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Abstract: Wireless sensor networks (WSNs) have several uses and provide endless future possibilities Wireless sensor network 

nodes are prone to failure because of energy depletion, communication link difficulties, and malicious attacks. As a result, Self-

recovery techniques are one of the most significant issues in WSNs. Error detection is the primary strategy in the Self-recovery 

mechanism in wireless sensor networks (WSNs), with each cluster head frequently checking the readings of its members.  

According to previous research, most comparing approaches will fail if more than half of a sensor's nearby nodes are incorrect. 

Furthermore, these comparing approaches cannot discover common mode failures.  The recommended fault Self-recovery 

approach functions by comparing the pulse sequence number generated by clustering nodes and distributing the choice made 

about each node. This paper presents an approach which can both locate and recover malfunctioning nodes in sensor networks. 

The proposed model integrates the capabilities of isolating the defective cluster sensors, which cause WSN malfunctions, from the 

cluster cycling and advertising the new path coordinates for the base station (BS). The simulation results show that the proposed 

Effective Fault Clustering Management (EFCM) approach is very exact in locating malfunctioning nodes and very quick in 

establishing a cover free of such nodes. When using the NS3 simulator. 
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1. Introduction 

 

WSN is an autonomous organizing network comprised 

of thousands of low-cost, low-power sensor nodes. 

Each sensor node has restricted functionalities such as 

processing, communication, and sensing. These 

devices can be employed for particular purposes, such 

as detection and reporting the occurrence of intriguing 

occurrences. The precision of individual node data is 

crucial in many applications. For instance, in a 

surveillance network, sensor readings must be accurate 

to minimize missed detections. As a result, All WSNs 

must meet the energy competence, scalability, and 

error tolerance specifications. Particular concerns must 

be addressed for WSN to continue to operate. 1) WSNs 

consisting of sensor nodes may be installed in 

unmanaged and possibly hostile locations, increasing 

the likelihood of node failure. 2 In contrast to wireless 

local area networks, the journey from source to 

destination in wireless sensor networks frequently 

includes many wireless links (hops). Wireless links 

between nodes are susceptible to wireless channel 

fading, resulting in channel errors. 3) Data from each 

sensor node is routed to the sink node [1]. To maintain 

effective bandwidth consumption, erroneous data 

generated by faulty sensor nodes must be removed 

from the network. 

 

Sensor nodes are powered by batteries, which means 

they have limited power sources. Additionally, these 

nodes are placed in hard and hazardous locations, and 

the sensors are prone to failure. Faulty sensor nodes can 

result in faulty data sensing, inaccurate data processing, 

and inappropriate data communications [2]. Faults in 

WSN nodes arise when one or more of their hardware 

components fail. WSN node status is classified into two 

groups based on numerous faults: healthy and 

defective. A node is considered broken if its battery 

power exceeds the threshold limit, its microcontroller 

fails, or the transceiver's transmitter circuit 

malfunctions. If the transmitter circuit of a node fails, 

even if all other hardware components are in good 

working order, the node is classified as defective. The 

faulty node must be replaced with a fresh node. 

Otherwise, its responsibilities must be handled by 

another healthy node. The healthy node can be divided 

into three groups: traffic node, normal node, and end 

node. In a healthy node, the transceiver is operational 

but the sensing device is malfunctioning, we can utilize 

it as a traffic node. A traffic node can be used as a router 

in multi-hop wireless data transfer. The usual healthy 

node, which has all of the sensor nodes' components in 

good working order, can be used for any form of WSN 

job. The transceiver's receiver circuit malfunctions at 

the end node. As a result, it may sense monitoring field 

parameters and communicate data to the base station 

via another node. However, the end node cannot 

receive the data from any other node. Therefore, it 

cannot be used as a router in WSN. 

 

We can broadly classify faults (shown in Fig. 1) that 

can impair sensor network performance into two types: 

hard faults (permanent or occupation defects) and 

systematic faults (transitory, devious, and recurrent 

faults) [3-8]. In the event of a function failure, the 

malfunctioning sensor nodes do not respond or send 

any reading to the other nodes. However, in a 

temporary glitch, the sensors are unable to conduct 

their expected operations for a short period, making 

Self-recovery problematic. Whereas intermittent 
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malfunctioning sensor nodes offer sometimes fault-free 

information, making it difficult for the fusion centre to 

conclude the rank of a sensor. Devious faulty sensors 

behave in unpredictable ways, sending different data at 

different times. 

 

Fig.1. Fault classification in the clustering sensor nodes. 

 

Failures in wireless sensor networks can be caused by 

a variety of factors, including node failures, link 

failures, design flaws, and implementation errors. 

Locating the causes of such failures is critical to 

ensuring the network's reliability, but it is typically a 

difficult task due to several factors, including the 

distributed nature of most protocols and applications, 

the energy constraints imposed on any technique, and 

the wide range of faults in such networks, which range 

from node crashes to bugs in the code running on the 

nodes. Furthermore, the complexity of software 

develops dramatically for its size. Large-scale software 

systems are particularly error-prone and fail frequently, 

especially for sensor network applications, which are 

intrinsically distributed.  As a result, Self-recovery 

must be used to ensure that such systems provide the 

necessary level of functioning even when there are 

errors present. Because sensor nodes are susceptible to 

failure, Self-recovery should be actively addressed in 

many sensor network applications [9]. This paper 

presents a self-healing system that consists of three 

major stages: fault detection, Self-recovery and 

recovery. During the detection phase, each node 

generates a heartbeat message, which is then broadcast 

to its neighbours. Each fault-free and soft-faulty node 

responds to the heartbeat request within a specific 

timeframe. By the end of this stage, each node has a 

local view of the fault status of its one-hop neighbours. 

During the Self-recovery phase, each node broadcasts 

a heartbeat message regularly, and the job assigned to 

nodes is to increment the heartbeat sequence number. 

