
Damanhour Journal of Intelligent Systems and Informatics

1

An Effective Fault Clustering Management Approach Based Self-Recovery

Mechanism for Decentralized Wireless Sensor Networks
Walaa M. Elsayed

Faculty of Computers and Informatics, Damanhour University, Damanhour, Egypt

Abstract: Wireless sensor networks (WSNs) have several uses and provide endless future possibilities Wireless sensor network

nodes are prone to failure because of energy depletion, communication link difficulties, and malicious attacks. As a result, Self-

recovery techniques are one of the most significant issues in WSNs. Error detection is the primary strategy in the Self-recovery

mechanism in wireless sensor networks (WSNs), with each cluster head frequently checking the readings of its members.

According to previous research, most comparing approaches will fail if more than half of a sensor's nearby nodes are incorrect.

Furthermore, these comparing approaches cannot discover common mode failures. The recommended fault Self-recovery

approach functions by comparing the pulse sequence number generated by clustering nodes and distributing the choice made

about each node. This paper presents an approach which can both locate and recover malfunctioning nodes in sensor networks.

The proposed model integrates the capabilities of isolating the defective cluster sensors, which cause WSN malfunctions, from the

cluster cycling and advertising the new path coordinates for the base station (BS). The simulation results show that the proposed

Effective Fault Clustering Management (EFCM) approach is very exact in locating malfunctioning nodes and very quick in

establishing a cover free of such nodes. When using the NS3 simulator.

Keywords: WSNs, Clustering, Node failure, Self-discovery, Self-recovery.

1. Introduction

WSN is an autonomous organizing network comprised

of thousands of low-cost, low-power sensor nodes.

Each sensor node has restricted functionalities such as

processing, communication, and sensing. These

devices can be employed for particular purposes, such

as detection and reporting the occurrence of intriguing

occurrences. The precision of individual node data is

crucial in many applications. For instance, in a

surveillance network, sensor readings must be accurate

to minimize missed detections. As a result, All WSNs

must meet the energy competence, scalability, and

error tolerance specifications. Particular concerns must

be addressed for WSN to continue to operate. 1) WSNs

consisting of sensor nodes may be installed in

unmanaged and possibly hostile locations, increasing

the likelihood of node failure. 2 In contrast to wireless

local area networks, the journey from source to

destination in wireless sensor networks frequently

includes many wireless links (hops). Wireless links

between nodes are susceptible to wireless channel

fading, resulting in channel errors. 3) Data from each

sensor node is routed to the sink node [1]. To maintain

effective bandwidth consumption, erroneous data

generated by faulty sensor nodes must be removed

from the network.

Sensor nodes are powered by batteries, which means

they have limited power sources. Additionally, these

nodes are placed in hard and hazardous locations, and

the sensors are prone to failure. Faulty sensor nodes can

result in faulty data sensing, inaccurate data processing,

and inappropriate data communications [2]. Faults in

WSN nodes arise when one or more of their hardware

components fail. WSN node status is classified into two

groups based on numerous faults: healthy and

defective. A node is considered broken if its battery

power exceeds the threshold limit, its microcontroller

fails, or the transceiver's transmitter circuit

malfunctions. If the transmitter circuit of a node fails,

even if all other hardware components are in good

working order, the node is classified as defective. The

faulty node must be replaced with a fresh node.

Otherwise, its responsibilities must be handled by

another healthy node. The healthy node can be divided

into three groups: traffic node, normal node, and end

node. In a healthy node, the transceiver is operational

but the sensing device is malfunctioning, we can utilize

it as a traffic node. A traffic node can be used as a router

in multi-hop wireless data transfer. The usual healthy

node, which has all of the sensor nodes' components in

good working order, can be used for any form of WSN

job. The transceiver's receiver circuit malfunctions at

the end node. As a result, it may sense monitoring field

parameters and communicate data to the base station

via another node. However, the end node cannot

receive the data from any other node. Therefore, it

cannot be used as a router in WSN.

We can broadly classify faults (shown in Fig. 1) that

can impair sensor network performance into two types:

hard faults (permanent or occupation defects) and

systematic faults (transitory, devious, and recurrent

faults) [3-8]. In the event of a function failure, the

malfunctioning sensor nodes do not respond or send

any reading to the other nodes. However, in a

temporary glitch, the sensors are unable to conduct

their expected operations for a short period, making

Self-recovery problematic. Whereas intermittent

Damanhour Journal of Intelligent Systems and Informatics

2

malfunctioning sensor nodes offer sometimes fault-free

information, making it difficult for the fusion centre to

conclude the rank of a sensor. Devious faulty sensors

behave in unpredictable ways, sending different data at

different times.

Fig.1. Fault classification in the clustering sensor nodes.

Failures in wireless sensor networks can be caused by

a variety of factors, including node failures, link

failures, design flaws, and implementation errors.

Locating the causes of such failures is critical to

ensuring the network's reliability, but it is typically a

difficult task due to several factors, including the

distributed nature of most protocols and applications,

the energy constraints imposed on any technique, and

the wide range of faults in such networks, which range

from node crashes to bugs in the code running on the

nodes. Furthermore, the complexity of software

develops dramatically for its size. Large-scale software

systems are particularly error-prone and fail frequently,

especially for sensor network applications, which are

intrinsically distributed. As a result, Self-recovery

must be used to ensure that such systems provide the

necessary level of functioning even when there are

errors present. Because sensor nodes are susceptible to

failure, Self-recovery should be actively addressed in

many sensor network applications [9]. This paper

presents a self-healing system that consists of three

major stages: fault detection, Self-recovery and

recovery. During the detection phase, each node

generates a heartbeat message, which is then broadcast

to its neighbours. Each fault-free and soft-faulty node

responds to the heartbeat request within a specific

timeframe. By the end of this stage, each node has a

local view of the fault status of its one-hop neighbours.

During the Self-recovery phase, each node broadcasts

a heartbeat message regularly, and the job assigned to

nodes is to increment the heartbeat sequence number.

Finally, a covering phase covers each node that does

not broadcast the heartbeat message and does not

receive the heartbeat message from 1-hop neighbours;

the coverage job is given to cover no mal-functioning

nodes and isolate. We are listed as follows.

1. Investigate fault detection using a distributed

technique.

2. Propose a Self-recovery technique that detects

hardware failures with high accuracy while

requiring little time, heartbeat messages, and energy

overhead.

3. Our method is based on the assumption that a faulty

node can be switched off if it is covered, causing the

network to behave normally.

