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This research explored the possible protective impact of marjoram and olive leaf extracts 

against hypertension triggered by a salt-rich diet in rats. Twenty male albino rats (Rattus 

norvegicus) were separated into four equal groups; the first group was the reference 

control, and the second group was provided 250 mg/Kg body weight of Origanum 

majorana leaves extract and 250 mg/Kg body weight of Olea europaea leaves extract 

daily. The third group was given freely a high 8% NaCl diet. The fourth group was 

administered an 8% salt diet supplemented with 250 mg/Kg body weight of O. majorana 

leaves extract and 250 mg/Kg body weight of O. europaea leaves extract. Samples were 

taken after 4 weeks of treatments. Feeding rats, a high sodium chloride diet consisting of 

8% NaCl induces hypertension in rats. The high salt diet enhanced marked elevation in 

body weights and reduced most relative organ weights. The high salt feeding elevated 

sodium levels in hepatic and kidney tissues, in addition to a rise in the liver's MDA level. 

Feeding on a high salt diet reduced superoxide dismutase and catalase activities. It 

promoted considerable disruption in liver and kidney functions. It also triggered a decrease 

in sperm count and an increase in abnormal sperm morphology. The high salt feeding 

induced histological changes in the liver, kidney, brain, and testes of rats. Combined 

supplementation with both O. majorana and O. europaea extracts alleviated salt-induced 

abnormalities in rats. 

1. Introduction 

High sodium chloride (NaCl) consumption is a major dietary factor contributing to multiple organs' widespread 

physiological and histopathological alterations [1-3]. The primary mechanism involves the disruption of cellular and 

systemic homeostasis [4], leading to oxidative stress, inflammation, and lipid peroxidation (LPO) [5]. Chronic high 

salt consumption is closely linked to the development of hypertension [6] by disruptions of fluid balance and 

vascular function [7] and promotes systemic organ damage [8].  
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Excessive sodium intake increases extracellular fluid volume by promoting water retention, which elevates blood 

pressure [9]. Additionally, high NaCl intake impairs the renin-angiotensin-aldosterone system (RAAS), resulting in 

vasoconstriction and elevated vascular resistance [10]. Sodium also influences vascular endothelial cells, causing 

oxidative stress, decreased nitric oxide (NO) availability, and impaired endothelial function contributing to 

cardiovascular complications [11].  

High-salt diets exacerbate oxidative damage by promoting the generation of reactive oxygen species (ROS) and 

depleting the body's natural antioxidant reserves [12]. This oxidative imbalance drives LPO, damaging cellular 

membranes and contributing to systemic inflammation [13]. High NaCl consumption induces pathological changes 

in multiple organs. The liver experiences metabolic disruptions, oxidative damage, and inflammatory responses 

[14,15]. In the kidneys, high sodium intake accelerates fibrosis, impairs filtration, and promotes hypertension-related 

damage [16,17]. In the brain, sodium chloride contributes to neuroinflammation and oxidative damage, affecting 

cognitive functions [18,19]. The testes are also vulnerable, with oxidative stress impairing spermatogenesis and 

hormonal balance, potentially affecting reproductive health [20,21]. 

Given the systemic nature of these effects, there is increasing interest in natural, plant-derived interventions for 

mitigating the damage caused by high salt intake. Extracts from Origanum majorana (marjoram) and Olea europaea 

(olive) have shown potential in addressing oxidative stress and histological damage [22,23]. Marjoram is rich in 

flavonoids and polyphenols recognized for its strong radical scavenger and anti-inflammatory effects. At the same 

time, olive leaves are abundant in oleuropein and hydroxytyrosol, which improve vascular health and reduce 

oxidative stress [24,25]. Combined supplementation with olive and marjoram leaf extracts offers a promising 

strategy, as their bioactive compounds may synergistically mitigate oxidative stress, reduce LPO, and improve organ 

function. 

Despite their benefits, research examining the combined use of olive and marjoram extracts in addressing high 

salt-induced hypertension and systemic organ damage are scarce. Combining these extracts offers a promising 

protective strategy, as their complementary bioactive compounds may exert synergistic effects in countering the 

physiological and histological damage induced by high salt feeding. Therefore, the current study investigated the 

combined efficacy of O. majorana and O. europaea leaf extracts in mitigating NaCl-induced alterations in rat 

organs. 

