/634 isolates), Al-Haik et al. [19] also found that the highest isolation rate was (60%) from wounds and burns patients followed by sputum (26.7%), and the lowest rate from blood (16.6%). Wound infections and burns provide a suitable site for bacterial multiplication because of the larger area involved and longer duration of patient stay in the hospital [20].

The present study demonstrated that meropenem-resistant P. aeruginosa were more frequently isolated from patients attending ICUs meropenem-loaded MSNs MEX B gene

(21/30, 70%). This agrees with Bazghandi et al. [21] who found that the highest rate of meropenemresistant P. aeruginosa strains isolated belonged to the ICU (32.1%, 27/84), followed by internal departments (31%, 26/84), Intensive care patients are more susceptible to infection because of prolonged hospital stay and instrumentation [22]. In contrast to our results Mirzaei et al., [23] found that the frequency of MDR isolates was higher in the department of surgery (71.8%).

Rising rates of MDR P. aeruginosa in healthcare associated infections and between hospitalized patients is a main public health problem. Resistance of P. aeruginosa is usually accompanied by the production of biofilms, active expulsion of antibiotics by efflux pump, and alteration of outer membrane protein expression [22].

In the current study, the antibiogram of P. aeruginosa isolates revealed that they were highly resistant to meropenem, amikacin (100%) followed by tobramycin, (90%), ceftazidime, cefepime and fosfomycin (83.3%), ciprofloxacin and piperacillin -tazobactam (80%), aztreonam (76.7%) and colistin (73.3%). Ameen et al. [24] reported highest resistance of MDR P. aeruginosa against imipenem (100%) followed by gentamycin (98%), amikacin (77.8%), piperacillin/tazobactam (68.1%). Tam et al. [25] conducted a study on MDR P. aeruginosa isolated from blood, demonstrated 100% resistance to Carbapenems and Quinolones. In contrast, studies done in India reported that imipenem was 100% sensitive followed by piperacillin/tazobactam 72% [26].

All (30/30) meropenem resistant *P. aeruginosa* isolates were MDR. Most of MDR *P. aeruginosa isolates* were resistant to 6 groups of antibiotics (16/30, 53 %), 8 MDR isolates (27%) were resistant to 5 groups of antibiotics, 4 (13%) were resistant to 3groups of antibiotics and 2 (7%) were resistant to 4 groups of antibiotics.

This agrees with **Memar et al.** [12] who found that (10/10,100%) of collected *P. aeruginosa* isolates were MDR. Also, **Abd El-Baky et al.** [27] found that 96% of the isolated *P. aeruginosa* were MDR. **Parmar et al.** [28] reported a lower rate, 53 (23.24%) isolates were resistant to the 12 routine anti-pseudomonal drugs and out of 53 isolates, and 16 (30.18%) isolates were resistant to all drugs tested. This may reflect regional differences in antibiotic prescribing habits or variations in antimicrobial stewardship programs [29].

In the present study, the 30 tested isolates showed resistance to meropenem by detecting MIC using MBD test. The MIC ranges of meropenem were (512-32 μg /ml). These results came in agreement with **Memar et al.** [12] who found that all isolates (10/10,100%) were resistant to meropenem and the MICs values were higher than 8 μg /mL in all isolates. Similar results were recorded by **Srivastava et al.** [30], meropenem was found to be resistant in (2/2, 100%) with MIC range 128 μg and 256 μg , **Albiero et al.** [31] recorded MIC values ranging from 1024 to 0.25 μg /ml, 13/19 (68%) of the tested isolates were more than 4 μg /ml.

Meropenem resistance in P. aeruginosa could be attributed to a reduction in the outer membrane permeability, up-regulated expression of the efflux pumps genes and production of metallo- β -lactamases, which inactivate these drugs efficiently. There is urgent need for alternative treatment strategies and intensified infection control measures [18].

Mesoporous silica nanoparticles have been reported as an efficient delivery system for various antimicrobial agents, including but not limited to vancomycin, tetracycline, polymyxin B, gentamicin, rifampicin, and linezolid .Antibiotic loaded MSNs have good antimicrobial activity

against a wide range of microbes such as *Staphylococcus aureus*, as well as *P. aeruginosa*, *Enterobacteriaceae* and *Acinetobacter baumannii* [32,33].

The bactericidal impact of meropenem-loaded MSNs demonstrated the successful integration of meropenem onto MSNs without compromising its antimicrobial efficacy. The interaction between positively charged MSNs and bacterial lipid bilayers has been documented in the literature [12].

