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Abstract 

Human health and nutrition are profoundly influenced by the combined effects of prebiotics and probiotics, which play essential roles in 

promoting digestive health and preventing disease. Prebiotics are non-digestible compounds that selectively stimulate the growth of beneficial 

gut bacteria, serving as a fuel source for probiotics. Probiotics, live microorganisms that confer health benefits, have demonstrated therapeutic 

potential in managing conditions such as irritable bowel syndrome, inflammatory bowel disease, and infections in the gut, respiratory system, 

and urogenital tract. Additionally, probiotics and the gut microbiota influence drug metabolism, affecting drug activation, toxicity, and 

efficacy. Examples include the sulfation of acetaminophen, dehydroxylation of caffeine, and glucuronidation, a process that enhances drug 

solubility and reduces toxicity. These interactions underscore the microbiota’s role in modulating metabolic and therapeutic processes. 

Despite their recognized benefits, systematic reviews on the types, mechanisms, and relationship of prebiotics and probiotics remain limited. 

This review provides a comprehensive analysis of their classifications, functional pathways, and synergistic effects in promoting gut health 

and optimizing metabolic processes. We offer insights into innovative applications and propose directions for future research to maximize 

their potential in health management. 
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1. Introduction  
The state of the gut microbiome has captured the 

attention of many scientists since the early 21st century. 

The intestinal flora is more numerous and complex than 

the symbiotic flora found in other areas of the human 

body. In the colon, there are roughly 3.9 × 1013 adult 

intestinal flora, which is slightly greater than the total 

number of human cells [1]. The human gut hosts 300 to 

500 various bacterial species. The microorganism living 

in the gut aids in the digestion of nutrients consumed by 

the host and participates in systemic physiological 

processes that are directly linked to human health. We 

categorized the gut flora into three functional groups 

based on their effect on individual health: probiotics, 

neutral microorganisms, and pathogenic bacteria [2]. The 

digestive system is crucial for good health; the human gut 

is often referred to as the body's "second brain.". Our 

body and gut microorganisms interact to give functional 

substances, such as vitamins, amino acids, short-chain 

fatty acids (SCFAs), and many essential substances 

required for a healthy life, as well as to aid our body 

metabolize toxic substances produced in the gut and help 

in the digestion and absorption of nutrients from food [3, 

4]. Preserving the equivalence of gut microorganisms is 

important because disruptions can have a negative impact 

on human health and can lead to conditions such as 

obesity, diabetes, irritable bowel syndrome, and colon 

cancer [5-7]. Therefore, outside factors are required to 

control the ratio of harmful bacteria to probiotics to 

maintain a healthy state of the gut flora. When consumed 

in adequate quantities, probiotic living microorganisms 

benefit host health by colonizing the body. Probiotics can 

alter the components of human gut bacteria and inhibit 

harmful bacteria from colonizing the intestine. 

Furthermore, probiotics improve the development of a 

strong intestinal mucosa layer, support the role of the 

intestinal barrier, and improve immunity [8, 9]. Probiotics 

have certain characteristics that demand deep 

understanding to improve their development and 

reproduction within the human body. The promotion of 

prebiotics is necessary for the growth and replication of 

probiotics. Prebiotics are substances, mostly 

polysaccharides, which the body is unable to process and 

absorb. They can aid the development or propagation of 

live microorganisms within the host [10]. Prebiotics 

influence metabolism, strengthen immunity control, resist 

various infections, improve absorption of minerals, and 

generally improve health [11]. Prebiotics can be found in 

many sources and are naturally referred to as 

polysaccharides, oligosaccharides, microalgae, and 

natural plants. Algae, fruit juice, peels, seeds, traditional 

Chinese medicine, and microorganisms containing 

polysaccharides, polyphenols, and polypeptide polymers 

are basic resources for arising prebiotics. previous 

research has concentrated on the advantages of probiotics 

and prebiotics for health [12, 13]. There are only some 

comprehensive studies on the different kinds of prebiotics 

and probiotics, their processes, and how they interact. As 
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a result, this work offers a thorough explanation of the 

widespread prebiotic types, the functional roots of the 

newly discovered ones, and how prebiotics function in the 

gut. Furthermore, probiotic types, roles, and uses are 

discussed, along with an explanation of the mechanism 

of essential probiotic impacts on the human body. 

Additionally, the mechanism of promotion between both 

prebiotics and probiotics is the focus of this article. This 

article will help in recognizing the relationship between 

probiotics and prebiotics and offer suggestions for 

improving human health, particularly the equilibrium of 

gut flora.  

 

What are the prebiotics 

  In 1995, the term "prebiotic" was initially used to refer 

to an indigestible component of the body. This is a 

substance that our body cannot metabolize, as it is 

resistant to gastric acid and is not broken down by 

enzymes found in mammals or absorbed by the 

gastrointestinal system. Prebiotics selectively activate 

some bacteria in the colon and change their development 

and activity to benefit the host by being fermented by the 

intestinal flora [14]. Under the assumption that they are 

beneficial to host health, In 2016, the International 

Scientific Association for Probiotics and Prebiotics 

defined prebiotics as substances that are selectively 

utilized and modified by the host's intestinal flora to 

promote gut health. Prebiotics are now defined to include 

non-carbohydrates, and their mode of action is no longer 

restricted to the gastrointestinal system or specific foods 

[15]. 

 

Prebiotic types 

Based on previous findings, prebiotics are oligosaccharide 

carbohydrates, primarily xylooligosaccharides (XOS), 

galacto-oligosaccharides (GOS), lactulose, inulin, and the 

fructose-oligosaccharides (FOS) that are generated from 

them [16-19]. However, recent research indicates that 

prebiotics are not just carbs; they can also be other non-

carbohydrate substances that fit the prebiotic profile, such 

as polyphenols that are separated from fruits such as 

blueberries and black raspberries [20]. New prebiotic 

species are constantly being generated as a result of 

ongoing process optimization for prebiotic synthesis, 

mostly consisting of polyphenols, polysaccharides, and 

polypeptide polymers, all have promising future research 

directions. 