3. Materials and methods  

3.1.  Chemicals 

Pure sodium chloride was purchased from El Naser Pharmaceutical Chemicals Co., Egypt. 

3.2.  Animals 

Twenty male albino rats (Rattus norvegicus) four weeks old, weighing (70 ± 5g), were obtained from the Animal 

care facility, Faculty of Science, Suez Canal University, Egypt. The rats were housed in plastic housing and 

maintained on a 12-hour light-dark cycle with regulated temperature (25±2
o
C) and relative humidity (45±5%). They 

were provided with a standard balanced diet and water ad libitum, and allowed a 7-day acclimatization period to the 

laboratory conditions. The experimental procedures was evaluated and authorized by the Research Ethics 

Committee of the Faculty of Science at Arish University, under approval number "ARU/SF.13". Our techniques 

followed the guidelines outlined in the 8
th

 edition of the guide for the care and use of laboratory animals, ensuring 

strict adherence to ethical standards.  

 

3.3.  Preparation of marjoram and olive leaf extracts 

The leaves of marjoram (O. majorana) and Olive (O. europaea) were collected from the Arish area, North Sinai, 

Egypt. The plants were examined and classified at the Faculty of Science, Arish University, by a specialist professor 

in plant taxonomy. The plant leaves were dried by leaving them at room temperature for one week. The desiccated 

leaves were crushed into powder. Ten grams of desiccated powder of each plant were dissolved in 100 mL of 70% 

ethyl alcohol to prepare a 10% (w/v) stock solution [26,27]. The mixture is stirred, and placed in a cold and dark 

place for 48-72 hours to extract the effective substances. Then, the extract was filtered. A rotary evaporator was used 

to evaporate ethanol and get the dry extract, which was then stored in a tight and dark container, away from 

humidity and excess heat to preserve the extract's effectiveness.  
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3.4.  Experimental design 

After acclimatization, the rats were haphazardly assigned into four equal groups. The first group acted as the normal 

control, the second group received 250 mg/kg body weight of O. majorana leaves extract [28] and 250 mg/kg body 

weight of O. europaea leaves extract [29] daily. The third group was fed an unrestricted 8% NaCl diet [30]. The 

fourth group was given an 8% salt diet, supplemented with 250 mg/kg body weight of O. majorana leaves extract 

and 250 mg/kg body weight of O. europaea leaves extract.  

3.5.   Duration time 

Upon completion of the experiment (28 days), all rats were euthanized utilizing ketamine (50 mg/kg body weight, 

intramuscular injection) and rapidly dissected. Tissues were removed, weighted, blotted on filter paper, and kept at –

30
o
C till additional biochemical examinations. The body weights of rats were taken weekly. 

3.6. Non-invasive blood pressure measurement 

The systolic and diastolic blood pressures of the rats were evaluated non-invasively with a tail-cuff plethysmography 

system (CODA®Monitor, Kent Scientific, Torrington, CT, USA), incorporating a specialized retraining chamber 

designed for animal comfort and stability. 

1. Acclimatization: Rats were acclimated to the restrainer and device for five consecutive days (10-15 

minutes per day) to minimize stress-related variability. The chamber allowed the tail to extend freely for 

easy access, reducing handling stress. 

2. Chamber design: The chamber was constructed to securely restrain the animal's body while leaving the 

tail accessible. The chamber size was customized to prevent unnecessary movement, ensuring consistent 

positioning during measurements. 

3. Setup: Measurements were conducted in a temperature-controlled environment (30-35 
o
C) to ensure tail 

vasodilation and optimal blood flow. 

4. Measurement protocol: The rat was placed into the chamber, and its tail extended through the opening. 

A pneumatic cuff with a sensor was placed around the proximal tail. The cuff was inflated to occlude 

blood flow and then deflated gradually, with oscillometric signals recorded to determine systolic and 

diastolic pressures. 