According to the present study, after repeating the MBD test with meropenem-loaded MSNs, a significant reduction in MIC was detected, decreased from (512-32 μ g/ml) to (256-8 μ g/ml). MIC of 24/30 (80%) isolates decreased (2-4) folds and MIC of 6/30 (20%) isolates slightly decreased. The findings of the present study go in accordance with those of Memar et al. [32] who found MIC ranges were decreased from 64-4 µg/ml with meropenem to 16-1µg/ml with meropenem-loaded MSNs. Lamb et al., [34] reported MIC of meropenem was 64-8 μg/ml decreased to 16-2 μg/ml with meropenem-loaded MSNs. This effect could be attributed to the interaction between MSNs and microorganisms, potentially enhancing the uptake of meropenem and consequently augmenting its antibacterial effect [12, 32, 33].

One of the most important mechanisms of meropenem resistance in *P. aeruginosa* is over-expression of efflux pumps. MexB is the primary transporter responsible for expelling antibiotics such as meropenem from the bacterial cell. Studies have shown that MexB often exhibits higher levels of expression in *P. aeruginosa* strains resistant to meropenem. [35].

In the present study, the expression of the MexB efflux pump gene was compared in the 30 meropenem-resistant *P. aeruginosa* isolates before and after treatment with sub-MIC values of meropenem loaded MSNs, revealed a high statistically significant reduction in gene expression (*p* value <0.001) and the mean of fold of decrease in the MexB gene expression was (29.3).

Rudbaraki et al. [36] conducted a study investigating the alteration of MexB gene expression in ciprofloxacin-resistant *P. aeruginosa* isolates during treatment with encapsulated silibinin in nanoparticles. There was a decrease in the expression of genes associated with efflux pump systems, including the MexB gene. Additionally,

Arya et al. [37] conducted a study examining the impact of vanilla and the application of gold nanoparticles on multidrug-resistant isolates of *P. aeruginosa*, they observed that treatment with gold nanoparticles led to a reduction in the expression of MexA and MexB genes.

Conclusion

According the present study, to meropenem-loaded MSNs exhibit an in vitro antibacterial effect against meropenem-resistant P. aeruginosa. This approach shows the potential for meropenem and MSNs to work together effectively to address the serious issue of MDR *P. aeruginosa*. The effect of meropenem and MSNs is highly attributed to the role of MSNs as inhibitors of efflux pumps, as evidenced by the reduced expression of the MexB efflux pump gene following treatment with meropenem-loaded MSNs in this study. To determine the optimal concentration of MSNs for effective use with meropenem, larger scale studies are recommended and more in vivo assessments on the effectiveness and compatibility of meropenem loaded MSNs for infections. This could potentially enable the use of lower concentrations of meropenem, thereby reducing its side effects and resistance rates.

Conflict of interest

There is no conflict of interest stated by the author.

Author's contribution

All of the listed authors participated in the work and approved it for publication.

Funding

None.

Data availability

All data generated or analyzed during this study are included in this puplished article.

References

- 1- Flockton TR, Schnorbus L, Araujo A, Adams J, Hammel M, Perez LJ. Inhibition of Pseudomonas aeruginosa biofilm formation with surface modified polymeric nanoparticles. Pathogens. 2019 Apr 24; 8(2):55.
- 2- Marra AR, Pereira CA, Gales AC, Menezes LC, Cal RG, de Souza JM, et al. Bloodstream infections with metallo-β-lactamase-producing Pseudomonas aeruginosa: epidemiology,

- microbiology, and clinical outcomes. Antimicrob Agents Chemother. 2006 Jan; 50(1):388-90.
- 3- **Poole K, Heinrichs DE, Neshat S.** Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine. Mol Microbiol. 1993 Nov; 10(3):529-44.
- 4- Poole K, Krebes K, McNally C, Neshat SH. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol. 1993 Nov; 175(22):7363-72.
- 5- **Sharma A, Gupta VK, Pathania R.** Efflux pump inhibitors for bacterial pathogens: from bench to bedside. Indian J Med Res. 2019 Feb 1; 149(2):129-45.
- 6- Aslan AT, Ezure Y, Horcajada JP, Harris PN, Paterson DL. In vitro, in vivo and clinical studies comparing the efficacy of ceftazidime-avibactam monotherapy with ceftazidime-avibactam-containing combination regimens against carbapenem-resistant Enterobacterales and multidrug-resistant Pseudomonas aeruginosa isolates or infections: a scoping review. Front Med. 2023 Sep 4; 10:1249030.
- 7- Memar MY, Yekani M, Ghanbari H, Nabizadeh E, Vahed SZ, Dizaj SM, et al. Antimicrobial and antibiofilm activities of meropenem loaded-mesoporous silica nanoparticles against carbapenem-resistant Pseudomonas aeruginosa. J Biomater Appl. 2021 Oct;36(4):605-12.
- 8- Al-Awsi GR, Alameri AA, Al-Dhalimy AM, Gabr GA, Kianfar E. Application of nanoantibiotics in the diagnosis and treatment of infectious diseases. Braz J Biol. 2023 Jan 30; 84:e264946.