Finally, a covering phase covers each node that does 

not broadcast the heartbeat message and does not 

receive the heartbeat message from 1-hop neighbours; 

the coverage job is given to cover no mal-functioning 

nodes and isolate. We are listed as follows. 

 

1. Investigate fault detection using a distributed 

technique. 

2. Propose a Self-recovery technique that detects 

hardware failures with high accuracy while 

requiring little time, heartbeat messages, and energy 

overhead. 

3. Our method is based on the assumption that a faulty 

node can be switched off if it is covered, causing the 

network to behave normally. 

 

2. Related works 
 

Fault detection techniques were utilized to detect 

prospective problems and locate the source of faults, 

which is useful for fault recovery operations. There 

have been numerous research accomplishments in 

recent years. In 2021, Khilar [10] proposed a 

revolutionary method for detecting nodes with both 

types of problems without relying on a specific sensor 

model. The suggested fault model is more accurate and 

involves less communication than the existing 
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methods. In the same year, Jurdak and Rosalind Wang 

presented anomaly detection in WSNs [11], which 

focused on data anomalies caused by security assaults 

and the statistical methodologies used to identify them. 

Because of their close connection to often hostile 

physical environments, WSNs and other networks 

utilized in extreme situations (such as space) are more 

likely than normal networks to have connectivity or 

hardware breakdown anomalies. The research also 

focuses on developing detection algorithms that target 

network and data-level anomalies. Banerjee et al. [12] 

suggested a strategy for distributed defect detection and 

sensor management in WSNs using cellular automata. 

Node failures are recognized in a distributed manner, 

and cellular automata are used for network 

management.  

 

In 2022, Mahapatro [13] could be studied an online 

fault Self-recovery algorithm for wireless sensor 

networks. The researcher explicitly takes into account 

the possibility of faults in different sections of sensor 

networks and communication channels. The diagnostic 

local view is obtained by exploiting the spatially 

correlated sensor measurements. These local views are 

then disseminated using a spanning tree of cluster 

heads. In the same year, Camilo et. al. [14] provided an 

overview of existing post-deployment WSN diagnostic 

tools, by briefly presenting their functionality, 

architecture and constraints, to enable a basic 

understating of each tool. The survey also includes a 

multi-dimensional comparative analysis of the various 

tools, based on a proposed classification scheme and 

evaluation criteria, as well as an identification of the 

main open research issues.  Mishra et al. [15] attempted 

to address mistakes and faults that arise for a variety of 

reasons, including hardware malfunction, software 

problems, environmental dangers, and so on. Thus, a 

sensor network should be fault-resistant to properly 

cope with these erroneous conditions. Duche et. al. [16] 

presented a new method to detect sensor node failure or 

malfunctioning in such an environment. The proposed 

method used the round trip delay (RTD) time to 

estimate the confidence factor of the RTD path. Based 

on the confidence factor the failed or malfunctioning 

sensor node is detected. 
 

In 2023, Babaie et. al. [17] proposed the behaviours of 

the components of a sensor are independently analyzed 

using the proposed model based on Petri nets and the 

links of the sensor’s components are investigated 

through the correlation graph. Saurabh et al. [18] 

considered this paper's major purpose to provide a 

comparative examination of fault detection strategies 

employing various approaches. Sensor nodes face 

varied energy and computational restrictions. To 

deliver excellent service using coverage standards, 

there is a need to design procedures for fault tolerance, 

event reporting, and maintaining energy efficiency. In 

2024, Lau et. al. [19] suggested a revolutionary 

centralized hardware defect detection solution for a 

structured Wireless Sensor Network (WSN) using the 

Naïve Bayes paradigm.  Various defects are widely 

classified in the following section; they infect the 

behaviour of wireless sensor networks, causing them to 

misbehave and affecting the network's functional 

performance. 

 

Failure Classification 
 

To understand the Self-recovery mechanism, we 

should distinguish between faults, errors, and failures. 

A fault is any type of imperfection that causes a 

mistake. An error indicates an improper (undefined) 

system state. Such a situation may fail. Failure is the 

(observable) manifestation of an error, which occurs 

when the system deviates from its specification and 

cannot perform its intended functionality. Several 

problems could cause faults in WSNs: a node could be 

moved to a different region, resulting in a link failure; 

nodes could lose power and stop responding to 

requests; or they could start sending arbitrary values, 

either intentionally (after a security breach) or due to a 

malfunction. The errors that a WSN may encounter will 

be classed as follows: crash, omission, timing, value, 

and arbitrary. These failures are observable 

manifestations of the underlying problems listed 

below: 1) Crash or omission: A failure by omission 

occurs when a service does not reply to requests 

consistently. For example, this could be due to radio 

interference, which causes periodic communication 

loss. A crash failure happens when the service stops 

responding to any requests. An omission degree f can 

be defined as a limit on the number of omission flaws 

a node can have before being classed as crashed. 2) 

Timing: Services may fail owing to a timeout in 

processing a request or providing data too early. Such 

timing faults occur when a node answers a request with 

the right value, but the response is received outside of 

the timing interval set by the application. Time failures 

will only happen if the application specifies time 

limitations. 3) Value: A service is regarded to have 

failed due to an inaccurate value if it sends a timely 

response but fails to deliver the value accurately. For 

example, a service that aggregates data from other 

nodes may transmit a result value to the base station 

that does not precisely represent the original data. Such 

issues could be caused by faulty software, hardware, 

corrupt communications, or even hostile nodes that 

generate erroneous data. 4) Arbitrary failures are those 

that cannot be grouped into the previously specified 

categories. 5) Byzantine: failures describe a type of 
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arbitrary failure that is in general caused by a malicious 

service that not only behaves erroneously but also fails 

to behave consistently when interacting with other 

services and applications. In sensor networks, an 

aggregation service could start sending both incorrect 

and correct values to the sink, or a node routing 

messages could not forward a message despite sending 

an acknowledgement back to the sender [20]. 