2. Related works

Fault detection techniques were utilized to detect

prospective problems and locate the source of faults,

which is useful for fault recovery operations. There

have been numerous research accomplishments in

recent years. In 2021, Khilar [10] proposed a

revolutionary method for detecting nodes with both

types of problems without relying on a specific sensor

model. The suggested fault model is more accurate and

involves less communication than the existing

Sensor node

Faulty node

Error/Failures

Software

Transeint

Intermittent

by zone

Hardware

Sensor

Antenna

transceiver

Battery

Malifunction

Dead node

Attacks

Malicious
messages

Denial
service

Healthy node

Normal node Traffic node End node

Damanhour Journal of Intelligent Systems and Informatics

3

methods. In the same year, Jurdak and Rosalind Wang

presented anomaly detection in WSNs [11], which

focused on data anomalies caused by security assaults

and the statistical methodologies used to identify them.

Because of their close connection to often hostile

physical environments, WSNs and other networks

utilized in extreme situations (such as space) are more

likely than normal networks to have connectivity or

hardware breakdown anomalies. The research also

focuses on developing detection algorithms that target

network and data-level anomalies. Banerjee et al. [12]

suggested a strategy for distributed defect detection and

sensor management in WSNs using cellular automata.

Node failures are recognized in a distributed manner,

and cellular automata are used for network

management.

In 2022, Mahapatro [13] could be studied an online

fault Self-recovery algorithm for wireless sensor

networks. The researcher explicitly takes into account

the possibility of faults in different sections of sensor

networks and communication channels. The diagnostic

local view is obtained by exploiting the spatially

correlated sensor measurements. These local views are

then disseminated using a spanning tree of cluster

heads. In the same year, Camilo et. al. [14] provided an

overview of existing post-deployment WSN diagnostic

tools, by briefly presenting their functionality,

architecture and constraints, to enable a basic

understating of each tool. The survey also includes a

multi-dimensional comparative analysis of the various

tools, based on a proposed classification scheme and

evaluation criteria, as well as an identification of the

main open research issues. Mishra et al. [15] attempted

to address mistakes and faults that arise for a variety of

reasons, including hardware malfunction, software

problems, environmental dangers, and so on. Thus, a

sensor network should be fault-resistant to properly

cope with these erroneous conditions. Duche et. al. [16]

presented a new method to detect sensor node failure or

malfunctioning in such an environment. The proposed

method used the round trip delay (RTD) time to

estimate the confidence factor of the RTD path. Based

on the confidence factor the failed or malfunctioning

sensor node is detected.

In 2023, Babaie et. al. [17] proposed the behaviours of

the components of a sensor are independently analyzed

using the proposed model based on Petri nets and the

links of the sensor’s components are investigated

through the correlation graph. Saurabh et al. [18]

considered this paper's major purpose to provide a

comparative examination of fault detection strategies

employing various approaches. Sensor nodes face

varied energy and computational restrictions. To

deliver excellent service using coverage standards,

there is a need to design procedures for fault tolerance,

event reporting, and maintaining energy efficiency. In

2024, Lau et. al. [19] suggested a revolutionary

centralized hardware defect detection solution for a

structured Wireless Sensor Network (WSN) using the

Naïve Bayes paradigm. Various defects are widely

classified in the following section; they infect the

behaviour of wireless sensor networks, causing them to

misbehave and affecting the network's functional

performance.

Failure Classification

To understand the Self-recovery mechanism, we

should distinguish between faults, errors, and failures.

A fault is any type of imperfection that causes a

mistake. An error indicates an improper (undefined)

system state. Such a situation may fail. Failure is the

(observable) manifestation of an error, which occurs

when the system deviates from its specification and

cannot perform its intended functionality. Several

problems could cause faults in WSNs: a node could be

moved to a different region, resulting in a link failure;

nodes could lose power and stop responding to

requests; or they could start sending arbitrary values,

either intentionally (after a security breach) or due to a

malfunction. The errors that a WSN may encounter will

be classed as follows: crash, omission, timing, value,

and arbitrary. These failures are observable

manifestations of the underlying problems listed

below: 1) Crash or omission: A failure by omission

occurs when a service does not reply to requests

consistently. For example, this could be due to radio

interference, which causes periodic communication

loss. A crash failure happens when the service stops

responding to any requests. An omission degree f can

be defined as a limit on the number of omission flaws

a node can have before being classed as crashed. 2)

Timing: Services may fail owing to a timeout in

processing a request or providing data too early. Such

timing faults occur when a node answers a request with

the right value, but the response is received outside of

the timing interval set by the application. Time failures

will only happen if the application specifies time

limitations. 3) Value: A service is regarded to have

failed due to an inaccurate value if it sends a timely

response but fails to deliver the value accurately. For

example, a service that aggregates data from other

nodes may transmit a result value to the base station

that does not precisely represent the original data. Such

issues could be caused by faulty software, hardware,

corrupt communications, or even hostile nodes that

generate erroneous data. 4) Arbitrary failures are those

that cannot be grouped into the previously specified

categories. 5) Byzantine: failures describe a type of

Damanhour Journal of Intelligent Systems and Informatics

4

arbitrary failure that is in general caused by a malicious

service that not only behaves erroneously but also fails

to behave consistently when interacting with other

services and applications. In sensor networks, an

aggregation service could start sending both incorrect

and correct values to the sink, or a node routing

messages could not forward a message despite sending

an acknowledgement back to the sender [20].

Self-recovery on Different Levels

Self-recovery is a new area of research that focuses on

fault tolerance in dynamic systems. It deals with

imperfect specifications, uncontrollable environments,

and system reconfiguration based on their dynamics.

The term "Self-recovery" refers to a software system's

ability to study, identify, diagnose, and respond to

system problems. Self-recovery components or

programs must be able to detect system failures,

evaluate external restrictions, and make appropriate

modifications. Self-recovery categories of elements

include fault model or fault hypothesis, system

reaction, system completeness, and design context. A

fault model of a Self-recovery system is to state what

faults or injuries to be self-healed including fault

duration, fault source such as operational errors,

defective system requirements implementation errors

etc. System response includes the aspects of fault

detection, degree of degradation, fault response and an

attempt to recover action or compensation for a fault.

