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Abstract— In the wake of the global health crisis, healthcare institutions, including hospitals, physicians, medical staff, and 

patients, faced an urgent need for an advanced medical management system to streamline operations and enhance diagnostic 

accuracy and efficiency. Consequently, the proposed intelligent medical Chest system (IMCS) leverages artificial intelligence 

(AI) and deep learning technologies to optimize workflows among healthcare professionals, enabling them to perform their 

duties more effectively and expedite patient diagnoses with greater precision. The system incorporates both low-dose computed 

tomography (CT) and chest radiography (CXR) for the screening of lung cancer. While CT offers superior diagnostic precision, 

it is accompanied by challenges in resource allocation and potential radiation risks. In contrast, CXR serves as a more cost-

effective and resource-efficient preliminary screening modality. Leveraging advanced artificial intelligence (AI) and deep 

learning techniques, the system analyzes both imaging types, streamlining clinical workflows, augmenting diagnostic accuracy, 

and accelerating patient evaluation and management.  By leveraging the sophisticated capabilities of both chest X-rays and CT 

scans, which each provide unique insights into tissue anomalies, the suggested model dramatically increases diagnostic 

precision. To efficiently handle and interpret the data from each imaging modality, the model is built on a complex convolutional 

neural network (CNN) architecture that includes numerous convolutional blocks and fully linked layers.  With a classification 

accuracy of 98.9% for CT scans and 94.6% for X-rays, the system surpasses conventional manual and computerized methods, 

providing a more thorough and dependable approach for early disease detection and diagnosis. 
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1. Introduction  

Artificial intelligence (AI) has emerged as a key 
instrument for improving diagnosis and treatment in the 
medical industry [1]. AI-based medical systems can now 
identify and diagnose a wide range of illnesses by 
evaluating medical imaging data, including X-rays, CT 
scans, and MRIs, thanks to the use of deep learning 
algorithms and image analysis. By decreasing diagnostic 
errors, increasing the precision and speed of patient 
evaluations, and automating the interpretation of 
complicated imaging data, these technologies support 
medical personnel. By utilizing enormous volumes of 
medical data, AI can also spot trends that human 
practitioners would miss at first, allowing for earlier 
detection and more individualized treatment regimens. 

Globally, lung cancer is regarded as a major health 
concern as it accounts for a large percentage of deaths 
related to cancer [2]. In most cases, lung cancer can be 
divided into two main types: non-small cell lung cancer 
(NSCLC) or large cell lung cancer (LCLC) and small cell 
lung cancer (SCLC), the most prevalent of which is 
NSCLC / LCLC. The most prevalent variety is 
NSCLC/LCLC. Although genetics, environmental 
exposure, and air pollution also put non-smokers at risk, 
smoking continues to be the predominant risk factor. It 
might be difficult to detect early-stage lung cancer since 
it frequently shows no symptoms. Due to this, a large 
number of cases are discovered when the cancer has 

progressed, drastically lowering the number of available 
treatments and survival rates. 

In this article, we concentrate on the diagnostic and 
detection capabilities of medical diseases through the 
utilization of both computed tomography (CT) scans [3] 
and X-rays [4]. CT, also referred to as computerized axial 
tomography (CAT), is a sophisticated imaging modality 
that employs X-rays to generate intricate three-
dimensional representations of the internal anatomical 
structures of the human body. This advanced technology 
facilitates the precise understanding of tissue and organ 
configuration, thereby enabling accurate and efficient 
disease detection. One of the principal advantages of CT 
scans lies in their capacity to detect even the most minute 
alterations in tissues and organs, rendering them 
indispensable for early and precise diagnosis. 
Conversely, X-rays, while offering less granularity, are 
extensively utilized for initial diagnostic assessments and 
provide critical insights into the body's internal 
architecture, thereby assisting in the identification of 
conditions such as pulmonary infections or skeletal 
fractures. 

The IMCS provides a comprehensive and effective 
approach to disease identification by utilizing both CT 
scans and X-rays. Even the smallest pathological changes 
that could indicate underlying medical issues can be 
detected thanks to CT scans, which make it easier to 
precisely assess internal tissue structures. In early 
diagnostic assessments, X-rays are crucial for identifying 
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anomalies such lung infections or skeletal fractures, even 
though they provide less detailed information. When 
taken as a whole, these imaging modalities improve 
patient outcomes and clinical decision-making by 
enhancing the diagnostic process. 

Leveraging these imaging modalities independently, 
the system provides a multifaceted and precise 
instrument for diagnosing a spectrum of thoracic 
pathologies, facilitating enhanced early detection and 
advancing clinical decision-making in respiratory 
medicine. We augmented a deep learning (DL)-based 
model constructed upon a sophisticated convolutional 
neural network (CNN) architecture [5] meticulously 
calibrated for chest disease detection through the discrete 
application of CT scans and X-rays to refine diagnostic 
accuracy. For CT scans, the model is rigorously trained 
to discern specific pulmonary malignancies such as 
adenocarcinoma, large cell carcinoma, normal lung 
parenchyma, and squamous cell carcinoma [6], 
exploiting CT’s advanced 3D imaging prowess to 
evaluate subtle morphological transformations. 
Distinctly, for X-ray images, the model is capable of 
identifying an expansive array of respiratory conditions, 
including atelectasis, consolidation, infiltration, 
pneumothorax, edema, emphysema, fibrosis, effusion, 
pneumonia, pleural thickening, cardiomegaly, nodules, 
masses, and hernia. The model was trained and validated 
on publicly accessible benchmark datasets, with strategic 
data augmentation applied to bolster the diversity of 
training data, thus refining the model’s generalization 
capacity [7]. 