Galacto-oligosaccharides 

  GOS are novel functional materials with natural 

characteristics that the body finds difficult to absorb and 

metabolize. GOS is composed of two to eight sugar units, 

one of which is terminal glucose; the remaining units are 

galactose and disaccharides, which have two galactose 

units each [21]. The distinct glycosidic connections 

between glucose and galactose or between the degree of 

polymerization (DP) and galactose molecules demonstrate 

the hybrid structure of GOS, which is an essential 

characteristic [22] A schematic model of lactose 

hydrolysis for GOS production from glucose and 

galactose by enzymes is shown in Figure 1. GOS is a very 

safe food additive, according to numerous studies that 

have assessed its toxicity and genotoxicity [22-26]. 

Several countries, such as America, Japan, and 

the European Union, have officially approved the GOS as 

safe [27]. One of the most popular and extensively 

utilized prebiotics, GOS, has a variety of beneficial 

qualities, including balancing the bacteria in the human 

intestines and supporting the growth of Bifidobacterium 

in the gut [27-28]. Currently, GOS is mostly found in 

newborn milk powder and formulas. When human milk is 

unavailable, a formula enhanced with GOS or a mixture 

with FOS can effectively substitute human milk and 

change the intestinal flora of newborns [10, 29]. After 

being given a newborn formula fortified with GOS, an 

investigation including 35 healthy full-term babies 

demonstrated a large improvement in Bifidobacterium 

abundance; however, there was a noticeable drop in 

microbial alpha diversity (OM55N). Furthermore, their 

patterns of fecal pH and SCFAs matched those of control 

infants, indicating that GOS promotes the proliferation of 

native Bifidobacterium and creates a microbiota 

resembling that of breastfed children [30]. The results of 

that experiment were in line with the findings of Fanaro et 

al.[31], who reported several studies including more than 

400 term and preterm newborns in which prebiotic mixes 

(long-chain FOS and short-chain GOS) effectively 

improve the development of lactic acid bacteria (LAB) 

and Bifidobacterium, reduced the growth of pathogens 

and improved the stool characteristics of the experimental 

individuals who drank infant formula containing GOS in 

line with those of breastfed babies.  

 

Effects of galacto-oligosaccharides on skin 

  Prebiotic consumption helps treat allergic skin 

conditions in addition to the stomach [32]. Research has 

demonstrated that oral Lactobacillus treatment maintains 

immunological homeostasis in the skin during UV 

exposure and improves atopic dermatitis in clinical 

studies [33]. In hairless mice, phenols given by intestinal 

microbes gather in the skin through circulation and impair 

keratinocyte development [34]. GOS has been claimed to 

improve skin health by lowering phenol synthesis in the 

gut microbiota. GOS consumption prevents women from 

losing keratin and water owing to phenolic compounds 

[35]. Prebiotic use decreases the severity of allergic skin 

conditions. Although atopic dermatitis (AD) in healthy 

newborns was avoided by a combination of GOS in a 

randomized controlled study [36]. GOS also stimulates 

the synthesis of IL-10 and suppresses the production of 

IL-17, which helps in preventing atopic dermatitis in mice 

[37]. Moreover, GOS supplementation decreased total 

immunoglobulin activity, regulated allergic reactions, and 

reduced IgE levels in high-risk newborns [38].  

 

 



CORRELATION BETWEEN PROBIOTIC AND PREBIOTIC: A SYSTEMATIC REVIEW....... 

__________________________________________________________________________________________________________________ 

________________________________________________ 

Egypt. J. Chem. 67, SI: M. R. Mahran (2024) 

2229 

Galacto-oligosaccharides and calcium absorption 

  GOS has been found to positively affect bone 

constitution and configuration in both human body and 

animal body studies [39]. Numerous processes have been 

suggested: (1) bacterial fermentation of acidic metabolites 

in the colon lowers the intestine's local pH, which 

increases calcium ion concentration in the luminal phase 

and increases passive calcium absorption; (2) SCFAs alter 

calcium's charge, activate calcium channels, and improve 

calcium absorption [40]. Postmenopausal women have 

also been shown to benefit from GOS's favourable effects 

of GOS on calcium absorption and bone mineralization 

[41]. 

Figure 1: Schematic model of lactose hydrolysis and GOS 

synthesis. 

 

Relieve lactose intolerance and prevent constipation 

  Protecting the structure of the intestinal barrier, GOS is 

crucial in reducing the symptoms of lactose intolerance 

and minimizing constipation. According to a clinical trial 

study, using GOS for three weeks helped constipate 

women's symptoms dramatically become better [42]. 

Prebiotics encourage the capability of the gut to bind 

water. Stools become softer as a result of these motions, 

which also increase stool weight and frequency and 

shorten transit times. The frequency of stools increases 

with varying amounts of GOS in baby formulas [43]. 

Children taking prebiotic supplements had softer feces 

and consistency similar to that of breastfed children when 

compared to those receiving regular formula [44-45]. 

 

Reduce the risk of cancer 

  A study found that administering 10% GOS to a colon 

cancer mouse model, following a 20-week examination of 

the mouse colon tissue significantly reduced colon 

tumors. Metagenomic sequencing revealed an increase in 

advantageous bacteria and a reduction in pro-

inflammatory ones [46]. GOS supplementation also 

increased IL-10 and IL-1β in older individuals compared 

to placebo [47]. GOS consumption can help reduce 

cholesterol levels, indicating potential benefits for 

managing hypercholesterolemia [48]. 