Fault detection approaches involved in a self-recovery

system include the application system's semantics-

driven assertions, supervisory checks, examining the

computing answers, comparison of replicated

components, online self-testing etc. The system

completeness aspect deals with the reality of

knowledge limits, and incompleteness in specifications

and designs thereof. It also deals with the problem of

system self-knowledge, system evolution etc. Handling

the architectural incompleteness for example, of third-

party components or various patches during or after

system deployment is a challenging issue in developing

a Self-recovery system. A fault is an anomaly that

causes a node to malfunction and is caused by hardware

or software issues at a single node and has nothing to

do with connectivity with surrounding nodes.

Anomalies are noise-related measurements resulting

from a malfunctioning sensor. This condition could

emerge as a result of weak or broken hardware

components, or bad software integration of the

components, but an event is defined as a specific thing

that alters the real-world state, such as a forest fire, air

pollution, etc. Thus, five levels of fault tolerance were

discussed in [18]. The five levels are: physical,

hardware, system software, middleware, and

application. More specifically, we distinguish self-

recovery in WSNs into four system levels. A self-

recovery in a WSN system can occur at the hardware,

software, network communication, and application

levels.

A. Hardware-level

Faults at the hardware layer can arise when any

hardware component of a sensor node fails, including

memory, battery, CPU, sensing unit, and network

interface (wireless radio). Sensor node hardware failure

can be attributed to three major causes. The first is that

sensor networks are typically used commercially, and

sensor nodes are costly. As a result, the components

used to create a sensor node may not necessarily be of

the best quality. The second is that severe energy limits

limit sensor nodes' long-term and dependable

functioning. For instance, when a sensor's battery

exceeds a particular value. Sensor measurements may

become erroneous [21]. The third reason is that sensor

networks are commonly implemented in harsh and

dangerous environments, impacting the regular

operation of sensor nodes. These environmental

conditions significantly influence the wireless radios of

sensor nodes.

B. Software level

A sensor node's software consists of two parts: system

software, such as the operating system, and

middleware, which comprises communication, routing,

and aggregation. The ability to execute localized

algorithms dispersed and simultaneously is an

important feature of system software. Software faults

are a common source of mistakes in WSNs. One

feasible option is software variety, which involves

delivering each program in several versions. Because it

is difficult to provide fault tolerance affordably at the

hardware level of a sensor node, numerous fault-

tolerant solutions are anticipated at the middleware

layer. The great majority of existing WSN applications

are easy. To adapt to real-life applications, it is

necessary to design considerably more complex

middleware for WSNs.

C. Communication level

Errors at the network layer affect wireless

communication links. Link faults in WSNs are often

caused by the surrounding environment, assuming no

hardware errors exist. Radio interference between

sensor nodes can also cause links to fail. For example,

if sensor A is in the interference range of other sensors

transmitting messages simultaneously, sensor A will be

unable to properly receive a message from sensor B.

The conventional approach to improving wireless

communication performance is to use aggressive error-

Damanhour Journal of Intelligent Systems and Informatics

5

correcting algorithms and retransmissions. These two

methods may cause additional delays in operation. It is

worth noting that there is always a trade-off between

fault tolerance and performance.

D. Application level

Fault tolerance can also be handled at the application

level. For example, identifying many node-disjoint

paths enhances routing fault tolerance. The system can

transition from an unreachable path with broken links

to an accessible candidate path. However, a fault

tolerance strategy in one application cannot be used

directly in another. It is necessary to address fault

tolerance in various applications on an individual basis.

In contrast, Fault tolerance at the level of an application

can be utilized for tackling faults in nearly any type of

resource [22].

3. The proposed Effective Fault Clustering

Management (EFCM)

The Self-recovery mechanism acts primarily through a

series of cycles. The first cycle is known as the

monitoring cycle. During the monitoring cycle, the

systems monitor will examine the computer

environment for any inappropriate behaviour. After the

monitor's inspections are completed, it will forward the

data acquired from current observations to the next

level. The second step of the cycle is known as error

detection and Self-recovery; if Self-recovery reports

that there is no defect in the system, it will return to the

monitor for further observations. If the monitor detects

an error, it will report it to the next stage of the cycle.

The third stage of the cycle is known as the analysis

and selection of a repair operation. At this stage, the

fault is analyzed and a method of recovering is

determined at this part of the cycle. After the repair

recovery operation is determined, the report is passed

onto the final phase of the cycle called execute repair

and operation (self-regular). Any repairs that are

needed are completed at this phase in the cycle. Once,

the faulty areas are self-repaired the cycle begins all

over again. Since this cycle is a closed loop, the process

of Self-recovery environments will continuously heal

itself as depicted in Fig. 2.

Fig. 2: The proposed Self-recovery System Process.

Monitoring

Faulty Node
Detection

Self-covering
(Isolate the
node and

Select Path)

Set
coordinates

and
advertisment

Damanhour Journal of Intelligent Systems and Informatics

6

3.1. The Problem Definition

This section dealt with the designated network

description and problem formulation, following certain

necessary definitions.

Definition 1: A normal node is a healthy node that has

all of its sensor node components in good working

order and may be used for any type of job in WSN .

Definition 2: If a traffic node is healthy, the transceiver

is functioning, but the sensing device fails, we can use

it as a network traffic node. A traffic node can be used

as a router in multi-hop wireless data transfer.

Definition 3: The end node is healthy, but the

transceiver's reception circuit is malfunctioning. It may

identify the parameters of the monitoring field and

transfer data to the base station through another node.

However, the end node cannot accept data from any

other nodes. As a result, it cannot be used.

Definition 4: A bad node has hardware or software

components that can cause faults within the network;

we may remove this node and cover for it using

neighbours .

Definition 5: A passing cover has no malfunctioning

nodes. In contrast, a failed cover contains at least one

defective node.

3.2. Network Scenario

The wireless sensor network includes several clusters

managed by a sink node (fusion centre). The sink node

is a higher level of the network and collects all the data

generated in the network and propagates it to the back-

end system. A cluster within a wireless sensor network

contains N number of sensor nodes and one head cluster

node, which are randomly distributed and deployed in

a cluster located in two dimensional. Each sensor node

in the cluster has an initial power source, a processing

unit, memory, radio unit and sensors. The sensor nodes

interact wirelessly and use the one-to-many broadcast

primitive in their basic transmission mode. The

transmission range of each sensor node is fixed. The

transmission average degree of the network is

determined by its transmission range. The data

perceived by the sensor node is stored locally on its

memory and distributes its detected data to its

neighbours as well as the cluster head, which checks

transferred data from cluster nodes and sends valuable

data to the fusion centre regularly within a fixed time

interval. Each node knows the distances separating it

from each of its 1-hop neighbours and thus can know if

it is covered or not when the failure occurs. Our

proposed EFCM schema aims to detect the failure in

any node within the cluster, and the Self-recovery

whereabouts of failure exactly in any of the nodes in

the cluster, according to the above parameters.