- 9- Memar MY, Yekani M, Farajnia S, Ghadiri Moghaddam F, Nabizadeh E, Sharifi S, et al. Antibacterial and biofilm-inhibitory effects of vancomycin-loaded mesoporous silica nanoparticles on methicillin-resistant Staphylococcus aureus and gram-negative bacteria. Arch Microbiol. 2023 Apr; 205(4):109.
- 10- Al Meani SA, Ahmed MM, Abdulkareem AH. Synergistic effect between Zingiber officinale volatile oil and meropenem against Acinetobacter baumannii producing-carbapenemase isolated from neurosurgery in Iraq. Syst Rev Pharm. 2020 Sep 1; 11(9):920-5.
- 11- Clinical and Laboratory Standards Institute. CLSI performance standards for antimicrobial susceptibility testing: 32nd ed. CLSI supplement M100. Published 2022. https://clsi.org/media/wi0pmpke/m100ed32_s ample.pdf
- 12- Memar MY, Yekani M, Ghanbari H, Nabizadeh E, Vahed SZ, Dizaj SM, et al. Antimicrobial and antibiofilm activities of meropenem loaded-mesoporous silica nanoparticles against carbapenem-resistant Pseudomonas aeruginosa. J Biomater Appl. 2021 Oct;36(4):605-12.
- 13- Rodríguez-Martínez JM, Poirel L,
 Nordmann P. Extended-spectrum
 cephalosporinases in Pseudomonas
 aeruginosa. Antimicrob Agents Chemother.
 2009 May; 53(5):1766-71.
- 14- Hasannejad-Bibalan M, Jafari A, Sabati H, Goswami R, Jafaryparvar Z, Sedaghat F, et al. Risk of type III secretion systems in burn patients with Pseudomonas aeruginosa wound infection: A systematic review and metaanalysis. Burns. 2021 May 1; 47(3):538-44.

- 15- **Livak KJ, Schmittgen TD.** Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods. 2001; 25(4):402–408.
- 16- Elbialy NA, Elhakim HK, Mohamed MH, Zakaria Z. Evaluation of the synergistic effect of chitosan metal ions (Cu²⁺/Co²⁺) in combination with antibiotics to counteract the effects on antibiotic resistant bacteria. RSC Adv. 2023; 13(26):17978-90.
- 17- Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016; 2016(1):2475067.
- 18- Hassuna NA, Darwish MK, Sayed M, Ibrahem RA. Molecular epidemiology and mechanisms of high-level resistance to meropenem and imipenem in Pseudomonas aeruginosa. Infect Drug Resist. 2020 Jan 30:285-93.
- 19- Al-Haik WM, Al-Mahbash AA, Al-Mahdi AY, Mohamed MM, Al-Haddad AM. Genotypic characteristics of clinical and non-clinical isolates of *Pseudomonas aeruginosa:* distribution of different antibiogram profiles and molecular typing. Jordan J Biol Sci. 2016; 9:185-194.
- 20- Pérez A, Gato E, Pérez-Llarena J, Fernández-Cuenca F, Gude MJ, Oviaño M, et al. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. Journal of Antimicrobial Chemotherapy. 2019; 74(5):1244-1252. doi:10.1093/JAC/DKZ030
- 21- Bazghandi SA, Arzanlou M, Peeridogaheh
 H, Vaez H, Sahebkar A, Khademi F.
 Prevalence of Virulence Genes and Drug
 Resistance Profiles of Pseudomonas