  

Inulin-type fructan 

 Prebiotics can also include common carbohydrates such 

as inulin-type fructans, in addition to GOS. Polymers 

known as inulin-type fructans are formed when fructose is 

bound to the terminal α-linked glucose through a β-2,1 

bond. With a DP of 2–60, inulin is the longer chain, and 

oligofructose/FOS is the shorter chain with a DP of 2–8 

[49]. Numerous studies have demonstrated the ability of 

inulin-type fructans to stimulate the growth of LAB, 

cyanobacteria, and bifidobacteria [50]. Inulin, a water-

soluble storage polysaccharide, is a non-digestible 

carbohydrate (fructan-type) [51-52].  For generations, 

humans have included inulin in their daily diets. It is 

present in approximately 36,000 plant species, with 

chicory plant roots as the most common source [53-54]. A 

linear chain of β-2,1-linked d-fructofuranose molecules 

makes up inulin, and at the reducing end, a glucose 

residue forms a sucrose-type connection, which makes it 

difficult to absorb and metabolize inulin because of the 

existence of β-()-D-frutosyl fructose bonds between the 

fructose unit and the isomeric carbon. The gut microbe of 

the human large intestine may ferment inulin [55-56]. 

Although it only provides about one-third of the energy 

and is much less sweet than sucrose, inulin is a 

multipurpose ingredient that is widely used in food 

processing for the following main purposes: (i) to replace 

fats or carbohydrates to give food a good flavor [57-58]; 

(ii) to promote the absorption of minerals (e.g., calcium, 

magnesium, and iron [59-60]; (iii) to relieve constipation, 

prevent gastrointestinal diseases, and stimulate the 

immune system [61]; and (iv) as a prebiotic with a 

bifidogenic effect, it proficiently encourages the 

development and metabolism of Lactobacillus and 

Bifidobacterium in the colon while also boosting the 

activity of gut microbes [53, 60]. Furthermore, following 

inulin administration, the relative abundances of 

Anaerostipes, Faecalibacterium, and Lactobacillus 

increased, whereas that of Bacteroides decreased [61]. 

Many common plants, including wheat, onions, bananas, 

and garlic, contain fructans of the other well-known 

inulin-type fructans of sulfur (FOS). They are 

indigestible, with low-calorie carbohydrates with a DP of 

less than 10, and the food industry frequently uses them 

as prebiotics [62-65]. The numerous positive 

physiological effects of fructooligosaccharides (FOS) 

include reduced carcinogenicity, enhanced intestinal  

mineral absorption, and decreased levels of 

triacylglycerols, phospholipids, and serum fat [66]. Our 

attention was on the prebiotic activity of fructo-

oligosaccharides (FOS) in gastrointestinal digestion. FOS 

helps the body's intestinal flora, eases constipation, lowers 

the risk of heart disease and some malignancies, improves 

cholesterol levels in hyperlipidemia, prevents the 

synthesis of putrefactive chemicals in the gut, and 

promotes healthier digestive system function [66-69]. 

 

Emerging prebiotics 

  Improvements in machinery have led to advanced 

prebiotic preparation techniques. Furthermore, a number 

of novel prebiotic species have been created, the most 

notable of which are polysaccharides, polyphenols, and 

polypeptide polymers [70]. Algae, fruit juices, fruits and 

their waste, herbal remedies, and various microorganisms 

are the main sources of emerging prebiotics. Although we 

don’t have a comprehensive knowledge of these 

prebiotics as advanced as that of FOS and GOS, their 

effects permit further investigation and appear to have a 
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bright future. Table 1 summarizes the benefits of 

polyphenols, polysaccharides, and peptide chains in 

prebiotics in recent years. 

 

Table 1: summarizes the benefits of polyphenols, polysaccharides, and peptide chains in prebiotics in recent years. 

 

Mechanism of action of prebiotics 
Prebiotics can generally withstand digestion in the small 

intestine by remaining in the gastrointestinal system due 

to the absence of enzymes in the human gut that break 

down their polymer bonds. Prebiotics are subsequently 

carried by the human body intact to the large intestine, 

where the gut flora metabolizes them down and 

selectively ferments them to produce specific secondary 

metabolites. These substances are then absorbed by the 

gut epithelium or transferred to the liver through the 

portal vein. These metabolites can have positive effects 

on host physiological processes, including immune 

regulation, pathogen resistance, improved gut barrier 

structure, improved mineral gut absorption, and decreased 

blood lipid levels  [27,79,80]. Beneficial bacteria in the 

colon metabolize the most prevalent SCFAs, such as 

acetate, and propionate, butyrate, which are beneficial for 

preserving systemic and intestinal health [81]. 

Additionally, one particular benefit of prebiotics is that 

they support the growth of target bacteria. By protecting 

or encouraging the creation of advantageous fermentation 

products, they can encourage the proliferation of 

beneficial flora to compete with other species following 

the consumption of particular prebiotics (e.g., inulin, 

FOS, and GOS) [82,83]. Furthermore, prebiotics provide 

defence to different parts of the body, Figure 2 

demonstrates the prebiotic effect on the human body. 

 
 

Figure 2: prebiotics offer protection to different body 

organs. 

 

The role of probiotics  
  Because they directly carry cytokines to target locations 

within the host, lactic acid bacteria (LAB) and 

Escherichia coli are commonly utilized to treat 

constipation, cancer of the colon, and inflammatory bowel 

disease [84-86]. Researchers have found that non-

pathogen apoptosis induction within carcinoma cells 

significantly inhibits cancer of the colon (HGC-27) and 

colon cancerous cells (Caco-2, DLD-1, and HT-29). This 

protective effect is mediated by the actions of the 

Lactobacillus rhamnosus, Bifidobacterium latis, and 

Escherichia coli K-12 strains [87]. Through the 

interaction of lactic acid bacteria with human immune-

competent cells, which alters the production of cytokines 

and subsequent impacts on the immune system, probiotics 

indirectly increase and improve immunity [88]. When 

probiotics lactobacilli are administered to treat minor 

gingival inflammation, the quantity of Interleukin-8 

Prebiotic Component Source Function References 

Polyphenol Blueberry polyphenol 

extract 

Blueberry Reduce weight and normalize lipid metabolism [71] 

 Wine grape seed flour Grape seed Gut permeability is enhanced, and adipocyte gene 
expression is altered to inhibit high-fat-induced 

obesity and 

inflammation. 