3.3. Problem formulation

The EFCM schema in our proposed model is based on

the following assumptions :

1) As shown in Figure 2, we consider a WSN with

N nodes distributed using a clustering model. Assume

N = {X1, X2,... XN}

2) All sensor nodes are identical in structure and

function, and their status is normal. This signifies that

every node in the cluster is active; it has a heartbeat

message and location information in memory .

3) A good sensor node can accurately relay the data

it gathers to its neighbouring nodes and the cluster

head. In contrast, a malfunctioning sensor node might

receive correct data from its neighbours and the cluster

head but may send out random or incorrect values due

to issues with its functional or processing unit.

4) A synchronous mode of communication is used

to deliver data from all sensor nodes to the cluster head

at a set period .

5) There is only one cluster head with the properties

of receiving data from all cluster nodes, checking

received data, and delivering data to the sink node. It is

deployed outside the network and has unlimited

energy .

6) If a faulty transmitter node is represented as N1

= {x1, x2,... xa}, a faulty receiver node or traffic node

is selected as N3 = {x1, x2,..., xh}, the active nodes in

the network. are Nactive = {N-ND}. The dead vertices.

7) The energy (E) represents each node's starting

energy, Tt bit data transmitted time, and Rt bit data

received time, all approximated in microseconds. The

energy consumption models are dependent on

preceding parameters, as demonstrated by equations

(1) and (2).

Consumption Transmit Energy (CTE)

CTE = E - (E * Tt) t1 ≤ t ≤ t2 (1)

Remaining energy after transmitting (RET)

RET = E-Tt t1 ≤ t ≤ t2 (2)

Consumption Receive Energy (CRE)

CRE = RET- (RET* Rt) t1 ≤ t ≤ t2 (3)

 Loss of emission energy Ed=0 (4)

Where we denote CTE as the energy consumption by

transforming l bit data crossing a certain time, RET

denotes the remaining energy after transmitting, and

CRE as the energy consumption by receiving l bit data.

Ed is denoted as the emission circuit’s loss of energy.

The power amplification loss is calculated by

comparing the energy of the node after receiving data

with the threshold. If its energy is less than a threshold,

the node needs to be covered by neighbours. Previous

fault tolerance techniques did not address the reduction

of emission energy loss. Therefore, we proposed an

Damanhour Journal of Intelligent Systems and Informatics

7

EFCM schema for the development of fault tolerance

techniques, to include both solutions for fault detection

and self-recovery problems and solutions of recovery

for dead nodes or nodes that exceed threshold

problems. Our proposed EFCM-based self-recovery

mechanism has been able to increase the significant

performance of WSNs.

3.4. EFCM methodology

The EFCM schema manages the activities of the

proposed defective node detection model and the Self-

recovery model, which is based on the Self-recovery

mechanism in fault tolerance.

A. Detection Phase.

To provide any countermeasures, a system must first

determine whether a specific functionality is or will be

faulty. As a result, the cluster head estimates the

network architecture that will be required during the

fault self-recovery phase, to boost efficiency and

improve performance statistics .

a) The initialization phase. The cluster head sends

fixed data to all sensors in the cluster's network.

Each sensor is supposed to transmit a heartbeat

message to the cluster head, which verifies the

node's condition to determine whether it is healthy

or malfunctioning. Sensor nodes (Si ∈ S) transmit

and receive data from their neighbours (Negt (i)).

Each sensor node has its fault status set to fault-free.

b) Computational phase. Each sensor receives

information from its neighbouring sensor nodes. At

time t = 300 s [23], which is the interval between

successive packets in the sensor node, it applies the

mean operation to both the incoming data and its

own sensed data. The computed mean is then sent

back to the cluster head.

c) Detection phase. During this phase, the cluster head

gets both the calculated mean and the heartbeat

messages from each sensor node. Following that, it

analyzes the acquired data to determine the function

and identify malfunctioning sensor nodes. As a

result, the cluster head extracts the sender Identifier

from the received data to determine which sensor

nodes are capable of sending data to the cluster.

Sensor nodes that cannot send a heartbeat message

to the cluster head within an estimated time t are

considered to function faulty. Second, after

identifying faulty sensor nodes, the nodes are

diagnosed based on their status: alive or dead. The

cluster head compares the sensor node data with its

data for placing the data fault sensor nodes. If it

matches, the cluster head determines that all sensor

nodes in the cluster are alive and healthy, as

determined by the mean of nearby sensor data. In

contrast, if the cluster head does not receive any data

from any sensor node inside the cluster within the

predicted duration, the node might be considered

dead. If the node's data is not matched then the

cluster head believes that the sensor node present in

the cluster is considered a defective node. Finally,

the cluster head verifies heartbeat messages for all

nodes throughout the predicted period t to ensure

their operational state by determining which sensor

node is unable to send heartbeat messages and so is

considered a bad node. The cluster head then

conveys information about the status of the node,

whether it is alive or dead, as well as information

about the operational status of the node, whether it

is healthy or faulty, to all nodes in the cluster, so that

the remaining nodes in the cluster do not send or

receive data from this node. This allows for the

maintenance of network quality. The cluster head

sends a job to each broken sensor node for further

Self-recovery.

B. Recovery Phase

The suggested Self-recovery model is based on sequence

packets (transmit, receive) within a time interval

estimated to be 300 s for each sensor node in the cluster.

Each node is responsible for detecting its operational

status. Each node detects sensor node failure using the

previously defined fault detection methodology. The

node takes data from neighbouring nodes in the same

cluster and compares it to its sensing data. The Self-

recovery model is used to detect the operational status of

the node's hardware components, which include the

battery, microcontroller, sensor, transmitter circuit, and

receiver circuit. The proposed Self-recovery model

investigates failures of the aforesaid circuits based on the

presence of their heartbeat messages for the cluster head

node, Algorithm (1).

The primary objective of sensor utilization in

applications is to avoid disasters and crimes by detecting

anomalies. When an abnormality is detected, the user

should receive a warning in real-time, which needs an

event-driven data processing mechanism.