 

Self-recovery on Different Levels 
 

Self-recovery is a new area of research that focuses on 

fault tolerance in dynamic systems. It deals with 

imperfect specifications, uncontrollable environments, 

and system reconfiguration based on their dynamics. 

The term "Self-recovery" refers to a software system's 

ability to study, identify, diagnose, and respond to 

system problems. Self-recovery components or 

programs must be able to detect system failures, 

evaluate external restrictions, and make appropriate 

modifications. Self-recovery categories of elements 

include fault model or fault hypothesis, system 

reaction, system completeness, and design context. A 

fault model of a Self-recovery system is to state what 

faults or injuries to be self-healed including fault 

duration, fault source such as operational errors, 

defective system requirements implementation errors 

etc. System response includes the aspects of fault 

detection, degree of degradation, fault response and an 

attempt to recover action or compensation for a fault. 

Fault detection approaches involved in a self-recovery 

system include the application system's semantics-

driven assertions, supervisory checks, examining the 

computing answers, comparison of replicated 

components, online self-testing etc. The system 

completeness aspect deals with the reality of 

knowledge limits, and incompleteness in specifications 

and designs thereof. It also deals with the problem of 

system self-knowledge, system evolution etc. Handling 

the architectural incompleteness for example, of third-

party components or various patches during or after 

system deployment is a challenging issue in developing 

a Self-recovery system. A fault is an anomaly that 

causes a node to malfunction and is caused by hardware 

or software issues at a single node and has nothing to 

do with connectivity with surrounding nodes. 

Anomalies are noise-related measurements resulting 

from a malfunctioning sensor. This condition could 

emerge as a result of weak or broken hardware 

components, or bad software integration of the 

components, but an event is defined as a specific thing 

that alters the real-world state, such as a forest fire, air 

pollution, etc.  Thus, five levels of fault tolerance were 

discussed in [18]. The five levels are: physical, 

hardware, system software, middleware, and 

application. More specifically, we distinguish self-

recovery in WSNs into four system levels. A self-

recovery in a WSN system can occur at the hardware, 

software, network communication, and application 

levels. 

 

A. Hardware-level 

Faults at the hardware layer can arise when any 

hardware component of a sensor node fails, including 

memory, battery, CPU, sensing unit, and network 

interface (wireless radio). Sensor node hardware failure 

can be attributed to three major causes. The first is that 

sensor networks are typically used commercially, and 

sensor nodes are costly. As a result, the components 

used to create a sensor node may not necessarily be of 

the best quality. The second is that severe energy limits 

limit sensor nodes' long-term and dependable 

functioning. For instance, when a sensor's battery 

exceeds a particular value. Sensor measurements may 

become erroneous [21]. The third reason is that sensor 

networks are commonly implemented in harsh and 

dangerous environments, impacting the regular 

operation of sensor nodes. These environmental 

conditions significantly influence the wireless radios of 

sensor nodes. 

 

B. Software level 

A sensor node's software consists of two parts: system 

software, such as the operating system, and 

middleware, which comprises communication, routing, 

and aggregation. The ability to execute localized 

algorithms dispersed and simultaneously is an 

important feature of system software. Software faults 

are a common source of mistakes in WSNs. One 

feasible option is software variety, which involves 

delivering each program in several versions. Because it 

is difficult to provide fault tolerance affordably at the 

hardware level of a sensor node, numerous fault-

tolerant solutions are anticipated at the middleware 

layer. The great majority of existing WSN applications 

are easy. To adapt to real-life applications, it is 

necessary to design considerably more complex 

middleware for WSNs. 
 

C. Communication level 

Errors at the network layer affect wireless 

communication links. Link faults in WSNs are often 

caused by the surrounding environment, assuming no 

hardware errors exist. Radio interference between 

sensor nodes can also cause links to fail. For example, 

if sensor A is in the interference range of other sensors 

transmitting messages simultaneously, sensor A will be 

unable to properly receive a message from sensor B. 

The conventional approach to improving wireless 

communication performance is to use aggressive error-
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correcting algorithms and retransmissions. These two 

methods may cause additional delays in operation. It is 

worth noting that there is always a trade-off between 

fault tolerance and performance. 
 

D. Application level  

Fault tolerance can also be handled at the application 

level. For example, identifying many node-disjoint 

paths enhances routing fault tolerance. The system can 

transition from an unreachable path with broken links 

to an accessible candidate path. However, a fault 

tolerance strategy in one application cannot be used 

directly in another. It is necessary to address fault 

tolerance in various applications on an individual basis. 

In contrast, Fault tolerance at the level of an application 

can be utilized for tackling faults in nearly any type of 

resource [22]. 

 
 

3. The proposed Effective Fault Clustering 

Management (EFCM) 
 

The Self-recovery mechanism acts primarily through a 

series of cycles. The first cycle is known as the 

monitoring cycle. During the monitoring cycle, the 

systems monitor will examine the computer 

environment for any inappropriate behaviour. After the 

monitor's inspections are completed, it will forward the 

data acquired from current observations to the next 

level. The second step of the cycle is known as error 

detection and Self-recovery; if Self-recovery reports 

that there is no defect in the system, it will return to the 

monitor for further observations. If the monitor detects 

an error, it will report it to the next stage of the cycle. 

The third stage of the cycle is known as the analysis 

and selection of a repair operation. At this stage, the 

fault is analyzed and a method of recovering is 

determined at this part of the cycle. After the repair 

recovery operation is determined, the report is passed 

onto the final phase of the cycle called execute repair 

and operation (self-regular). Any repairs that are 

needed are completed at this phase in the cycle. Once, 

the faulty areas are self-repaired the cycle begins all 

over again. Since this cycle is a closed loop, the process 

of Self-recovery environments will continuously heal 

itself as depicted in Fig. 2. 

 

 

 

 

 

 

 

 

  

Fig. 2: The proposed Self-recovery System Process. 
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3.1. The Problem Definition 
 

This section dealt with the designated network 

description and problem formulation, following certain 

necessary definitions. 