[72] 

 Orange albedo Orange Stimulates the growth, reproduction, and 
metabolism of Lactobacillus acidophilus 

and Lactobacillus animalis 

[73] 

 Catechin and punicalagin Fermented 
pomegranate juice 

Increases antioxidant capacity 
and improves the survival of lactic acid bacteria 

[74] 

Polypeptide 

polymers 

Poly-gamma-glutamate 

(PGA) 

Bacillus 

fermentation 

Increases the abundance of Lactobacillus and 

reduces the abundance of Clostridium, helping to 
regulate the 

intestinal microbiota. 

[75] 

Polysaccharides Algae polysaccharides Algae Improves the activity of some beneficial flora and 

stimulates the production of functional 
metabolites in the intestinal 

microbiota. 

[76] 

 Lotus seed-resistant 
starch (LRS3-20%) 

Lotus seed Shows high probiotic activity against 
Bifidobacterium and 

Lactobacillus acidophilus. 

[77] 

 Longan pulp 

polysaccharides 

Logan Promotes the growth of 

Lactobacillus plantarum, Lactobacillus 
bulgaricus and 

[78] 

   Lactobacillus fermentum  
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produced in the gingival crevicular fluid decreases 

significantly [89]. Lactobacillus species immunomodulate 

the host immune system. The decreased expression of 

osteoclastogenic factors (IL-6, IL-17, TNF-α, and 

RANKL) and a higher level of anti-osteoclastogenic 

factors are caused by Lactobacillus acidophilus. By 

modifying the balance of Treg-Th17 cells, Lactobacillus 

acidophilus also exerts therapeutic and osteoprotective 

impacts on bone wellness in postmenopausal osteoporosis 

and prevents diabetes mellitus [90]. Prebiotics can 

influence not only the gastrointestinal tract but also 

organs in other parts of the body. [91] Figure 3 

demonstrates how probiotics such as Lactobacillus 

rhamnoses, Bifidobacterium, and Bacteroides dorei work 

to combat various forms of diabetes mellitus. 

Hypercalcemia can cause significant impairments to 

kidney function and is an elevated risk for the 

development of renal stones. The main procedure was 

oxalate production. Lactobacilli are supplemented to treat 

this condition, perhaps by lowering the risk of urolithiasis 

and preventing the production of stones. Lactobacillus 

casei HY2743 and L. casei HY7201 may stop oxalate 

formation [92]. The mechanism by which Lactobacillus 

species work against oxalate stones is illustrated in Figure 

4. 

 
Figure 3: demonstrates how probiotics such as 

Lactobacillus rhamnoses, Bifidobacterium, and 

Bacteroides dorei work to combat various forms of 

diabetes mellitus. 

 
Figure 4: The mechanism by which Lactobacillus species 

work against oxalate stones. 

 

 

Summary of the various probiotics 

  The idea of conventional probiotics originated with 

studies carried out in 1907 by Elie Metchnikoff, who 

found that older Bulgarians who regularly consumed 

fermented dairy products high in lactobacilli (LAB), like 

yogurt, lived longer and were healthier. According to 

Metchnikoff, natural gut microbiota may benefit from the 

presence of bacteria. Since then, probiotics have come to 

be associated with microorganisms that enhance host 

health. The meaning of probiotics has changed 

significantly throughout time [93]. Probiotics are defined 

by the World Health Organization and the Food and 

Agriculture Organization of the United Nations as live 

bacterial strains that have undergone rigorous screening. 

and can have positive effects on a person's health when 

consumed in the right way [94]. Probiotics offer a wide 

range of beneficial impacts on human health that have 

been shown., such as improved blood lipid and blood 

sugar metabolism, improved food digestion and 

absorption, immune system regulation, preservation of 

microflora balance, treatment and alleviation of lactose 

intolerance, and regulation of intestinal health [95–97]. 

For probiotics to be useful to health, they need to be able 

to multiply and survive in food products in large enough 

quantities. until they arrive at their final location, the gut. 

Thus, when selecting probiotics, it's crucial to take into 

account their capacity to stick to intestinal mucosa and 

intestinal epithelial cells [98]. Probiotics benefit  

 the body through four main mechanisms of action: They 

strengthen the gut barrier and stop any infections from 

spreading, regulate the immune system, and create 

neurotransmitters that have the ability to alter the host 

body [99]. Oelschlaeger [100], discovered that probiotics 

have the ability to directly influence or interact with other 

microbial products, host products, or dietary items by 

altering the host immune system. The inclusion of 

probiotic bacteria is necessary for the health benefits of 

probiotics to occur, and the components that a probiotic 

secretes and its metabolic characteristics determine how 

well it behaves. or its surface. Furthermore, whole 

substances like DNA and peptidoglycan may be essential 

to probiotic efficacy. It should be emphasized that no 

single probiotic strain can provide any of the benefits 

mentioned above. Probiotics can boost host immunity in a 

number of ways, which directly impact immune cells and 

other host cells, as shown by the mechanisms of action of 

probiotics in Figure 5. 

 
Figure 5: shows the mechanism of action of probiotics.  

 

Types of probiotics 

Probiotics come in an extensive variety of species and can 

be generically categorized  into three primary groups: 

Bifidobacteria, Lactobacilli, and others. Since the LAB 

group is the most represented probiotic, This category is 

the subject of current studies on probiotic organisms. In 

the study of human intestinal microorganisms, which are 

directly linked to human health, lactobacillus is a crucial 

probiotic. It helps enhance intestinal microecology by 

preventing the growth of pathogenic microorganisms 
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while also synthesizing vital vitamins and amino acids 

and facilitating the absorption of minerals [101]. 