Damanhour Journal of Intelligent Systems and Informatics

8

Algorithm (1): The clustering self-recover mechanism

Initialization phase

Input :- Negt (i) : set of single hop the neighbours of Si ;

▪ X: measures of S values by the transmission from sensor Si to its neighbour Sj ;

▪ Y : measures of S values by the transmission from Sj from sensor Si ;

▪ dij: difference between X and Y at time(t) ;

▪ dij=X-Y

▪ dij : measure difference rate between X and Y at a new time (t+1), from time t to t+1 : α

▪ dij =(X' –X) –(Y'-Y) α

▪ cij : test results between X and Y , cij € {0, 1}, cij = cji ;

▪ ө: predefined threshold value ;

▪ ө1=0.2, θ2=0.1 (suppose two values for comparing differences rate in data for every time within the

transmission range between sensors);

▪ Ti: tendency value of a sensor, Ti € {LG, LF, GD, FT};

▪ Ti € "likely goody, likely fail, good, faulty"

Computation phase

Step 1: Each sensor (Si) tests every member of Sj € Negt (i) to generate test value cij {0, 1}

Each sensor Si , set cij = 0 and compute dij=X-Y

 IF dij > 0 THEN IF dij > ө1 THEN

 dij =(X' –X) –(Y' -Y) ; α dij =(X' –X) –(Y' -Y); α

IF α dij > ө2 THEN IF α dij > dij THEN

Set cij = 1; Set cij = 1;

Detection phase
Step 2: Si generates a tendency value Ti based on its neighbouring sensors' test value through transmission

range:

𝐼𝐹 ∑ 𝑆𝑗€ 𝑁𝑒𝑔𝑡 (𝑖)(𝑐𝑖𝑗) < [𝑁𝑒𝑔𝑡
 𝑖

2
] THEN

𝑛

 𝑘=1

Ti = LG;

ELSE

Ti = LF;

END

Confirm Phase

Step 3: Determine the state and accuracy of the test by comparing the number of neighbouring nodes with

different test results.

IF ∑ 𝑆𝑗€ 𝑁𝑒𝑔𝑡 (𝑖)(1 − 2 𝑐𝑖𝑗) ≥ [𝑁𝑒𝑔𝑡
 𝑖

2
] THEN

𝑛

𝑘=1

Tj = GD;

ELSE Tj = LF;

END

Step 4: For the remaining undecided sensors, perform the following steps:

FOR i = 1 to Si

If Ti = LG, THEN

Tj = Tk = GD.

If cji=cki=0, THEN

Ti = GD.

ELSE

Ti = FT;

Repeat;

END

END

Step 5: for cover malfunction or faulty sensor nodes, do the following steps

FOR k = 1 to n

TEMP = Negt (i)

S=Select (k,n)

END

Damanhour Journal of Intelligent Systems and Informatics

9

Another scenario requires applications to continuously

gather and integrate data provided by a large number of

physically distant sensor nodes. There are numerous

devices exchanging data, however some information

sources and sinks may not be available in the network

at the time. Therefore, request/response

communication is insufficient. For example, a client

that wants instantaneous updates of information would

have to continuously poll the information providers,

resulting in network overload and congestion.

Furthermore, because energy is a limited resource,

excessive information demands should be avoided. If

the projected frequency of fundamental event

occurrence is low, consider constructing simultaneous

systems. The alternative is to use event-driven

communication, which is an asynchronous architecture

with independent senders and receivers. Its clients are

event publishers and event subscribers, with message

transmission and notification services allowing both

one-to-many and many-to-many communication. (as

depicted in Figure 3).

Fig. 3. Event-driven communication in WSNs

▪ Faulty transmitter nodes: Each sensor node computes

the data comparison results and delivers them to the

cluster head, who checks the node's condition over an

estimated period of sequence packets; we can use this

duration as a threshold. If it exceeds the threshold

value and does not relay its results to the CH, the

sensor is reported to fail; otherwise, the transceiver

circuit is deemed disconnected. As a result, a sensor

sends a heartbeat message to the cluster head at

regular intervals, to indicate its operational health. As

a result, the cluster head sends a message to the

remaining cluster nodes, announcing that those nodes

are faulty. If it crosses the threshold value and sends

its results to the cluster head, the sensor node is

declared as connected.

▪ Faulty Receiver Nodes: If sensor circuits are

within the transmission range, they are considered the

primary advice for the sensor node in the proposed

architecture. Sensor circuits in sensor nodes must

periodically sense required events, such as temperature.

Each node broadcasts its observed temperature value to

all neighbours in the cluster regularly. It collects the

measurement, compares it to the measured value of

nearby sensors in the same cluster, and calculates the

measurement difference. If a sensor senses an event as

y(t) during the timing interval t1 and a neighbour node

senses information as x(t) during the timing interval t2,

and the component of x(t) along y(t) is cy(t), then the

information difference vector e(t) is represented by

applying the following formula 5:

 𝑥(𝑡)−∝× 𝑘 𝑦(𝑡) , t1 ≤ t ≤ t2 (5)

 e (t) =

 0 , otherwise

where k is the regularity coefficient

▪ Traffic nodes: If the sensor detects a flaw, it identifies

itself as a traffic node. In our proposed EFCM, the

sensor regularly sends a heartbeat message to the

cluster head to inform it of its operational status.

However, if the cluster head does not receive this

heartbeat message within a specified timeframe, it

may consider the corresponding node to be defective.

In addition, each node gets data from neighbour nodes

in the cluster and compares it to its sensing, sending

valuable data to the cluster head during an expected

period that is deemed a threshold value. If that value

Damanhour Journal of Intelligent Systems and Informatics

10

exceeds the threshold and the cluster head node does

not receive any data during that period, the cluster

head node may deem the node's sensor circuit broken.

▪ Omission Nodes. The node requires power to

broadcast and receive messages to other sensor nodes

in the cluster located at varying distances; thus,

communication is heavily reliant on the node's

energy. As a result, the node spent the majority of its

energy communicating with its next-hop neighbour.

In our EFCM, the cluster head (CH) periodically

checks the battery status of its clustering members.

The receiver node sends a heartbeat message to the

cluster head informing it of the battery's condition,

which is either active or sleeping. The sensor node

can also detect its own battery/power failure status

through periodic energy level checks on the receiver

circuit. A battery error happens when a sensor node's

battery energy level goes below a certain threshold.

As a result, if the node's battery level exceeds the

threshold amount, it can proclaim itself as a

malfunctioning node by sending a message to its

neighbour and a heartbeat message to the cluster

head. In the proposed EFCM, the sensor node may

identify its energy level by performing the following

mathematical calculations, which aid in detecting

either battery continuity or battery recovery.