5. Data collection and validation: Each rat underwent three consecutive measurements, and the average 

was used for analysis. Outliers caused by movement artifacts were excluded, and readings were repeated if 

necessary.  

3.7.  Tissue preparation for microscopic examination 

Following the dissection of the animals, the liver, kidney, testes, and brain were extracted, dried on filter paper, and 

weighed. Representative samples were then placed in a 10% formalin solution and processed into paraffin for 

histological sectioning and staining.  

3.8.  Histological methods 

Histological sections, 5 microns thick, were formulated and stained with hematoxylin and eosin. Microscopic 

examination of the samples was performed blindly using an Olympus BX43 microscope [31]. 

3.9. Biochemical analysis 

Sodium was measured using spectrum kits, Cairo, Egypt, according to Henry et al. [32]. Oxidative stress parameters 

were assessed using BioDiagnostic kits (Cairo, Egypt). Catalase (CAT) activity was assessed using the Aebi method 

[33]. The concentration of malondialdehyde (MDA) was evaluated using the method of Ohkawa et al. [34]. Alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST) activities were quantified using the modified version 

of the method of Schumann and Klauke [35]. Uric acid levels was quantified utilizing Spinreact kits (Spain) and the 
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technique of Fossati et al. [36]. Creatinine was determined with Diamond Diagnostics kits (Holliston, USA) using 

the Heinegard and Tiderstrom technique [37].  

 

3.10.  Statistical analysis 

The results are presented as means ± standard deviation (SD) for five rats per group. Data from the control and 

treated groups were analyzed using a one-way analysis of variance (ANOVA), followed by Tukey’s test for multiple 

comparisons. A probability-value of <0.05 was considered statistically significant. Data analysis was conducted 

leveraging the statistical Package for Social Sciences (SPSS) software, version 22.0 for windows. 

 

4. Results 

4.1 Body weights 

The results showed that salt-rich diet feeding induced considerable elevation (P˂0.05) in body weights after two and 

four weeks of treatment, by 38.0% and 33.25%, respectively (Fig. 1). On the other hand, combined supplementation 

with both olive and marjoram extracts restores normal levels. 

4.2 Organ weights 

The results showed that high salt feeding induced significant (P˂0.05) decrease in relative liver and testicular 

weights by 17.94% and 44.5% after 4 weeks of treatment, respectively. However relative kidney and brain weights 

remain unaffected after 4 weeks of treatment (Fig. 1). On the other hand, combined supplementation with both olive 

and marjoram extracts not only reversed these effects, but also elevated relative kidney, brain, and testis 

significantly (p<0.5) by 42.6, 65.76 and 46.07%, respectively, compared with normal controls after 4 weeks of 

treatment. 

4.3 Blood pressure  

The 8% salt feeding induced a considerable elevation in systolic blood pressure of rats after 2 and 4 weeks of 

treatment with magnitudes of 19.25 and 22.35% compared with normal controls, respectively (Fig. 2). It also 

enhanced significant (P<0.05) elevation in diastolic blood pressure by 24.71 and 28.94% compared with normal 

controls following 2 and 4 weeks of treatment, respectively. In contrast, combined supplementation with marjoram 

and olive extracts restores blood pressure to approach control. 

 4.4 Biochemistry analysis  

After 4 weeks of high sodium chloride intake, there was a notable rise in MDA levels in hepatic tissue by 131% and 

sodium levels in liver and kidney tissues by 21.95% and 17.87%, respectively in comparison to the normal control 

group (Fig. 3). SOD and CAT activities were reduced significantly (p<0.05), by 21.87 and 27.38% compared to 

normal rats, upon 4 weeks of high NaCl administration, respectively. It enhanced considerable disruption in hepatic 

(AST & ALT) and renal (urea & creatinine) functions (Table 1). High salt feeding caused a substantial decrease in 

sperm count, and considerable elevation in abnormal sperm morphology; however, plasma testosterone and sperm 

motility are approximately not affected (Table 2). Nevertheless, supplementation with both marjoram and olive leaf 

extracts ameliorated these effects. 