- aeruginosa Isolated from Clinical Specimens. Jundishapur Journal of Microbiology. 2021; 14(8).
- 22- Altoparlak U, Aktas F, Celebi D, Ozkurt Z, Akcay MN. Prevalence of metallo-β-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates. Burns. 2005; 31(6):707-710.
- 23- Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes. 2020; 13:1-6.
- 24- Ameen N, Memon Z, Shaheen S, Fatima G, Ahmed F. Imipenem resistant Pseudomonas aeruginosa: The fall of the final quarterback. Pak J Med Sci. 2015;31(3):561-565.
- 25- Tam VH, Chang KT, Abdelraouf K, Brioso CG, Ameka M, McCaskey LA, et al. Prevalence, mechanism and susceptibility of multidrug resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010; 54:1160-4. Epub 2010 Jan 19
- 26- Tarana Sarwat TS, Mohd. Rashid MR, Vichal Rastogi VR, Yogesh Chander YCA. A Comparative Study of Antibiogram of Pseudomonas aeruginosa in Hospital and Community Acquired Infections. Int J Curr Microbiol App Sci. 2015; 1:286-291.
- 27- Abd El-Baky RM, Masoud SM, Mohamed DS, Waly NG, Shafik EA, Mohareb DA, et al. Prevalence and some possible mechanisms of colistin resistance among multidrugresistant and extensively drug-resistant

- Pseudomonas aeruginosa. Infect Drug Resist. 2020; 13:323-332.
- 28- Parmar H, Dholakia A, Vasavada D, Singhala H. The current status of antibiotic sensitivity of Pseudomonas aeruginosa isolated from various clinical samples. Blood. 2013; 41(1):17.98.
- 29- Polotto M, Casella T, de Lucca Oliveira MG, Rúbio FG, Nogueira ML, de Almeida MT, et al. Detection of Pseudomonas aeruginosa harboring blaCTX-M-2, blaGES-1 and blaGES-5, blaIMP-1 and blaSPM-1 causing infections in Brazilian tertiary-care hospital. BMC Infect Dis. 2012; 12:176-187.
- 30- **Srivastava P, Sivashanmugam K.** Efficacy of sub-MIC level of meropenem and ciprofloxacin against extensive drug-resistant (XDR) Pseudomonas aeruginosa isolates of diabetic foot ulcer patients. Infection, Genetics and Evolution. 2021; 92:104824.
- 31- Albiero J, Mazucheli J, Barros JP, Szczerepa MM, Nishiyama SA, Carrara-Marroni FE, et al. Pharmacodynamic Attainment of the Synergism of Meropenem and Fosfomycin Combination against Pseudomonas aeruginosa Producing Metallo-β-Lactamase. Antimicrobial Agents and Chemotherapy. 2019; 63(6). doi:10.1128/AAC.00126-19
- 32- Memar MY, Yekani M, Ghanbari H, Shahi S. S, Sharifi S, Maleki Dizaj Biocompatibility, cytotoxicity and antibacterial effects of meropenem-loaded mesoporous silica nanoparticles against carbapenem-resistant Enterobacteriaceae. Artificial Cells Nanomedicine Biotechnology. 2020;48(1):1354-1361.
- 33- Memar MY, Yekani M, Farajnia S, Ghadiri Moghaddam F, Nabizadeh E, Sharifi S, et al. Antibacterial and biofilm-inhibitory effects

of vancomycin-loaded mesoporous silica nanoparticles on methicillin-resistant staphylococcus aureus and Gram-negative bacteria. Archives of Microbiology. 2023; 205(4).

- 34- Lamb MA, Wiedbrauk S, Fairfull-Smith KE . Approaches to enhance the antimicrobial activity of carbapenems within bacterial biofilms. RSC Pharm. 2024; 1:622-644.
- 35- Abdallah AL, El Azawy DS, Mohammed HA, El Maghraby HM. Expression of Mex AB-Opr M efflux pump system and meropenem resistance in Pseudomonas aeruginosa isolated from surgical intensive care unit. Microbes Infect Dis. 2021; 2(4):781-789.
- 36- **Dorri K, Modaresi F, Shakibaie MR, Moazamian E**. Effect of gold nanoparticles on the expression of efflux pump mexA and mexB genes of Pseudomonas aeruginosa strains by quantitative real-time PCR. Pharmacia. 2022; 69(1):125-133.
- 37- Arya SS, Sharma MM, Das RK, Rookes J, Cahill D, Lenka SK. Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates.

Mohamed EM, El-Sewify IM, Adel LA, Abdelhady AS. Antimicrobial effect of meropenem-loaded mesoporous silica nanoparticles against carbapenem-resistant *Pseudomonas aeruginosa*. Microbes Infect Dis 6(4): 6635-6648.