Furthermore, SCFAs, a significant Lactobacillus 

metabolite, support Lactobacillus growth and 

reproduction, which lowers the amount of Escherichia 

coli in the intestine by maintaining the colon's normal 

physiological function and the structure of the colonic 

epithelium [102]. Lactobacillus has a significant 

beneficial impact on host development, especially by 

enhancing body weight and size. For example, 

Lactobacillus plantarum (which is termed as 

Lactiplantibacillus plantarum based on recent microbial 

taxonomy) ZJUFT17 (T17), which was extracted from 

traditional Chinese sour dough, has the potential to 

function as a probiotic with anti-obesity or weight-loss 

characteristics. It may also enhance insulin resistance and 

systemic inflammation, which are mediated by gut 

microbiota [103]. More specifically, when mice were 

given 24 x 108 CFU of T17 for 10 weeks, the weight 

development, calorie consumption, and blood lipid levels 

of mice fed a high-fat diet were suppressed. Researchers 

investigated the use of soymilk fermented with 

Lactobacillus plantarum HFY01 for weight reduction and 

lipid lowering in HFD-induced obese mice, and the 

results were similar [104]. In obese mice, Lactobacillus 

plantarum HFY01 fermented soymilk dramatically 

inhibited obesity generated by a high-fat diet and reduced 

body fat percentage and liver index, suggesting that it had 

good utilization potential. In order to prevent pathogen 

invasion and preserve or enhance the microbial balance in 

the host environment, lactobacillus affects microbial 

interventions. Synergistic interactions between LAB and 

endogenous intestinal flora are vital for maintaining 

microbial balance [105]. For example, the LAB in sour 

dough can be combined with animal or plant-based 

ingredients. The combination has good flavor and 

nutritional value, and its functional qualities can be 

improved due to its various methods of action and perfect 

symbiotic activities [106]. LAB generate chemicals 

having antimicrobial properties in the defense against 

pathogens by improving the function of the intestine's 

epithelial barrier, in addition to their synergistic action 

with intestinal flora [107,108]. The name 

"bifidobacterium" comes from this species of gram-

positive, specialized anaerobic bacteria, which is 

frequently bifurcated at the end [109]. It is a kind of 

physiological bacteria that is essential to human health 

and is present in the body. In order to maintain intestinal 

health, In the center and terminal parts of the small and 

large intestines, bifidobacterium can multiply and 

metabolize, adapt to anaerobic intestinal life, and exude 

bifidogenic substances that have probiotic benefits 

[110,111]. There are now 32 types and 9 subtypes of 

Bifidobacterium; 14 of them were isolated from human 

tissue in the past [112]. The physiological functions of 

Bifidobacterium are as follows: (i) Like other LAB, 

Bifidobacterium has the ability to inhibit the growth of 

harmful bacteria., thus maintaining the balance of normal 

intestinal bacterial flora and inhibiting pro-inflammatory 

cytokines [113,114]. Moreover, related studies have 

shown that Bifidobacterium can guard against intestinal 

barrier disruption in vivo as well as in vitro. This 

protective impact is linked to improved intestinal tight 

junction integrity, vimentin release, and suppression of 

pro-inflammatory cytokine secretion [115]. (ii) 

Bifidobacterium bifidum synthesizes vitamins and amino 

acids in the intestine, increases calcium bioavailability, 

and is thought to improve bone health [116,117]. (iii) 

Bifidobacterium bifidum has antitumor effects. 

Researchers successfully produced a strain of 

Bifidobacterium longum that secretes C-CPE-PE23 and 

grows and localizes specifically in malignancies. Without 

causing major side effects like weight loss or damage to 

the liver or kidneys, the isolated Bifidobacteria were 

specifically found in the tumors of mice with breast 

cancer. The experimental results also suggested that 

Bifidobacteria may be unique carriers of anti-cancer 

proteins against malignant tumors [118].  

 

Additional species of bacteria 

  In addition to Lactobacillus and Bifidobacterium, gram-

positive parthenococci such as Enterococcus are 

frequently used in the food industry. One of the main 

benefits of probiotics is the capacity of Enterococcus 

strains to coexist, compete, and adhere to the surrounding 

cells in the intestine. In addition, Enterococcus is highly 

resistant to a wide range of pH and temperature, which is 

attributed to its strong bacteriocin production capacity and 

can be used as a natural antibacterial substance used in 

the food sector [119]. For instance, its probiotic function 

has been well investigated, and it is frequently used as a 

supplement to antibiotic therapy to treat gastrointestinal 

conditions such as diarrhea symptoms. Moreover, 

Saccharomyces boulardii has a greater capacity for 

survival during digestion than other probiotics, which aids 

in preserving the harmony of the natural flora in human 

intestines. It also has immunomodulatory effects that fine-

tune immunological pathways during pathogenic 

infections or chronic diseases [120-122]. Probiotics like 

Bacillus spp., Streptococcus spp., and E. coli are 

widespread, with their functions summarized in Table 2. 

 

Mechanism of action of probiotics 

  Increasing the gut mucosa's barrier efficacy: Human 

health is greatly dependent on the gut, which is the body's 

largest immune organ. The lamina propria of the intestinal 

epithelium, extracellular substances such as mucus, and 

cellular components make up the heterogeneous body 

known as the intestinal barrier [125]. Intestinal bacteria 

may be physically blocked by the distinct cell types found 

in the layer of mucus and intestinal epithelium. 

Enterocytes, for instance, take up chemicals through the 

intestinal lumen. In response to intestinal bacteria, paneth 

cells can synthesis and exude antimicrobial peptides. 