1. If Node is needed recovered, thus (CRE < Ethr)

2. If Node is continued, thus (CRE > Ethr)

3. If the Node is removed, thus it is dead

Where CRE is the energy consumption after receiving

l bit data that is estimated by joule, and Ethr is a

threshold value of battery that is estimated by joule.

After detecting and diagnosing a fault, the system

proceeds to prevent or recover from it. The primary

strategy for achieving this goal is to re-recover the

system's components that are critical to the system's

proper operation. In our recovery model, after the

packet reception phase, the sensor node checks to see if

it is covered; if so, it waits for a random time (to reduce

competition between cluster neighbours). Hence, the

sensor node that needs to be covered, we may consider

as the sleeping node; the sleeping node first executes a

self-search theorem, where this node sends a message

to both the previous node and the next node in cluster

topology; to ask them "Can they cover its task during

my sleeping period?", If the head selects another set of

neighbours to cover this node, he sends an invitation

message. The sleeping node then waits for a set amount

of time (referred to as the sleeping period) to receive

feedback from the network before entering active

mode. If this node does not get feedback and the

sleeping duration expires, It will stay in sleep mode.

Following that, The CH chooses a new pathway for the

cluster's active nodes and eliminates sleeping nodes

from the cluster topology. The proposed fault recovery

paradigm is summarized in Figure [4].

C. Coordinates Adjustment

Adjusting coordinates in a Self-recovery system for

monitoring sensors involves several key steps. Here’s a

structured approach:

1. Define the Sensor Network Layout

a) Map the Environment: Create a layout of the area

where sensors are deployed.

b) Identify Sensor Positions: Record the initial

coordinates of each sensor in the network.

2. Determine the Recovery Parameters

a) Define the parameters that need adjustment (e.g.,

position, orientation).

b) Establish the reference points for recovery.

3. Calculate Adjustments

Use mathematical formulas to compute the required

adjustments. For example, in a Cartesian system:

New X = Old X + ΔX (6)

New Y = Old Y + ΔY (7)

Ensure to account for any transformations

(rotations, translations).

4. Calculate New Coordinates

When a sensor fails or needs recovery, calculate its

new coordinates based on:

a) Distance from Other Sensors: Use the average

position of neighbouring sensors.

b) Coverage Area: Ensure the new position

maintains adequate coverage.

5. Implement Recovery Protocols

Deploy Recovery Mechanisms: If a sensor is non-

functional, initiate recovery protocols to:

a) Reposition the sensor (if movable).

b) Activate backup sensors in nearby locations.

c) Update the monitoring system with the new

coordinates.

6. Monitor and Validate Adjustments

a) Real-time Monitoring: Continuously monitor the

sensor data after adjustments.

b) Validation Checks: Ensure the new coordinates

provide accurate and reliable readings.

7. Iterate Based on Feedback

a) Use feedback from the monitoring system to

refine the recovery process.

b) Adjust the algorithms and thresholds based on

performance data.

Damanhour Journal of Intelligent Systems and Informatics

11

4. Simulation & Experimental Results

The Simulator NS3 utility is used for simulations. The

simulation scenario involves a cluster of 5 sensor nodes

coupled to the cluster head node; they are active nodes

that are structured and deployed at random using a

distributed approach. The measurement parameter xi is

believed to represent atmosphere monitoring readings.

We employ the EFCM approach to discover and

recover malfunctioning nodes in clustering by self-

adjusting new coordinates in the defective clusters. In

the proposed EFCM technique, we measure energy

consumption after each completed transmission of data

bits to determine which node to cover next. Typically,

transmission (or reception) is not allowed between a

sender (and receiver) and its neighbouring nodes, even

if a transmission is currently taking place between the

sender and receiver. We utilized the energy model from

Eq. (8) to obtain the number of nodes that will be

covered.

CRE= REt - (REt * Rt) t1 ≤ t ≤ t2 (8)

Fig.4. Flowchart of the layout of the proposed recovery schema

Healthy Faulty (sleeping node)

(Active

node)

final node

Normal
Traffic

Head receives

recovered hart

baet messages

(RM)

Node performs

self -diagnosis

Time interval {0:300

ms.}

Is normal

node or

traffic node

Node covers by

its1-hob

neighbors

(pervious/ next)

Time interval {0:300

Is node

healthy or

faulty?

Remove node and

update the path

Dead

Alive

Node preforms self-

Is node

alive or

dead?

Head checks up hart beat messages

1. Sensor node broadcasts bit data

to its neighbors.

2. Sensor node sends hart beat

message about its status to cluster

head.

Cluster head receives and checks up

node's hart beat messages

Damanhour Journal of Intelligent Systems and Informatics

12

Experimental trials show that if the energy expenditure

by receiving as CRE is less than the energy threshold

(Ethr=0.03 of battery size), a node in the system will

stop transmitting data and be considered

malfunctioning practically, therefore this node needs to

recover through the cluster. When implementing the

proposed approach, the symmetrical network

conditions were listed below. For a symmetrical WSN,

1) All sensor nodes must be equally spaced apart .

2) Each sensor node has the same sensitivity .

3) The operating speeds of all sensor nodes are

equivalent .

4) All sensor nodes use the same wireless

communication module .

5) All sensors have fixed locations.

The simulation employed normal distributions to

randomly install cluster sensor nodes in a 270m×270m

square terrine. Active nodes are pre-structured and

deployed in advance, whilst inactive nodes are

deployed randomly. During simulation, the cluster

head sends a heartbeat message to all nodes in the

cluster after each transmission to check for bit data that

crosses an estimated time (t=300 𝜇s). The simulation

found that nodes had an 80% hardware failure rate.

Table 1 illustrates the experimental outcomes. The

simulation results of our suggested EFCM revealed the

efficiency of the proposed model, using five criteria

that have been evaluated :

1. Detection Accuracy (DA) refers to the proportion of

disconnected sensor nodes identified as defective to

the total number of sensors in the network.

2. Elapsed Time: is the time spent transmitting and

receiving l bits to determine the network issue, as

determined by MS .

3. Diagnosed heartbeat message (DM): The cluster

head sends messages over time to detect whether a

parameter is linked or detached .

4. Covered flag message: The cluster head sends this

message to signal that a node will be covered if its

battery is less than the threshold .

5. The number of healthy nodes: is the total number of

nodes in working order. Normal, end and traffic

nodes are considered healthy nodes.