Logically, the paper has been separated into sections. 
In Section I, it was suggested that deep learning be used 
for CT scans and  X-rays diagnosis. Section II covers 
previous research on the subject; Section III goes into 
detail about the system's methodology; Section IV is 
devoted to the collection of datasets; Sub-Section A 
illustrates the dataset's pre-processing methodology; and 
Sub-Section B displays the hyper-parameterization that 
was set prior to training. The suggested CNN architecture 
is displayed in Section V. A sequential model is shown 
in Section VI. A metric for evaluation is proposed in 
Section VII. Results and comparisons are given in 
Section VIII. In Section IX, the paper concludes with a 
projected analysis. 

2. RELATED WORKS 

Extensive scholarly efforts have focused on using deep 
learning techniques to interpret CT scans and X-rays in 
order to improve diagnosis accuracy and operational 
efficiency in medical imaging. Convolutional neural 
networks (CNNs) and other advanced architectures are 
useful for the subtle diagnosis and classification of 
thoracic diseases, as this body of research demonstrates. 
Empirical research shows that deep learning not only 
improves diagnostic workflow accuracy but also makes 
it easier to identify serious illnesses like lung cancers 
early on and allows for careful monitoring of disease 
progression with no intervention from clinicians. The 
next chapter outlines the key developments and 
approaches that support this field, illuminating 

significant research findings and their revolutionary 
effects on diagnostic radiology. 

2.1 overview of related work concerning CT 

scans  

Al-Shouka et al. [8] CNN architecture were employed by 
researchers to construct a smart forecasting model for 
lung cancer [9,10]. Authors represented forward in this 
domain, harnessing the capabilities of  CNNs to discern 
subtle patterns indicative of lung malignancies. The 
CNN's design consists of many layers 
convolutional subsequent to pooling and fully-linked. 
The way the model is able to capture intricate features to 
identify subtle anomalies that might elude human 
observers. Researchers have fine-tuned hyper-
parameters, optimized loss functions [11], and employed 
techniques like data augmentation to enhance the 
model’s robustness [12]. Python libraries such as Pandas, 
NumPy, and Matplotlib facilitate data preprocessing, 
exploration, and visualization. To ensure that subsets of 
data are allotted for training, validation, and testing, they 
first employed data splitting. When files are duplicated 
and organized properly, information is kept in the 
appropriate places for quick access during training 
models. Second, they used the CT-scan image collection 
to apply image preprocessing. They scaled the pixel 
values to the interval of [0, 1] by using image 
normalization, which divided the pixel values by 255. 
picture format that used JPG conversion to store and send 
massive amounts of image data. A brightness reduction 
occurs when the image resolution value is less than 1.0. 
sharpness of the image using the 2D function of 
cv2.filter. To change the resolution and noise level of the 
image, adjust the scale and noise reduction parameters. 
The pre-processed images increased the internal system's 
efficiency. With 86% accuracy, 91% precision, 92% 
recall, and 87% sensitivity, This method is more 
effective, precise, and quick than traditional techniques. 

Mamun et al. [13] We suggested a deep learning 
model for the early diagnosis of lung cancer of a scan 
dataset of computed tomography (CT) based on CNN. In 
demand to study deep learning models for image 
identification or categorization, pre-processing technique 
was necessary. The images were pre-processed through 
adjusting the size them, noise reduction , segmentation 
techniques. The proposed CNN model outperformed 
other architectures, including Inception-V3, Xception, 
and ResNet-50 [14:18]. The optimization algorithm 
known as Adam had been applied to compile the model. 
The Keras Python module was used to obtain a  loss 
function of cross-entropy  as well as other 
measurements. The evaluation metrics demonstrate its 
effectiveness: 92% an accuracy, 98.21% an Area Under 
Curve (AUC), 91.72% a recall and 0.328 a loss . These 
results indicate the potential of this approach to 
significantly improve lung cancer diagnosis compared to 
traditional methods.  

Siddiqui et al. [19] employed a multi-step approach to 
achieve accurate classification of CT scans. First and 
foremost, the researchers leveraged transfer knowledge 
of learning, a powerful technique that allows previously 
trained neural network models to be fine-tuned for a 
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specific task. In this case, they utilized pre-trained deep 
learning models, incorporates Inception-v3, DenseNet-
121, Inception-ResNet-v2,and Resnet-50 [20,21]. These 
models were previously trained on ImageNet as a large-
scale image datasets, enabling them to capture relevant 
features from medical images effectively. Data 
augmentation was also used prior to training; however, 
the results were not better. Ultimately, images in their 
original dimensions (299*299 pixels) were trained using 
transfer learning, The effectiveness of the model has been 
assessed using metrics for performance. They introduced 
an ensemble learning paradigm rather than relying on a 
single model; the ensemble approach combined multiple 
deep learning architectures. Each of these models 
contributed its predictions, which were then aggregated 
to make a collective decision. By doing so, the 
researchers aimed to mitigate biases and improve overall 
robustness in classification. Its efficacy is demonstrated 
by the evaluation measures, which show 96% accuracy 
and a 96% f1 score. These findings suggest that, in 
comparison to conventional techniques, the assembled 
methodology has the potential to greatly enhance 
diagnosis of lung cancer diseases. 