Definition 1: A normal node is a healthy node that has 

all of its sensor node components in good working 

order and may be used for any type of job in WSN  . 

Definition 2: If a traffic node is healthy, the transceiver 

is functioning, but the sensing device fails, we can use 

it as a network traffic node. A traffic node can be used 

as a router in multi-hop wireless data transfer.  

Definition 3: The end node is healthy, but the 

transceiver's reception circuit is malfunctioning. It may 

identify the parameters of the monitoring field and 

transfer data to the base station through another node. 

However, the end node cannot accept data from any 

other nodes. As a result, it cannot be used. 

Definition 4: A bad node has hardware or software 

components that can cause faults within the network; 

we may remove this node and cover for it using 

neighbours . 

Definition 5: A passing cover has no malfunctioning 

nodes. In contrast, a failed cover contains at least one 

defective node. 

 

3.2. Network Scenario 
 

The wireless sensor network includes several clusters 

managed by a sink node (fusion centre). The sink node 

is a higher level of the network and collects all the data 

generated in the network and propagates it to the back-

end system. A cluster within a wireless sensor network 

contains N number of sensor nodes and one head cluster 

node, which are randomly distributed and deployed in 

a cluster located in two dimensional. Each sensor node 

in the cluster has an initial power source, a processing 

unit, memory, radio unit and sensors. The sensor nodes 

interact wirelessly and use the one-to-many broadcast 

primitive in their basic transmission mode. The 

transmission range of each sensor node is fixed. The 

transmission average degree of the network is 

determined by its transmission range. The data 

perceived by the sensor node is stored locally on its 

memory and distributes its detected data to its 

neighbours as well as the cluster head, which checks 

transferred data from cluster nodes and sends valuable 

data to the fusion centre regularly within a fixed time 

interval. Each node knows the distances separating it 

from each of its 1-hop neighbours and thus can know if 

it is covered or not when the failure occurs.  Our 

proposed EFCM schema aims to detect the failure in 

any node within the cluster, and the Self-recovery 

whereabouts of failure exactly in any of the nodes in 

the cluster, according to the above parameters.  

3.3. Problem formulation  
 

The EFCM schema in our proposed model is based on 

the following assumptions  : 

1) As shown in Figure 2, we consider a WSN with 

N nodes distributed using a clustering model. Assume 

N = {X1, X2,... XN}  

2) All sensor nodes are identical in structure and 

function, and their status is normal. This signifies that 

every node in the cluster is active; it has a heartbeat 

message and location information in memory . 

3) A good sensor node can accurately relay the data 

it gathers to its neighbouring nodes and the cluster 

head. In contrast, a malfunctioning sensor node might 

receive correct data from its neighbours and the cluster 

head but may send out random or incorrect values due 

to issues with its functional or processing unit. 

4) A synchronous mode of communication is used 

to deliver data from all sensor nodes to the cluster head 

at a set period . 

5) There is only one cluster head with the properties 

of receiving data from all cluster nodes, checking 

received data, and delivering data to the sink node. It is 

deployed outside the network and has unlimited 

energy . 

6) If a faulty transmitter node is represented as N1 

= {x1, x2,... xa}, a faulty receiver node or traffic node 

is selected as N3 = {x1, x2,..., xh}, the active nodes in 

the network. are Nactive = {N-ND}. The dead vertices. 

7) The energy (E) represents each node's starting 

energy, Tt bit data transmitted time, and Rt bit data 

received time, all approximated in microseconds. The 

energy consumption models are dependent on 

preceding parameters, as demonstrated by equations 

(1) and (2). 

 

Consumption Transmit Energy (CTE)  

CTE =  E - (E * Tt)            t1 ≤ t ≤ t2         (1) 

Remaining energy after transmitting (RET) 

RET = E-Tt                          t1 ≤ t ≤ t2        (2) 

Consumption Receive Energy (CRE)  

CRE =  RET- (RET* Rt)   t1 ≤ t ≤ t2            (3) 

 Loss of emission energy            Ed=0                      (4) 

 

Where we denote CTE as the energy consumption by 

transforming l bit data crossing a certain time, RET 

denotes the remaining energy after transmitting, and 

CRE as the energy consumption by receiving l bit data. 

Ed is denoted as the emission circuit’s loss of energy. 

The power amplification loss is calculated by 

comparing the energy of the node after receiving data 

with the threshold. If its energy is less than a threshold, 

the node needs to be covered by neighbours. Previous 

fault tolerance techniques did not address the reduction 

of emission energy loss.  Therefore, we proposed an 
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EFCM schema for the development of fault tolerance 

techniques, to include both solutions for fault detection 

and self-recovery problems and solutions of recovery 

for dead nodes or nodes that exceed threshold 

problems. Our proposed EFCM-based self-recovery 

mechanism has been able to increase the significant 

performance of WSNs. 

 

3.4.  EFCM methodology 

 

The EFCM schema manages the activities of the 

proposed defective node detection model and the Self-

recovery model, which is based on the Self-recovery 

mechanism in fault tolerance. 

 

A. Detection Phase.  

To provide any countermeasures, a system must first 

determine whether a specific functionality is or will be 

faulty. As a result, the cluster head estimates the 

network architecture that will be required during the 

fault self-recovery phase, to boost efficiency and 

improve performance statistics  . 

a) The initialization phase. The cluster head sends 

fixed data to all sensors in the cluster's network. 

Each sensor is supposed to transmit a heartbeat 

message to the cluster head, which verifies the 

node's condition to determine whether it is healthy 

or malfunctioning. Sensor nodes (Si ∈ S) transmit 

and receive data from their neighbours (Negt (i)). 

Each sensor node has its fault status set to fault-free. 

b) Computational phase. Each sensor receives 

information from its neighbouring sensor nodes. At 

time t = 300 s [23], which is the interval between 

successive packets in the sensor node, it applies the 

mean operation to both the incoming data and its 

own sensed data. The computed mean is then sent 

back to the cluster head. 