6. The NS3 simulator tools simulated the suggested

schema and evaluated its accuracy in carrying out

self-detection and self-recovery models, as well as

calculating the number of problematic nodes that

can cause poor wireless sensor network

performance. The performance of DA is very

precise and quick in determining the number of

faulty sensors that occurred during the detection

process during the specified period. It is worth

mentioning, that PR is extremely fast in recovering

and is free of malfunctioning nodes. It also has great

accuracy in detecting error clustering sensors via

outgoing heartbeat messages used to locate and

isolate failing sensor nodes during recovery phases.

Table 1. The simulation yielded experimental results.

The proposed design enhanced the fault recovery

method, as seen in Figure (5). In the proposed model,

we adopted a distributed clustering strategy to improve

network lifetime, the most essential parameter for

evaluating sensor network performance. Although

there is no one definition of "network lifetime," our

schema notion is established by the application's

purpose, which is based on common heartbeat signals

relating to the length until the first/last node in the

network depletes its energy and disconnects from the

base station. As a result, the network's lifetime can

increase by more than 80 %.

a) Test Byte Examination:

In the proposed methodology, the sender node was

capable of transmitting byte packets to its cluster

neighbours during a specific time, and the receiver

node received these packets within a specified duration.

Following the receiving action, the receiver responds to

the cluster head with a byte arrival notice, indicating

the validity of this node (non-fail) to the head; this

procedure is known as the good response of byte

(GRB). Unless the receiver node responds to the cluster

head and exceeds the specified time for receiving a byte

packet, this is known as a poor response of byte (BRB).

In a poor response, the cluster head sends a Test Byte

message to the sender to check the node's transmission

PARAMETER VALUES

Number of nodes in the network 1800 nodes

Number of clusters in the network 300 cluster

Number of nodes in each cluster 6 nodes

Data packet size 800 bit

Initial energy 0.5 J

The time between consecutive packets 300ms.

Detection Accuracy (DA) in duty

cycle

~ 2 nodes for the round

Consumed time for Detection

Accuracy (DA)

0 ms.

The number of diagnosed heartbeat

messages represented faulty

transmitter nodes in the duty cycle

~ 2 nodes for the round

Consumed time to occur detection

messages in cluster head represented

faulty transmitter node

62ms.

The number of diagnosed heartbeat

messages represented faulty receiver

nodes in the duty cycle

~ 1 node for the round

Consumed time to occur diagnosed

messages in cluster head represented

faulty receiver

125ms.

Ratio of lost energy in deployments 52% of battery size

Precision of Recovery (PR) 100%

Damanhour Journal of Intelligent Systems and Informatics

13

integrity. If the sender delivers the heartbeat message

to the head, the head will authenticate the sender's

validity. Furthermore, the head node declares that the

receiving node is likely to fail into the rest of the

cluster. Otherwise, the sender was regarded as a

defective node and reported to the cluster nodes. Then,

it selects the new path of monitoring and adjusts the

coordinates of the monitoring sensors within the

cluster. E.g., if a temperature sensor at coordinates (10,

15) is malfunctioning, and the average position of

nearby sensors is (12, 18), it might adjust the

coordinates, as:

New X = (10 + 12) / 2 = 11

New Y = (15 + 18) / 2 = 16.5

Thus, the adjusted coordinates for the malfunctioning

sensor would be approximately (11, 16.5).

Fig. 5: Sequences of the suggested fault recovery mechanism in simulation

Wait for a random

time

Time interval {0: 300 s.}

Spend sleeping

period

Have Si need

to recovery

 Yes

Broad cast invitation

messages to pervious

and next neighbor

Decide to

sleep

No

Cluster

head

advertise

Select new path &

broad cast invitation

messages

Remove

defective node

from topology

Set a new

coordinates of

the cluster

Time interval {0:300 s.}

Remove the node

and update the path

No

Active

node

Is there

feedback?

network

Yes

Damanhour Journal of Intelligent Systems and Informatics

14

Fig. 6: Graph illustrates the implementation of the Test Byte examination

b) Bit Error detection

When an odd number of bits (including the parity bit)

are sent incorrectly, the parity bit will also be incorrect,

indicating a parity error during transmission. It’s

important to note that the parity bit can only detect

errors; it cannot correct them because it cannot identify

which specific bit is erroneous. This means that the

entire data must be erased and re-transmitted from the

beginning. Successful transmission over a noisy

medium can sometimes take a long time or may not

occur at all. However, the advantage of using a parity

bit is that it requires only one bit and a small number of

XOR gates for its implementation. For example, if we

communicate the four-bit value 1001, the similarity bit

can be calculated as follows.

Table 2. The scenario of Bit Error detection in a broadcast event
Type of Bit Successful Broadcast Scenario

EVEN 1. Si wishes to transmit 1001

2. Si computes the parity bit value as 1+1+1+1 (mod

4) = 0.

3. Si then adds the parity bit and sends 11110:

4. CH gets 11110,

5. CH computes parity (1+1+1+1+0 (mod 4) = 0)

6. CH reports correct transmission based on expected

even results.

ODD 1. Si wishes to transmit: 1001.

2. Si computer parity bit value is 1 + 1 + 1 + 1 (mod

4) = 1.

3. Si inserts the parity bit and sends: 11111.

4. CH receives 11111.

5. CH calculates overall parity as 1+1+1+1+1 (mod 4)

= 1.

6. CH reports accurate transmission after noticing

expected unusual results.

 This technique detects single-bit faults because if

one bit is flipped owing to noise, the received data will

have an incorrect number of ones. In the two preceding

examples, CH's estimated similarity value corresponds

to the parity bit in its received value, suggesting that

there are no single-bit errors. Consider the following

example of a transmission fault in the second bit using

XOR:

Table 3. Scenario of Bit Error detection in a failed broadcast event
Type of Bit Error Failed Broadcast Scenario

Even Errors in the

Second Bit

1. Si wants to transmit: 1001.

2. Si computes the parity bit value (1^0^0^1 = 0).

3. Si adds the parity bit and sends: 10010.

Transmission error.

4. CH Receives 11010.

5. CH calculates overall parity as 1^1^0^1^0 = 1.

6. CH reports incorrect transmission after observing

unexpected results.

Even Error in the

Similarity Bit

1. Si wants to transmit: 1001.

2. Si computes the even parity value as 1^0^0^1 = 0.

3 Si Sends: 10010.

Transmission error.

4. CH Receives 10011.

5. CH calculates overall parity as 1^0^0^1^1 = 1.

6. CH reports incorrect transmission after observing

unexpected results.