4.5 histopathology findings  

The tissue architecture of the kidney, liver, rain, and testis in the control group displayed normal cellular 

organization, with well-defined structures and appropriate cellular integrity. Similarly, treatment with O. majorana 

and O. europaea leaves extracts resulted in tissue architectures of these organs that were more or less similar to the 

control group (Fig. 4-7), showing preserved cellular morphology and minimal disruption. The effects of high NaCl 

feeding on rats' histopathology were detected. A marked impairment of the renal tubules through glomeruli 

congestion, signs of tubular cell lining vacuolation, and intra-tubular hemorrhage could be seen after 4 weeks of salt 

ingestion (Fig. 4). Hepatocytes showed the formation of vacuoles in the cytoplasm and abnormal structure 

organization after chronic high salt ingestion (Fig. 5). On the other hand, brain cells displayed signs of cell atrophy 

and surrounded vacuolation after administering 8% salt diet for 28 days (Fig. 6). It was observed that the germinal 

testicular epithelium was adversely affected, as evidenced by the wide separation of the cells and a decrease in 
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spermatid count within the lumen in rats chronically given high salt diet (Fig. 7). Conversely, the dosage of O. 

majorana and O. europaea leaf extracts significantly improved tissue damage. These findings suggest that both 

plant extracts offer protective effects against potential damage caused by high NaCl exposure. 

 
Fig. 1. The impact of high salt feeding on body weight (A) and relative organ weights (B) (g/100 g bw) of rats. Om: 

O. majorana, Oe: O. europaea; HS: high salt; bw: body weight. Data are presented as means ± SD for five rats in 

each group. a: Significantly different from control group at p<0.05 (Tukey's post-hoc test), b: significantly different 

from O. majorana and O. europaea extracts-treated group at p<0.05 (Tukey's post-hoc test), c: significantly  

different from high salt group at p<0.05 (Tukey's post-hoc test), d:  significantly different from high salt + O. 

majorana + O. europaea extracts-treated group at p<0.05 (Tukey's post-hoc test). 

 

 

 
Fig. 2. Effect of high salt feeding on mean systolic and diastolic blood pressure in rats after 2 weeks of treatment (A) 

and 4 weeks of treatment (B). Om: O. majorana, Oe: O. europaea; HS: high salt; Data are presented as means ± SD 

for five rats in each group. a: Significantly different from the control group at p<0.05 (Tukey's post-hoc test), b: 

significantly different from O. majorana and O. europaea extracts-treated group at p<0.05 (Tukey's post-hoc test), 

c: significantly different from high salt group at p<0.05 (Tukey's post-hoc test), d:  significantly different from high 

salt + O. majorana + O. europaea extracts-treated group at p<0.05 (Tukey's post-hoc test). 

 

5. Discussion  

It has been demonstrated that high salt ingestion significantly elevates the body weight of rats, likely due to its 

effects on sodium levels, fluid retention, and appetite regulation. Increased sodium disrupts fluid balance, leading to 

water retention as the body attempts to maintain sodium homeostasis [38,39]. Additionally, high salt intake 

promotes thirst and water consumption, which further contributes to weight gain [40]. Evidence also suggests that 

salt enhances appetite, potentially important to increased food intake and fat accumulation [41]. Chronic salt 

consumption alters lipid metabolism and affects hormones such as leptin and insulin, disrupting appetite regulation 
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and promoting fat storage [42-44]. Furthermore, chronic high salt intake induces low-grade inflammation, which has 

been implicated in promoting fat storage and weight gain [45]. Alterations in the gut microbiota due to high salt 

intake may also impact digestion and nutrient absorption, influencing body weight [46]. At the cellular level, NaCl 

exposure can principal to intracellular fluid accumulation and tissue swelling, contributing to increased body weight 

[47]. Stress-related pathways, such as RAAS, are also activated by high salt consumption, promoting fat deposition, 

reducing energy expenditure, and increasing hypertension [43]. 