Mucus is secreted by  

Saccharomyces cerevisiae cells. Intestinal endocrine cells 

make up the intestinal epithelium [96, 132, 133]. The 

intestinal epithelium mucus layer's primary functions are 

to assist food transit, prevent pathogen adherence into the 

lamina propria, and provide a protective shield between 

you and the threatening luminal environment [134]. 

Probiotics interact with intestinal microbes after they get 

to the colon. The intestinal mucosa is the initial physical 

barrier that protects the intestine from toxic compounds in 

the intestinal lumen. Once in the colon, probiotics interact 

with bacteria to strengthen their chemical, mechanical, 
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biological, and immunological defenses [135]. Probiotics 

collaborate with intestinal cells to maintain the structural 

integrity of the mucosal lining when they enter the 

intestine and the regular operation of the intestinal 

mechanical barrier, in addition to encouraging mucous 

production, restoring intestinal permeability, and 

promoting mucosal regeneration [136].  

 

 

Table 2: the functions and applications of some common probiotics. 

 

 

Antibiotics, for instance, have been shown in certain 

studies to disturb the usual flora in the gut and to cause 

damage to the intestinal barrier. However, by raising 

intestinal secretory IgA (SIgA) secretion and reducing 

inflammation, the water-soluble polysaccharide from 

Fagopyrum esculentum Moench bee pollen can mitigate 

antibiotic-induced microbiota dysbiosis and enhance 

intestinal barrier integrity [137]. Boosting the immune 

system: The function of many immune cells in the body, 

including as monocytes, macrophages, T cells, B cells, 

and natural killer (NK) cells, can be impacted either 

directly or indirectly by some probiotics in the gut. These 

cells serve as immune regulators and control 

inflammation; some of these cells are of the 

immunostimulatory type [9,138,139]. By attacking cancer 

cells, stimulating the synthesis of IL-12, which activates 

NK cells and develops Th1 cells, and secret various 

cytokines in a dose-dependent and strain-specific way, 

these probiotics improve non-specific cellular immune 

responses. Additionally, they combat allergies by 

maintaining the proper ratio of Th1 to Th2 [140]. Yogurt, 

for instance, can be used to supply the necessary 

probiotics to boost the immune response of the system 

and enhance the amount of IgA+ cells and cells that 

produce cytokine in the intestinal effector sites, thus 

improving the intestinal mucosal immune system [141]. 

When taken for a brief period, probiotic supplements 

boost the immune system. In one investigation, probiotics 

were found to increase the body's polymorphonuclear NK 

cells' ability to phagocytose and destroy tumors, as well 

as enhance cellular immunity in elderly individuals who 

take the recommended dosages of probiotic supplements 

[142]. Through direct or indirect stimulation, probiotics 

can generally enhance the immune cells' ability to 

function in the gut. By modifying microbial metabolism, 

certain probiotics (i.e., immunomodulatory probiotics) 

can also control the activity of enzymes [143]. When the 

host comes into contact with any foreign antigen, the 

intestinal mucosa's immune system starts an 

immunological response, partially through an adaptive 

immune response and partially by generating 

inflammation to preserve homeostasis in the body. The 

generation of IL-10 and Treg cells is a characteristic of 

immunomodulatory probiotics, which reduce symptoms 

including inflammation and allergies [144, 145]. It's also 

been demonstrated that short-term probiotic consumption 

can improve the body's cellular immunological function. 

It has been demonstrated that probiotics enhance the 

function of the intestinal barrier via activating B cells and 

altering cytokine production, thus triggering an adaptive 

response in the host body. In the presence of probiotics, 

Strain Function Application References 

Bifidobacteria The exopolysaccharides produced have 

antioxidant, anticancer, antibacterial, and 

immunological activities 

Used as a starter culture 

for fermented foods 

[123] 

Lactobacillus casei Prevention or treatment of diseases that 

disrupt the intestinal microbiota 

 

 Dairy fermentation 

[124] 

Bifidobacterium 

adolescentis 

It modifies the microbiota of the colon and 

cecum and decreases inflammation in the 

brain and spleen. 

         

Medicine and clinic 

[125] 

Lactobacillus 

acidophilus 

Reduces cytokines to relieve inflammatory 

bowel disease, alleviate cancer, modulate 

immunity, lower cholesterol and relieve 

diarrhea 

 

 

Medicine and clinic 

[126] 

Bacillus coagulans It can control the balance of bacteria in the 

intestines, promote the metabolism and 

utilization of nutrients, improve immunity, 

and has the characteristics of high 

temperature resistance, acid resistance, and 

bile resistance 

 

Medicine and animal 

husbandry 

[127,128] 

Bacillus subtilis Improved growth, nutrition, immunity and 

disease resistance of aquatic species 

     Aquaculture [129] 

 

Lactobacillus 

rhamnosus 

Has the ability to fight against pathogenic 

bacteria and fungi in the genitourinary 

tract, preventing the recurrence of urinary 

tract infections in postmenopausal women 

Fermentation of milk, 

millet, fruit juice and 

Medicine 

[130] 

 

Lactococcus lactis Aid in developing the consistency and 

flavor profile of fermented products, and 

breaks down metabolic amino acids to 

produce volatile flavor substances 

Cheese fermentation [131] 
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monocytes and NK cells collaborate to reduce and 

regulate the secretion of inflammatory cytokines by 

secreting IL-10, which causes stem cells to become 

regulatory differentiated and resistant to the cytotoxicity 

of NK cells [146]. 

 

 

The impact of probiotics on certain clinical illnesses 

 

Pouchitis 

   In order to treat ulcerative colitis surgically and familial 

adenomatous polyposis, proctocolectomy The most 

effective option is to use ileal pouch-anal anastomosis 

(IPAA), which removes nearly all of the colorectal 

mucosa while preserving intestinal consistency and 

sphincter activity. Permanent ileostomy following a 

proctocolectomy is not advised. Pouchitis, either chronic 

or acute inflammation of the ileal reservoir, is the most 

commonly documented long-term side effect of IPAA. 