 

c) Detection phase. During this phase, the cluster head 

gets both the calculated mean and the heartbeat 

messages from each sensor node. Following that, it 

analyzes the acquired data to determine the function 

and identify malfunctioning sensor nodes. As a 

result, the cluster head extracts the sender Identifier 

from the received data to determine which sensor 

nodes are capable of sending data to the cluster. 

Sensor nodes that cannot send a heartbeat message 

to the cluster head within an estimated time t are 

considered to function faulty. Second, after 

identifying faulty sensor nodes, the nodes are 

diagnosed based on their status: alive or dead. The 

cluster head compares the sensor node data with its 

data for placing the data fault sensor nodes. If it 

matches, the cluster head determines that all sensor 

nodes in the cluster are alive and healthy, as 

determined by the mean of nearby sensor data. In 

contrast, if the cluster head does not receive any data 

from any sensor node inside the cluster within the 

predicted duration, the node might be considered 

dead. If the node's data is not matched then the 

cluster head believes that the sensor node present in 

the cluster is considered a defective node. Finally, 

the cluster head verifies heartbeat messages for all 

nodes throughout the predicted period t to ensure 

their operational state by determining which sensor 

node is unable to send heartbeat messages and so is 

considered a bad node. The cluster head then 

conveys information about the status of the node, 

whether it is alive or dead, as well as information 

about the operational status of the node, whether it 

is healthy or faulty, to all nodes in the cluster, so that 

the remaining nodes in the cluster do not send or 

receive data from this node. This allows for the 

maintenance of network quality. The cluster head 

sends a job to each broken sensor node for further 

Self-recovery.  

 

B. Recovery Phase 

The suggested Self-recovery model is based on sequence 

packets (transmit, receive) within a time interval 

estimated to be 300 s for each sensor node in the cluster. 

Each node is responsible for detecting its operational 

status. Each node detects sensor node failure using the 

previously defined fault detection methodology. The 

node takes data from neighbouring nodes in the same 

cluster and compares it to its sensing data. The Self-

recovery model is used to detect the operational status of 

the node's hardware components, which include the 

battery, microcontroller, sensor, transmitter circuit, and 

receiver circuit. The proposed Self-recovery model 

investigates failures of the aforesaid circuits based on the 

presence of their heartbeat messages for the cluster head 

node, Algorithm (1). 

The primary objective of sensor utilization in 

applications is to avoid disasters and crimes by detecting 

anomalies. When an abnormality is detected, the user 

should receive a warning in real-time, which needs an 

event-driven data processing mechanism. 
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Algorithm (1): The clustering self-recover mechanism 

Initialization phase 

Input :- Negt ( i) : set of single hop the neighbours of Si ; 

▪ X: measures of  S values  by the transmission from sensor Si to its neighbour Sj ; 

▪ Y : measures of  S  values  by the transmission  from  Sj  from sensor Si   ; 

▪ dij: difference between X  and Y at time(t) ; 

▪ dij=X-Y 

▪ dij : measure difference rate between X and Y at a new time (t+1), from time t to t+1 :  α  

▪ dij =(X' –X) –(Y'-Y)  α  

▪ cij : test  results  between  X  and  Y , cij € {0, 1}, cij = cji ; 

▪ ө: predefined threshold value ; 

▪ ө1=0.2, θ2=0.1 (suppose two values for comparing differences rate in data for every time within the 

transmission range between sensors); 

▪ Ti: tendency value of a sensor, Ti € {LG, LF, GD, FT}; 

▪ Ti € "likely goody, likely fail, good, faulty" 

 

Computation phase 

Step 1: Each sensor ( Si) tests every member of  Sj  € Negt ( i)  to generate test value cij {0, 1}  

Each sensor Si , set  cij  = 0 and compute dij=X-Y    

 IF dij > 0 THEN    IF dij > ө1 THEN 

 dij =(X' –X) –(Y' -Y) ;                            α dij =(X' –X) –(Y' -Y); α 

IF α dij >  ө2 THEN                          IF α dij >  dij THEN  

Set cij = 1;                                                Set cij = 1; 

 

Detection phase 
Step 2:  Si generates a tendency value Ti based on its neighbouring sensors' test value through transmission 

range: 

𝐼𝐹 ∑ 𝑆𝑗€ 𝑁𝑒𝑔𝑡 ( 𝑖)( 𝑐𝑖𝑗) < [𝑁𝑒𝑔𝑡
 𝑖

2
]      THEN 

𝑛

 𝑘=1
  

Ti = LG; 

ELSE   

Ti = LF; 

END 

 

Confirm Phase 

Step 3: Determine the state and accuracy of the test by comparing the number of neighbouring nodes with 

different test results. 

IF  ∑ 𝑆𝑗€ 𝑁𝑒𝑔𝑡 ( 𝑖)(1 − 2 𝑐𝑖𝑗) ≥ [𝑁𝑒𝑔𝑡
 𝑖

2
]    THEN 

𝑛

𝑘=1
 

 

Tj = GD; 

ELSE   Tj = LF; 

END 
 

Step 4: For the remaining undecided sensors, perform the following steps: 

FOR i = 1 to Si  

If Ti = LG, THEN 

Tj = Tk = GD.  

If cji=cki=0, THEN 

Ti = GD.  

ELSE  

Ti = FT;  

Repeat; 

END 

END 
 

Step 5: for cover malfunction or faulty sensor nodes, do the following steps  

FOR k = 1 to n 

TEMP = Negt ( i) 

S=Select (k,n) 

END 
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Another scenario requires applications to continuously 

gather and integrate data provided by a large number of 

physically distant sensor nodes. There are numerous 

devices exchanging data, however some information 

sources and sinks may not be available in the network 

at the time. Therefore, request/response 

communication is insufficient. For example, a client 

that wants instantaneous updates of information would 

have to continuously poll the information providers, 

resulting in network overload and congestion. 