 
Fig. 3. Effects of high salt feeding for four weeks on plasma superoxide dismutase (A) and catalase (B) activities, 

and malondialdehyde (C) level, and sodium concentration in the liver (D) and kidney (E) of rats. Om: O. majorana, 

Oe: O. europaea; HS: high salt. Data are presented as means ± SD for five rats in each group. a: Significantly 

different from control group at p<0.05 (Tukey's post-hoc test), b: significantly different from O. majorana and O. 

europaea extracts-treated group at p<0.05 (Tukey's post-hoc test), c: significantly different from high salt group at 

p<0.05 (Tukey's post-hoc test), d: significantly different from high salt + O. majorana + O. europaea extracts-

treated group at p<0.05 (Tukey's post-hoc test). 

 

Table 1. Effects of high dietary salt intake on liver and kidney function tests and the protective effect of O. 

majorana (Om) and O. europaea (Oe) supplementation in male albino rats. 

28 days ALT (U/L) AST (U/L) Uric acid (mg/dL) Creatinine (mg/dL) 

Control 30.3 ± 4.74
 

85.5 ± 12.9 1.76 ± 0.28 0.48 ± 0.07 

Om + Oe 28.3 ± 3.79 
c,d

 83.6 ± 12.5
 c
 1.60 ± 0.25 

c,d
 0.47 ± 0.06  

c
 

HS 48.2 ± 6.44
 a,b,d 

114.5 ± 16.9
 a,b

 3.12 ± 0.46 
a,b,d

 0.65 ± 0.09 
 a,b

 

Om + Oe + HS 38.7 ± 5.38 
b,c

  103.2 ± 14.0
 
 2.48 ± 0.35 

a,b,c
 0.53 ± 0.08 

Data are presented as mean ± SD (n = 5). a: Significantly different from normal control group at p<0.05 (Tukey's 

post-hoc test), b: significantly different from O. majorana and O. europaea extracts-treated group at p<0.05 

(Tukey's post-hoc test), c: significantly different from high salt group at p<0.05 (Tukey's post-hoc test), d: 

significantly different from high salt + O. majorana + O. europaea extracts-treated group at p<0.05 (Tukey's post-

hoc test). 
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Table 2. Effects of high dietary salt intake on plasma testosterone, sperm parameters, and the protective effect of O. 

majorana (Om) and O. europaea (Oe) supplementation in male albino rats. 

28 days Testosterone 

(ng/dL) 

Sperm count x 

10
6
/mL 

Sperm motility 

(%) 

Abnormal sperm 

morphology (%) 

Control 26.3 ± 4.37
 

100.2 ± 15.0 93.0 ± 14.6 4.4 ± 0.54 

Om + Oe 27.5 ± 4.39 
c
 103.4 ± 11.9

 c
 95.0 ± 13.8 3.20 ± 0.83 

c
 

HS 19.8 ± 2.90
 b 

76.40 ± 10.8
 a,b

 74.2 ± 11.4 7.00 ± 2.54
 a,b

 

Om + Oe + HS 23.1 ± 3.28   88.80 ± 10.7
 
 80.0 ± 12.2 540 ± 0.54

 
 

Data are presented as mean ± SD (n = 5). a: Significantly different from normal control group at p<0.05 (Tukey's 

post-hoc test), b: significantly different from O. majorana and O. europaea extracts-treated group at p<0.05 

(Tukey's post-hoc test), c: significantly different from high salt group at p<0.05 (Tukey's post-hoc test).  

 

A high-salt diet has reflective effects on blood pressure, mainly through increased plasma sodium concentrations 

that lead to fluid retention, increase in blood volume, and heightened cardiac output [48]. The vascular effects of salt 

include increased stiffness and reduced relaxation of blood vessels, leading to elevated peripheral resistance and 

hypertension [49,50]. Dysregulation of the RAAS under chronic salt exposure raises angiotensin II levels, causing 

vasoconstriction and elevated systolic and diastolic blood pressure [51]. Salt also disrupts endothelial function, 

decreasing nitric oxide synthesis and raising oxidative stress, which exacerbates vascular dysfunction [52]. 