Pouchitis is indicated by higher episodes of 

hematochezia, pain in the abdomen, fever, and 

extraintestinal signs associated with inflammatory bowel 

diseases. Less than 1% of patients undergoing 

colectomies to cure familial polyposis experience 

pouchitis; however, 20% of patients with ulcerative colitis 

experience it in the year after IPAA development, while 

50% of patients do so five years later. Numerous 

investigations on the microbiota of individuals with 

pouchitis have revealed distinct patterns, such as an 

increase in enteric and Fusobacteria species, a decrease in 

Faecalibacterium and Streptococcus species, and an 

increase in Clostridium perfringens in the inflamed pouch 

[147–150]. These findings imply that bacteria play a 

significant role in the pathophysiology of pouchitis, as 

does the high rate of response to several medicines. This 

supports the current treatment trials that aim to utilize 

probiotics to alter the microbiome. 

 

Ulcerative colitis 

  Probiotic supplementation is not well-supported in 

ulcerative colitis patients [151–156]. Although some 

bacterial species have shown promising for the 

management of ulcerative colitis, Systematic reviews 

have yielded inconsistent results on the use of probiotics 

for remission induction and maintenance [157-160]. 

These findings may be influenced by publication bias 

because to the small number of patients included in these 

studies and the possible risks of probiotics. The gram-

positive, anaerobic bacterium Bifidobacterium lactis is 

present in the majority of animal intestines. B. lactis 

attaches heavily to the epithelial mucosa and is a 

fundamental component of optimal gut microbiota [161]. 

In terms of B. lactis's effectiveness against ulcerative 

colitis (UC), mice treated with B. lactis strains A6, BB12, 

and 5,764 for colitis brought on by DSS or TNBS shown 

notable improvements in immunomodulation and 

intestinal barrier function [162-164].  

 

Crohn disease 

   The idea of treating Crohn's disease with a symbiotic 

approach originated from a study that demonstrated better 

clinical outcomes if a probiotic (B. longum) and prebiotic 

were combined [165]. However, preliminary results with 

other medicines are not encouraging. Probiotics are 

generally thought to be benign, however toxicity could 

occur if immunodeficiency and enhanced mucosal 

permeability are present. This was demonstrated by the 

sepsis brought on by lactobacillus that developed in an 

HIV-positive Crohn's disease patient following the 

consumption of homemade yogurt [166].  

 

Infectious diarrhea  

  Probiotic use is not advised for children who may 

develop an acute infectious diarrheal disease. For people 

suffering from acute infectious gastroenteritis, probiotics 

may or may not be beneficial. Despite the prevalence of 

study heterogeneity, previous systematic reviews have 

shown that probiotic use can shorten the duration of 

infectious diarrhea [158,167–172]. When administered in 

conjunction with rehydration therapy, probiotics appear to 

be safe and help reduce the incidence and duration of 

acute infectious diarrhea. Further research is required to 

guide the usage of specific probiotic regimens in specific 

patient populations [171]. 

 

Constipation 

  Probiotics, either alone or in combination, are not 

recommended for children or adults with functional 

constipation as there is a lack of evidence [173,174]. 

Numerous small, randomized, placebo-controlled trials 

have shown that probiotics, such as Bifidobacterium lactis 

DN-173 010, Bifidobacterium lactis BB12, Lactobacillus 

casei Shirota, L. reuteri DSM 19738, and E. coli Nissle 

1917, improve intestinal transit time, frequency, and 

consistency for those with chronic constipation lacking 

IBS and in healthy individuals who typically have 

infrequent stools [175–179].  

 

Irritable bowel syndrome 

   The beneficial effects of probiotics for treating irritable 

bowel syndrome (IBS) are still not adequately supported 

by evidence because IBS is a pretty varied condition and 

the agents investigated ranged substantially. [151] 

Nonviable Bifidobacterium bifidum HI-MIMBb75 was 

given daily to 443 IBS patients for eight weeks. Of the 

participants, 34 percent reported at least a 30% reduction 

in stomach pain and a decrease in activity in relation to 

other symptoms of IBS in at least four of the eight weeks 

of treatment, compared to 19% of those who received a 

placebo (risk ratio 1.7, 95% CI 1.3-2.4). This is what a 

multicenter controlled trial carried out in Germany found 

[180]. 

 

Lactose intolerance 

  Patients with intolerance to lactose may benefit from 

probiotics that contain lactase-producing microbes 

because they help break down lactose. Numerous studies 

have assessed the advantages of different probiotics for 

lactose intolerant people [181,97]. Although the effects of 

the various strains varied, a comprehensive examination 

of 15 controlled studies revealed that probiotics were 

typically advantageous. Nonetheless, more research may 

be necessary on a few strains that appeared to be very 

beneficial [97]. After an in vivo lactose challenge, a trial 

of a lactose-fermenting strain of Lactobacillus acidophilus 
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revealed fewer symptoms, setting the stage for more in-

depth investigation [182]. 

 

Pancreatitis 

  A multispecies probiotic mixture was used in a 

multicenter, double-blind, placebo-controlled randomized 

experiment that indicated probiotics increased mortality 

from mesenteric ischemia in pancreatitis patients but did 

not lower the risk of infection complications [183]. For 

this reason, probiotics are not advised in cases of a severe 

case of acute pancreatitis. 