5. Conclusion

Self-recovery mechanisms in sensors enhance the

reliability and efficiency of systems, making them

essential in modern technology applications. By

integrating robust fault detection and recovery

strategies, systems can maintain optimal performance

even in the face of failures. Adjusting coordinates in

self-recovery for sensors is crucial for maintaining

accuracy and reliability. By following a structured

approach that includes fault detection, data validation,

Node 3

Node 1

CH

Node 2 Non-fail

Test_Byte

X X X X X X X X X X X X BRB

 GRB

Damanhour Journal of Intelligent Systems and Informatics

15

recalibration, and continuous monitoring, systems can

effectively recover from sensor faults and continue to

operate optimally. Fault clustering is an effective

management strategy for network topology aiming to

reduce communication overhead and increase data

aggregation in sensor networks. We presented a new

distributed clustering approach for detecting

malfunctioning nodes and recovering the working

domain by selecting alternate pathways in sensor

networks. The proposed schema is based on a

distributed measure that assesses a node's state and

broadcasts it to neighbouring sensor nodes. In the

future, we will investigate systematic flaws in wireless

sensor networks and seek to determine the best strategy

to prevent such defects from occurring in sensor

networks. We tested our schema's performance with the

NS3 simulator, and the results reveal that the proposed

schema, based on the self-recovery mechanism, is quite

efficient and can reap significant performance benefits

in terms of reduced communication costs as well as

extended network lifetime. On the other hand,

increased network longevity refers to a network's

capacity to maintain functionality and performance

over time. This is frequently accomplished through the

use of energy-efficient hardware, strong system

architecture, and optimal resource management. A

longer-lasting network eliminates the need for periodic

replacements or upgrades.

Reference

1. Arunanshu Mahapatro and Pabitra Mohan Khilar,

Scalable Distributed Self-recovery Protocol for

Wireless Sensor Networks,2021

2. Indrajit Banerjee, Prasenjit Chanak, Hafizur

Rahaman, Tuhina Samanta, Effective fault

detection and routing scheme for wireless sensor

networks, Bengal Engineering and Science

University,2023.

3. Chessa, S., Santi, P.: Comparison Based System-

Level Fault Self-recovery in Ad-hocNetworks. In:

Proceedings of the 20th IEEE Symposium on

Reliable Distributed Systems, OCT (2021).

4. Ding, M., Chen, D., Xing, K., Cheng, X.: Localized

fault-tolerant event boundary detection in sensor

networks. In: IEEE Infocom, pp. 902–913 (2015).

5. Rangarajan, S., Fussell, D.: A Probabillistic Method

for Fault Self-recovery of Multiprocessor Systems.

In: Proceedings of the 18th International

Symposium on Fault-Tolerant Computing, pp. 278–

283, Tokyo, Japan (1988).

6. Chessa, S., Santi, P.: Crash Fault Identification for

wireless sensor networks, Jour. of Computer

Communications 25(14), 1273–1282 (2002)

7. Preparata, F.P., Metze, G., Chien, R.T.: On the

Connection Assignment Problem of Diagnosable

Systems. IEEE Trans. on Computers EC-16, 848–

854 (1967(.

8. Barborak, M., Malek, M., Dahbura, A.T.: The

Consensus Problem in Fault Tolerant Computing

ACM computing surveys, vol. 25, pp. 171–220

(1993).

9. Mohamed K. Watfa1 and Rawad Abu Assi2, A

Distributed Algorithm for Isolating

Malfunctioning Nodes in Wireless Sensor

Networks, American University of Beirut,

Computer Science Department, Beirut,

Lebanon,2021.

10. Meenakshi Panda, P.M. Khilar; Efficient Fault

Detection Algorithm in Wireless Sensor Network;

Department of Computer Science and

Engineering; 2021.

11. Raja Jurdak, X. Rosalind Wang, Oliver Obst;

Wireless Sensor Network Anomalies; CSIRO ICT

Centre, Australia; 2021.

12. Indrajit Banerjee, Prasenjit Chanak3, Biplab

Kumar Sikdar, and Hafizur; DFDNM:

Distributed Fault Detection and Node

Management Scheme for Wireless Sensor

Network; Department of Information

Technology;2021.

13. Arunanshu Mahapatro, Pabitra Mohan Khilar;

Online Distributed Fault Self-recovery in Wireless

Sensor Networks; National Institute of

Technology, Rourkela, India; 2022.

14. Andre´ Rodrigues, Tiago Camilo, Jorge Sa´ Silva;

Diagnostic Tools for Wireless Sensor Networks;

e-mail: arod@dei.uc.pt; 2022.

15. Sushruta Mishra, Lambodar Jena; Fault Tolerance

in Wireless Sensor Networks; Computer Science

and Software Engineering; 2022.

16. Ravindra N Duche, N.P.Sarwade; Sensor Node

Failure or Malfunctioning Detection in Wireless

Sensor Network; 1Department of Electrical

Engineering, VJTI, Mumbai, India; 2022.

17. Shahram Babaie, Afsaneh Khosrohosseini; A

new self-diagnosing approach based on Petri

nets and correlation graphs for fault

management in wireless sensor networks;

Department of Computer Engineering,

Tabriz Branch, Islamic Azad University,

Tabriz, Iran;2023.

18. Er. Saurabh, Dr. Rinkle Rani Aggarwal; A Review

of Fault Detection Techniques for Wireless Sensor

Networks; Department of Computer Science &

Engineering, Thapar University, Patiala;2023

19. Bill C.P. Lau a, Eden W.M. Maa; Probabilistic

fault detector for Wireless Sensor Network; City

mailto:arod@dei.uc.pt

Damanhour Journal of Intelligent Systems and Informatics

16

University of Hong Kong, Hong Kong,

China;2024.

20. Sushruta Mishra, Lambodar Jena, Aarti Pradhan;

Fault Tolerance in Wireless Sensor Networks,

Dept. of CSE, GEC, BBSR India;2022.

21. Hai Liu1, Amiya Nayak1, Ivan Stojmenović; Fault

Tolerant Algorithms/Protocols in Wireless Sensor

Networks; School of Information Technology &

Engineering, University of Ottawa, K1N 6N5,

Canada. 2022.

22. Mohamed K. Watfa and Sesh Commuri, An

Energy Efficient and Self-recovery 3-Dimensional

Sensor Cover, School of Electrical and Computer

Engineering University of Oklahoma,

Norman,2023.

23. Abayomi M. Ajofoyinbo; Energy Efficient

Packet-Duration-Value Based MAC Protocol for

Wireless Sensor Networks; Department of

Systems Engineering, Faculty of Engineering,

University of Lagos, Lagos, Nigeria;2023