Furthermore, because energy is a limited resource, 

excessive information demands should be avoided. If 

the projected frequency of fundamental event 

occurrence is low, consider constructing simultaneous 

systems. The alternative is to use event-driven 

communication, which is an asynchronous architecture 

with independent senders and receivers. Its clients are 

event publishers and event subscribers, with message 

transmission and notification services allowing both 

one-to-many and many-to-many communication. (as 

depicted in Figure 3).  

 

  
Fig. 3. Event-driven communication in WSNs 

 

▪ Faulty transmitter nodes: Each sensor node computes 

the data comparison results and delivers them to the 

cluster head, who checks the node's condition over an 

estimated period of sequence packets; we can use this 

duration as a threshold. If it exceeds the threshold 

value and does not relay its results to the CH, the 

sensor is reported to fail; otherwise, the transceiver 

circuit is deemed disconnected. As a result, a sensor 

sends a heartbeat message to the cluster head at 

regular intervals, to indicate its operational health. As 

a result, the cluster head sends a message to the 

remaining cluster nodes, announcing that those nodes 

are faulty. If it crosses the threshold value and sends 

its results to the cluster head, the sensor node is 

declared as connected.  

 

▪ Faulty Receiver Nodes: If sensor circuits are 

within the transmission range, they are considered the 

primary advice for the sensor node in the proposed 

architecture. Sensor circuits in sensor nodes must 

periodically sense required events, such as temperature. 

Each node broadcasts its observed temperature value to 

all neighbours in the cluster regularly. It collects the 

measurement, compares it to the measured value of 

nearby sensors in the same cluster, and calculates the 

measurement difference. If a sensor senses an event as 

y(t) during the timing interval t1 and a neighbour node 

senses information as x(t) during the timing interval t2, 

and the component of x(t) along y(t) is cy(t), then the 

information difference vector e(t) is represented by 

applying the following formula 5: 

 

        𝑥(𝑡)−∝× 𝑘 𝑦(𝑡) ,     t1 ≤  t ≤  t2            (5) 

 e (t) = 

                          0    ,             otherwise   

 

where k is the regularity coefficient     

 

▪ Traffic nodes:  If the sensor detects a flaw, it identifies 

itself as a traffic node. In our proposed EFCM, the 

sensor regularly sends a heartbeat message to the 

cluster head to inform it of its operational status. 

However, if the cluster head does not receive this 

heartbeat message within a specified timeframe, it 

may consider the corresponding node to be defective. 

In addition, each node gets data from neighbour nodes 

in the cluster and compares it to its sensing, sending 

valuable data to the cluster head during an expected 

period that is deemed a threshold value.  If that value 
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exceeds the threshold and the cluster head node does 

not receive any data during that period, the cluster 

head node may deem the node's sensor circuit broken.  

 

▪ Omission Nodes. The node requires power to 

broadcast and receive messages to other sensor nodes 

in the cluster located at varying distances; thus, 

communication is heavily reliant on the node's 

energy. As a result, the node spent the majority of its 

energy communicating with its next-hop neighbour. 

In our EFCM, the cluster head (CH) periodically 

checks the battery status of its clustering members. 

The receiver node sends a heartbeat message to the 

cluster head informing it of the battery's condition, 

which is either active or sleeping. The sensor node 

can also detect its own battery/power failure status 

through periodic energy level checks on the receiver 

circuit. A battery error happens when a sensor node's 

battery energy level goes below a certain threshold. 

As a result, if the node's battery level exceeds the 

threshold amount, it can proclaim itself as a 

malfunctioning node by sending a message to its 

neighbour and a heartbeat message to the cluster 

head. In the proposed EFCM, the sensor node may 

identify its energy level by performing the following 

mathematical calculations, which aid in detecting 

either battery continuity or battery recovery. 

 

1. If Node is needed recovered, thus (CRE < Ethr)                 

2. If Node is continued, thus  (CRE > Ethr) 

3. If the Node is removed, thus it is dead 

Where CRE is the energy consumption after receiving 

l bit data that is estimated by joule, and Ethr is a 

threshold value of battery that is estimated by joule. 

After detecting and diagnosing a fault, the system 

proceeds to prevent or recover from it. The primary 

strategy for achieving this goal is to re-recover the 

system's components that are critical to the system's 

proper operation. In our recovery model, after the 

packet reception phase, the sensor node checks to see if 

it is covered; if so, it waits for a random time (to reduce 

competition between cluster neighbours). Hence, the 

sensor node that needs to be covered, we may consider 

as the sleeping node; the sleeping node first executes a 

self-search theorem, where this node sends a message 

to both the previous node and the next node in cluster 

topology; to ask them "Can they cover its task during 

my sleeping period?", If the head selects another set of 

neighbours to cover this node, he sends an invitation 

message. The sleeping node then waits for a set amount 

of time (referred to as the sleeping period) to receive 

feedback from the network before entering active 

mode. If this node does not get feedback and the 

sleeping duration expires, It will stay in sleep mode.  

Following that, The CH chooses a new pathway for the 

cluster's active nodes and eliminates sleeping nodes 

from the cluster topology. The proposed fault recovery 

paradigm is summarized in Figure [4]. 

 

C. Coordinates Adjustment 
 

Adjusting coordinates in a Self-recovery system for 

monitoring sensors involves several key steps. Here’s a 

structured approach: 

1. Define the Sensor Network Layout 

a) Map the Environment: Create a layout of the area 

where sensors are deployed. 

b) Identify Sensor Positions: Record the initial 

coordinates of each sensor in the network. 

2. Determine the Recovery Parameters 

a) Define the parameters that need adjustment (e.g., 

position, orientation). 

b) Establish the reference points for recovery. 

3. Calculate Adjustments 

Use mathematical formulas to compute the required 

adjustments. For example, in a Cartesian system: 

New X = Old X + ΔX                                          (6) 

New Y = Old Y + ΔY                                          (7) 

Ensure to account for any transformations 

(rotations, translations). 