 

Hypersensitivity reaction 

  Atopic dermatitis (AD) is a persistent inflammatory skin 

condition marked by flare-ups of itchy eczema and 

recurrent allergic and immunological reactions. The 

harmless and advantageous effects of consuming a 

probiotic preparation containing a combination of 

Lactobacillus rhamnosus ŁOCK 0900, Lactobacillus 

rhamnosus ŁOCK 0908, and Lactobacillus casei ŁOCK 

0918 strains are demonstrated by a multicenter 

randomized, double-blind, placebo-controlled 

investigation involving children with AD and cow's milk 

protein (CMP) allergy, which included children who were 

less than two years old. As determined by the assessment 

of atopic dermatitis (SCORAD index), the probiotic 

combination introduced to the children's nutrition for 

three months considerably decreased the severity of AD 

symptoms [184]. 

 

The Antiviral Potential of Bacterial Levan Against 

COVID-19 

This study is a new attempt to test how different types of 

levan, extracted from certain bacteria, can stop the hCoV-

19/Egypt/NRC-03/2020 strain. The results showed that 

levan is a strong antiviral and protective agent against 

COVID-19. The research also looked at the link between 

the probiotic effects of two bacterial honey isolates and 

the antiviral abilities of their levan products [185]. 

 

Probiotic impact on drug function 

The gut microbiota may have direct or indirect effects on 

drug metabolism, which could have an impact on toxicity 

and efficacy [186]. This demonstrated that the microbiota 

may operate as a mediator in the drug activation process 

[187]. The sulfation of acetaminophen, a dehydroxylation 

of caffeine, as well as L-dopa, the demethylation of 

methamphetamine, the dehalogenation of salicylic acid to 

form aspirin, and the acetylation/diacylation of salicylic 

acid, Other noteworthy medication metabolisms that have 

been linked to microbiota include Cid. One well-known 

example of how the microbiota might help reduce the 

toxicity of drugs is glucuronidation, a conjugate 

hydrolysis reaction in which UDP-

glucuronosyltransferase attaches glucuronic acid to a 

substrate to form hydrophilic and negatively charged 

glucuronides [188]. The enzyme β-glucuronidase, which 

may deconjugate endogenous chemicals and xenobiotics 

which have already been detoxified via the 

glucuronidation pathway, is produced by a wide variety of 

anaerobic bacteria [189]. In addition to the enterohepatic 

recirculation of hormones, other drugs, and toxins, this 

deconjugation can stimulate the formation of local 

carcinogens. Consequently, an excess of β-glucuronidases 

may increase the risk of colon cancer. β-glucuronidase 

activity, on the other hand, requires a certain amount to 

ensure enterohepatic recirculation of vital substances, 

such as estrogen, thyroid hormone, or vitamin D. 

Probiotics may lessen the efficacy of medicinal products, 

thereby compromising the safety of patients. The field of 

pharmacomicrobiomics, or toxicity-microbiomics, is a 

relatively new field of research that looks at how 

xenobiotic medications interact with microorganisms 

[190]. The researchers' examples indicate that 

understanding the connections between diet, drug 

metabolism and response, and microbiome diversity and 

how these may affect customized treatment in the future 

may be crucial [191].  

 

Conclusion 

  Prebiotics and probiotics have shown remarkable 

potential in positively impacting human health, 

particularly in maintaining the balance of the gut 

microbiota. By modulating gut microbiota composition, 

they contribute to disease prevention, support immune 

function, and promote overall well-being. Prebiotics 

stimulate the growth of beneficial gut bacteria, while 

probiotics introduce live microorganisms that offer 

therapeutic benefits, such as preventing gastrointestinal 

disorders, managing inflammatory diseases, and 

improving digestion. These substances also play a role in 

the production of beneficial compounds like short-chain 

fatty acids (SCFAs) and antimicrobial peptides, which 

further contribute to health. Their applications extend 

beyond healthcare, with potential uses in the food, 

pharmaceutical, and cosmetic industries. However, 

despite their promising effects, the efficacy of probiotics 

remains difficult to assess conclusively. This is due to 

several factors, including small sample sizes, inconsistent 

probiotic formulations, and variations in experimental 

design across studies. For instance, while some probiotic 

strains have been linked to positive health outcomes, 

others have shown no significant benefit, largely due to 

differences in their preparation and delivery methods. 

Compared to pharmaceutical drugs, which undergo 

rigorous clinical testing for efficacy, the scientific 

validation of probiotics is still developing. Therefore, 

more large-scale, well-designed clinical trials are essential 

to confirm the therapeutic potential of probiotics and to 

determine their effectiveness in specific conditions. To 

fully harness the benefits of prebiotics and probiotics, it is 

crucial to better understand the mechanisms by which 

prebiotics selectively promote the growth and activity of 

probiotics. For example, the concentration of prebiotics, 

the method of preparation (e.g., fermentation or extraction 

processes), and the structure of glycosidic bonds within 

prebiotic molecules may all influence how effectively 

probiotics utilize them. Investigating these factors will 

enable the development of more efficient and targeted 

prebiotic interventions in clinical settings. Moreover, 

many studies have demonstrated a positive relationship 

between probiotics and medicinal products, highlighting 

the potential of probiotics to mitigate adverse drug effects 

or enhance drug bioavailability. For instance, certain 

probiotic strains have been shown to influence the 

metabolism of medications like acetaminophen and 
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antidepressants, potentially reducing toxicity or 

improving therapeutic outcomes. As the understanding of 

these interactions grows, future research may offer novel 

strategies to incorporate probiotics into drug regimens to 

decrease side effects and improve drug efficacy. In 

addition to these advancements, there is considerable 

room for growth in both theoretical knowledge and 

experimental techniques in this field. One of the most 

exciting and underexplored areas is the gut-brain axis, 

where emerging studies suggest that the gut microbiota, 

influenced by probiotics, may play a role in mood 

regulation, cognitive function, and mental health 

disorders such as anxiety and depression. Understanding 

how probiotics affect this pathway could lead to new 

therapeutic approaches for neurological and psychological 

conditions. This area represents a critical focus for future 

research, as it holds the potential to bridge the gap 

between gastrointestinal health and mental well-being. 
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