 

Fig. 4. Histological sections of the rat kidney after 4 weeks of treatment, show a section in the cortex of the control 

(A & B) rat with a regular structure. The marjoram and olive extracts-treated group (C & D) is more or less similar 

to the control group. The high salt-fed group (E &F) shows marked affection for the renal tubules through glomeruli 

congestion (blue arrow), signs of tubular cell lining vacuolation (black arrow), and intratubular hemorrhage. The 

marjoram and olive extracts + high salt-fed group (G & H) shows minimal affection for the renal tubules with 

almost normal glomeruli and tubules (X 200: H & E section A, C, E & G; X 400: H & E section B, D, F & H). 

Fig. 5. Histological sections of the rat liver after 4 weeks of treatment, show a section in the liver of the control (A & 

B) rat with the typical arrangement of the hepatocytes around the central veins. The marjoram and olive extracts-

treated group (C & D) is more or less similar to the control group. The high salt-fed group (E &F) shows marked 

affection for the hepatocytes, which appear with vacuolated cytoplasm (black arrowhead) and distorted arrangement. 

The marjoram and olive extracts + high salt-fed group (G & H) shows minimal affection for liver parenchyma with 

more or less standard structure (X 200: H & E section A, C, E & G; X 400: H & E section B, D, F & H). 
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Oxidative stress is a major result of high salt consumption, as indicated by increased plasma malondialdehyde 

(MDA) levels, a marker of LPO [53]. The production of reactive oxygen species (ROS), including superoxide 

anions and hydroxyl radicals, leads to damage in cellular structures like lipids, proteins, and DNA [53,54]. MDA 

reacts with cellular components to form advanced glycation end products (AGEs), which further lead to tissue 

dysfunction [54]. The mechanisms underlying increased ROS production include monocyte activation, NADPH 

oxidase pathway dysregulation, mitochondrial dysfunction, and inflammation [55]. Pro-inflammatory cytokines, 

including TNF-α, IL-1, IL-6, and IL-33, further amplify ROS production and tissue damage [56]. These processes 

also reduce activities of antioxidant enzyme, such as CAT and superoxide SOD, which impair the body’s ability to 

neutralize ROS [57,58]. Prolonged salt consumption leads to a suppression of antioxidant defense mechanisms, 

exacerbating oxidative damage over time [21,59]. 

Chronic salt intake stimulates the sympathetic nervous system, causing hypertension, which increases the risk of 

cardiovascular diseases such as hypertension, heart failure, stroke, and kidney disorder [60, 61]. It exerts detrimental 

effects on multiple organs. In the kidneys, it increases MDA levels, promoting inflammation, fibrosis, and 

glomerular damage [62]. This results in reduced filtration efficiency and elevated plasma urea and createnine 

concentrations [63,64]. Prolonged exposure to high salt levels leads to glomerulosclerosis and reduced renal blood 

flow, impairing waste elimination and increasing intra-glomerular pressure reducing the efficiency of the kidneys in 

filtering waste products [63,65]. In the liver, high salt intake disrupts hepatocyte integrity through oxidative stress, 

LPO, and mitochondrial impairment, resulting in vacuolation and impaired metabolic functions [66,67]. Hepatocyte 

damage is further aggravated by inflammation, and immune response, which interferes with the liver’s 

detoxification and protein synthesis abilities [68-70]. Chronic high salt intake disrupts cellular osmotic balance, 

causing hepatocyte swelling, membrane damage, and the release of AST and ALT enzymes [66,71]. It also induces 

mitochondrial damage and endoplasmic reticulum dysfunction, leading to protein misfolding, hepatocyte death, and 

enzyme leakage [72]. 

 

Fig. 6. Histological sections of the rat brain after 4 weeks of treatment, show a section in the cerebral cortex of the 

control (A & B) rat with a standard structure. The marjoram and olive extracts-treated group (C & D) is more or less 

similar to the control group. The high salt-fed group (E &F) shows marked affection for the brain cells with signs of 

cell atrophy and surrounded vacuolation (blue arrow). The marjoram and olive extracts + high salt-fed group (G & 

H) shows almost normal cerebral cortex nerve cells (X 200: H & E section A, C, E & G; X 400: H & E section B, D, 

F & H). 