4. Calculate New Coordinates 

When a sensor fails or needs recovery, calculate its 

new coordinates based on: 

a) Distance from Other Sensors: Use the average 

position of neighbouring sensors. 

b) Coverage Area: Ensure the new position 

maintains adequate coverage. 

5. Implement Recovery Protocols 

Deploy Recovery Mechanisms: If a sensor is non-

functional, initiate recovery protocols to: 

a) Reposition the sensor (if movable). 

b) Activate backup sensors in nearby locations. 

c) Update the monitoring system with the new 

coordinates. 

6. Monitor and Validate Adjustments 

a) Real-time Monitoring: Continuously monitor the 

sensor data after adjustments. 

b) Validation Checks: Ensure the new coordinates 

provide accurate and reliable readings. 

7. Iterate Based on Feedback 

a) Use feedback from the monitoring system to 

refine the recovery process. 

b) Adjust the algorithms and thresholds based on 

performance data. 
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4. Simulation & Experimental Results 
 

The Simulator NS3 utility is used for simulations. The 

simulation scenario involves a cluster of 5 sensor nodes 

coupled to the cluster head node; they are active nodes 

that are structured and deployed at random using a 

distributed approach. The measurement parameter xi is 

believed to represent atmosphere monitoring readings. 

We employ the EFCM approach to discover and 

recover malfunctioning nodes in clustering by self-

adjusting new coordinates in the defective clusters. In 

the proposed EFCM technique, we measure energy 

consumption after each completed transmission of data 

bits to determine which node to cover next. Typically, 

transmission (or reception) is not allowed between a 

sender (and receiver) and its neighbouring nodes, even 

if a transmission is currently taking place between the 

sender and receiver. We utilized the energy model from 

Eq. (8) to obtain the number of nodes that will be 

covered. 

          

CRE=  REt - (REt * Rt)          t1 ≤ t ≤ t2                  (8) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4. Flowchart of the layout of the proposed recovery schema 
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Experimental trials show that if the energy expenditure 

by receiving as CRE is less than the energy threshold 

(Ethr=0.03 of battery size), a node in the system will 

stop transmitting data and be considered 

malfunctioning practically, therefore this node needs to 

recover through the cluster. When implementing the 

proposed approach, the symmetrical network 

conditions were listed below. For a symmetrical WSN,  

1) All sensor nodes must be equally spaced apart . 

2) Each sensor node has the same sensitivity  . 

3) The operating speeds of all sensor nodes are 

equivalent   . 

4) All sensor nodes use the same wireless 

communication module . 

5) All sensors have fixed locations. 

 

The simulation employed normal distributions to 

randomly install cluster sensor nodes in a 270m×270m 

square terrine. Active nodes are pre-structured and 

deployed in advance, whilst inactive nodes are 

deployed randomly. During simulation, the cluster 

head sends a heartbeat message to all nodes in the 

cluster after each transmission to check for bit data that 

crosses an estimated time (t=300 𝜇s). The simulation 

found that nodes had an 80% hardware failure rate. 

Table 1 illustrates the experimental outcomes. The 

simulation results of our suggested EFCM revealed the 

efficiency of the proposed model, using five criteria 

that have been evaluated : 

1. Detection Accuracy (DA) refers to the proportion of 

disconnected sensor nodes identified as defective to 

the total number of sensors in the network. 

2. Elapsed Time: is the time spent transmitting and 

receiving l bits to determine the network issue, as 

determined by MS  . 

3. Diagnosed heartbeat message (DM): The cluster 

head sends messages over time to detect whether a 

parameter is linked or detached . 

4. Covered flag message: The cluster head sends this 

message to signal that a node will be covered if its 

battery is less than the threshold . 

5. The number of healthy nodes: is the total number of 

nodes in working order. Normal, end and traffic 

nodes are considered healthy nodes.  

6. The NS3 simulator tools simulated the suggested 

schema and evaluated its accuracy in carrying out 

self-detection and self-recovery models, as well as 

calculating the number of problematic nodes that 

can cause poor wireless sensor network 

performance. The performance of DA is very 

precise and quick in determining the number of 

faulty sensors that occurred during the detection 

process during the specified period. It is worth 

mentioning, that PR is extremely fast in recovering 

and is free of malfunctioning nodes. It also has great 

accuracy in detecting error clustering sensors via 

outgoing heartbeat messages used to locate and 

isolate failing sensor nodes during recovery phases. 

 
Table 1. The simulation yielded experimental results. 

 

The proposed design enhanced the fault recovery 

method, as seen in Figure (5). In the proposed model, 

we adopted a distributed clustering strategy to improve 

network lifetime, the most essential parameter for 

evaluating sensor network performance. Although 

there is no one definition of "network lifetime," our 

schema notion is established by the application's 

purpose, which is based on common heartbeat signals 

relating to the length until the first/last node in the 

network depletes its energy and disconnects from the 

base station. As a result, the network's lifetime can 

increase by more than 80 %. 
 

a) Test Byte Examination: 

In the proposed methodology, the sender node was 

capable of transmitting byte packets to its cluster 

neighbours during a specific time, and the receiver 

node received these packets within a specified duration. 

Following the receiving action, the receiver responds to 

the cluster head with a byte arrival notice, indicating 

the validity of this node (non-fail) to the head; this 

procedure is known as the good response of byte 

(GRB). Unless the receiver node responds to the cluster 

head and exceeds the specified time for receiving a byte 

packet, this is known as a poor response of byte (BRB). 

In a poor response, the cluster head sends a Test Byte 

message to the sender to check the node's transmission 

PARAMETER VALUES 

Number of nodes in the network 1800 nodes 

Number of clusters in the network 300 cluster 

Number of nodes in each cluster 6 nodes 

Data packet size                                              800 bit 

Initial energy 0.5 J 

The time between consecutive packets 300ms. 

Detection Accuracy (DA) in duty 

cycle 

~ 2 nodes for the round 

Consumed time for Detection 

Accuracy (DA) 

0 ms. 