Fig. 7. Histological sections of rat testis after 4 weeks of treatment, show a section in the testis of a control (A & B) 

rat with the standard structure of the seminiferous tubules with regular germinal epithelium arrangement. The 

marjoram and olive extracts-treated group (C & D) is more or less similar to the control group. The high salt-fed 

group (E &F) shows marked affection for the germinal epithelium through wide separation of the cells (black arrow) 

and diminished spermatids in the lumen (black arrowhead). The marjoram and olive extracts + high salt-fed group 



M.G. Shalan                                                                                                    Animal Physiology 2025;1:1-18 

9 

 

(G & H) shows minimal affection for the renal tubules with almost normal seminiferous tubules (X 200: H & E 

section A, C, E & G; X 400: H & E section B, D, F & H).  

The brain is also vulnerable to high salt exposure, with evidence of neuronal atrophy and vacuolation in brain 

cells due to hypernatremia-induced osmotic stress and inflammation [73,74]. Pro-inflammatory cytokines, such as 

IL-4, IL-6, and TNF-α, lead to neuronal damage and impaired hippocampal neurogenesis [75,76]. Oxidative stress 

impairs mitochondrial function and synaptic integrity, resulting in impairments in learning, memory, and executive 

tasks [77-81]. A high-salt diet also compromises the blood-brain barrier, allowing harmful substances to infiltrate 

the brain and exacerbate neurodegenerative processes [82-84]. Loss of structural integrity in brain cells can manifest 

deficits in learning, memory, and executive functions [85,86]. 

In the male reproductive system, high salt intake reduces testosterone levels and impairs sperm quality, including 

motility and morphology [21,87]. Oxidative stress in testicular tissue disrupts Leydig and Sertoli cell function, 

primary to reduced testosterone production and abnormal spermatogenesis [88-92]. Increased ROS production 

damages sperm DNA and plasma membranes, resulting in reduced fertility potential [93]. Sodium-induced osmotic 

stress disrupts the germinal epithelium, further impairing sperm development [94,95]. 

The administration of O. majorana and O. europaea extracts demonstrated significant protective effects against 

the detrimental impacts of high salt intake. These extracts, rich in flavonoids, polyphenols, and terpenoids, exhibited 

strong antioxidant and anti-inflammatory properties [96-98]. They reduced oxidative stress by neutralizing ROS and 

enhancing antioxidant enzyme activities, protecting tissues from LPO and structural damage [99-101]. Both extracts 

also restored metabolic and hormonal functions, improving nutrient absorption and utilization [102,103]. 

In the kidneys, these extracts reduced sodium-induced inflammation and fibrosis, preserving nephron integrity 

and enhancing waste elimination [104-110]. In the liver, they protected hepatocytes from LPO and oxidative stress, 

maintaining cellular architecture and metabolic functions [111-116]. Neuroprotective effects included reduced 

neuroinflammation, oxidative damage, and vacuolation, improving cognitive function and preserving neuronal 

integrity [117-121]. In the reproductive system, O. majorana restored testosterone levels and protected the germinal 

epithelium, while O. europaea improved sperm quality and reduced morphological abnormalities through its 

antioxidant properties [122-124]. 

Overall, O. majorana and O. europaea extracts offer promising therapeutic potential to counteract the negative 

impacts of chronic high salt intake on body weight, organ function, and oxidative stress. Additional studies is 

necessary to explain their molecular processes and assess their prolonged efficacy in mitigating salt-induced 

damage. 

5. Conclusion 

In conclusion, the investigation provides compelling evidence that high salt intake contributes to a range of 

physiological and biochemical alterations, including weight gain, hypertension, oxidative stress, organ damage, and 

impaired reproductive health. The study also highlights the potential of O. majorana and O. europaea extracts as 

therapeutic agents that can mitigate these harmful effects. By enhancing antioxidant defense mechanisms and 

reducing inflammation, these extracts offer a promising strategy to counteracting the harmful consequences of 

chronic salt consumption on various organs and systems. Additional research is required to clarify the basic 

molecular mechanisms and to confirm the extended-term efficacy of these extracts in preventing salt-induced 

damage. 
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