The number of diagnosed heartbeat 

messages represented faulty 

transmitter nodes in the duty cycle 

~ 2 nodes for the round 

Consumed time to occur detection 

messages in cluster head represented 

faulty transmitter node 

62ms. 

The number of diagnosed heartbeat 

messages represented faulty receiver 

nodes in the duty cycle 

~ 1  node for the round 

Consumed time to occur diagnosed 

messages in cluster head represented 

faulty receiver 

125ms. 

Ratio of lost energy in deployments 52% of battery size 

Precision of  Recovery (PR) 100% 
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integrity. If the sender delivers the heartbeat message 

to the head, the head will authenticate the sender's 

validity. Furthermore, the head node declares that the 

receiving node is likely to fail into the rest of the 

cluster. Otherwise, the sender was regarded as a 

defective node and reported to the cluster nodes. Then, 

it selects the new path of monitoring and adjusts the 

coordinates of the monitoring sensors within the 

cluster. E.g., if a temperature sensor at coordinates (10, 

15) is malfunctioning, and the average position of 

nearby sensors is (12, 18), it might adjust the 

coordinates, as: 

New X = (10 + 12) / 2 = 11 

New Y = (15 + 18) / 2 = 16.5 

Thus, the adjusted coordinates for the malfunctioning 

sensor would be approximately (11, 16.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Sequences of the suggested fault recovery mechanism in simulation 
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Fig. 6:  Graph illustrates the implementation of the Test Byte examination  

 

b) Bit Error detection 

When an odd number of bits (including the parity bit) 

are sent incorrectly, the parity bit will also be incorrect, 

indicating a parity error during transmission. It’s 

important to note that the parity bit can only detect 

errors; it cannot correct them because it cannot identify 

which specific bit is erroneous. This means that the 

entire data must be erased and re-transmitted from the 

beginning. Successful transmission over a noisy 

medium can sometimes take a long time or may not 

occur at all. However, the advantage of using a parity 

bit is that it requires only one bit and a small number of 

XOR gates for its implementation. For example, if we 

communicate the four-bit value 1001, the similarity bit 

can be calculated as follows. 

Table 2. The scenario of Bit Error detection in a broadcast event 
Type of Bit  Successful Broadcast Scenario 

EVEN  1. Si wishes to transmit 1001  

2. Si computes the parity bit value as 1+1+1+1 (mod 

4) = 0.  

3. Si then adds the parity bit and sends 11110:  

4. CH gets 11110,  

5. CH computes parity (1+1+1+1+0 (mod 4) = 0) 

6. CH reports correct transmission based on expected 

even results. 

ODD  1. Si wishes to transmit: 1001. 

2. Si computer parity bit value is 1 + 1 + 1 + 1 (mod 

4) = 1. 

3. Si inserts the parity bit and sends: 11111. 

4. CH receives 11111. 

5. CH calculates overall parity as 1+1+1+1+1 (mod 4) 

= 1. 

6. CH reports accurate transmission after noticing 

expected unusual results. 

    This technique detects single-bit faults because if 

one bit is flipped owing to noise, the received data will 

have an incorrect number of ones. In the two preceding 

examples, CH's estimated similarity value corresponds 

to the parity bit in its received value, suggesting that 

there are no single-bit errors. Consider the following 

example of a transmission fault in the second bit using 

XOR: 

Table 3. Scenario of Bit Error detection in a failed broadcast event 
Type of Bit Error Failed Broadcast Scenario 

Even Errors in the 

Second Bit 

1. Si wants to transmit: 1001.  

2. Si computes the parity bit value (1^0^0^1 = 0). 

3. Si adds the parity bit and sends: 10010. 

Transmission error. 

4. CH Receives 11010. 

5. CH calculates overall parity as 1^1^0^1^0 = 1. 

6. CH reports incorrect transmission after observing 

unexpected results. 

Even Error in the 

Similarity Bit 

1. Si wants to transmit: 1001.  

2. Si computes the even parity value as 1^0^0^1 = 0. 

3 Si Sends: 10010. 

Transmission error. 

4. CH Receives 10011. 

5. CH calculates overall parity as 1^0^0^1^1 = 1. 

6. CH reports incorrect transmission after observing 

unexpected results. 
 

5. Conclusion  

Self-recovery mechanisms in sensors enhance the 

reliability and efficiency of systems, making them 

essential in modern technology applications. By 

integrating robust fault detection and recovery 

strategies, systems can maintain optimal performance 

even in the face of failures. Adjusting coordinates in 

self-recovery for sensors is crucial for maintaining 

accuracy and reliability. By following a structured 

approach that includes fault detection, data validation, 

Node 3 
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Node 2 Non-fail 
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X X X X X X X X X X X X  BRB 
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recalibration, and continuous monitoring, systems can 

effectively recover from sensor faults and continue to 

operate optimally. Fault clustering is an effective 

management strategy for network topology aiming to 

reduce communication overhead and increase data 

aggregation in sensor networks. We presented a new 

distributed clustering approach for detecting 

malfunctioning nodes and recovering the working 

domain by selecting alternate pathways in sensor 

networks. The proposed schema is based on a 

distributed measure that assesses a node's state and 

broadcasts it to neighbouring sensor nodes. In the 

future, we will investigate systematic flaws in wireless 

sensor networks and seek to determine the best strategy 

to prevent such defects from occurring in sensor 

networks. We tested our schema's performance with the 

NS3 simulator, and the results reveal that the proposed 

schema, based on the self-recovery mechanism, is quite 

efficient and can reap significant performance benefits 

in terms of reduced communication costs as well as 

extended network lifetime. On the other hand, 

increased network longevity refers to a network's 

capacity to maintain functionality and performance 

over time. This is frequently accomplished through the 

use of energy-efficient hardware, strong system 

architecture, and optimal resource management. A 

longer-lasting network eliminates the need for periodic 

replacements or upgrades. 
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