Raza et al. [22] suggested a brand-new Lung-EffNet 
is a predictive model based on learning from transfers. 
Lung-EffNet is constructed around the EfficientNet 
architecture, with additional layers added to the model's 
classification head. EfficientNet is used in five different 
forms to evaluate Lung-EffNet. They used 
EfficientNetB1 and transfer learning to provide a fine-
tuning method for classifying lung cancer from CT scan 
pictures [23]. To efficiently extract pertinent 
characteristics from lung cancer CT scan pictures, 
EfficientNetB1 has been fine-tuned. The experimental 
outcomes highlight the positive outcomes of the 
suggested approach. In terms of efficiency of the model, 
EfficientNetB1 continuously beats existing CNN 
architectures. It achieves an astounding accuracy of 
98.5% and shows strong ROC scores on test sets, ranging 
from 97% to 99%. These findings demonstrate 
EfficientNetB1's potential as an effective tool for 
automated lung cancer categorization and diagnosis. 
Increasing the quantity of the dataset would improve the 
suggested approach's generalizability and confirm its 
efficacy in real-world situations. With regard to the 
anticipated outcomes, Lung-EffNet, which is based on 
Efficient-Net-B1, outperforms all other CNN. This 
makes it a realistic choice for automated lung cancer 
diagnosis from CT scan images, and a good possibility 
for widespread clinical application 

 

2.2 overview of related work concerning X-rays. 

Sharad J.D. al. [24] leverages an enhanced U-Net 
architecture with a classification layer to improve image 
segmentation and classification tasks, specifically for 
thoracic disease detection from chest X-ray images using 
the NIH Chest X-Ray Dataset. The U-Net framework, 
featuring an encoder for high-level feature extraction and 
a decoder for segmented output reconstruction, 
incorporates skip connections to achieve precise 

localization by combining low-level and high-level 
features. Integrating a classification layer enables the 
model to not only segment regions but also classify them 
into specific categories, providing detailed insights into 
image content. The model is further enhanced with 
residual blocks to improve feature extraction and data 
augmentation techniques to increase robustness. 
Optimized using the Adam optimizer, which adapts 
learning rates based on gradient moments, and a cross-
entropy loss function, the model achieves superior 
segmentation and classification performance. Binary 
accuracy and macro-accuracy are employed to handle 
imbalanced multi-class datasets effectively, 
demonstrating the system's robustness. Binary accuracy 
measures the proportion of correct predictions, with 
values ranging from 0 to 1, where 1 indicates perfect 
accuracy. Training binary accuracy starts at 0.9074 in 
epoch 1 and generally improves, reaching 0.9281 by 
epoch 16, indicating the model's enhanced ability to 
classify training data accurately. Validation binary 
accuracy starts at 0.9216 in epoch 1 and increases to a 
peak of 0.9302 by epoch 15, reflecting the model's 
effectiveness on unseen data. This approach showcases 
significant potential in aiding medical professionals with 
accurate and efficient thoracic disease diagnosis. Future 
work will focus on optimizing architectures, fine-tuning 
hyperparameters, and incorporating additional clinical 
data to enhance scalability, accuracy, and 
generalizability across larger datasets. 

Mana Saleh Al Reshan et al. [25] proposed a deep 
learning-based model for distinguishing between mild 
and severe pneumonia patients is presented. The study 
uses two different datasets—one with 5,856 chest X-ray 
pictures and another with 112,120 images from 30,085 
people, ChestX-ray14—to assess eight pre-trained 
models: ResNet50, ResNet152V2, DenseNet121, 
DenseNet201, Xception, VGG16, EfficientNet, and 
MobileNet. The MobileNet model produced the best 
classification results, with accuracies of 94.23% and 
93.75% on the two datasets. For reliable model 
performance, important hyperparameters such as batch 
size, epoch count, and optimization techniques were 
carefully considered. The study shows that among the 
pre-trained models, MobileNet showed the highest 
accuracy thanks to its lightweight architecture and 
unique convolution layers. With the help of professional 
validation and data augmentation, this strategy has 
encouraging potential to help with early pneumonia. 

Adel Sulaiman et al. [26] leverages a concatenate 
block equipped with advanced filters to extract crucial 
image features, while incorporating a transpose layer to 
augment the spatial resolution of the resultant feature 
maps. Trained using k-fold cross-validation (k=5), the 
model ensures optimal performance across five distinct 
subsets of the dataset. The dataset comprises 704 training 
and 96 testing chest X-ray (CXR) images, each coupled 
with corresponding masks and clinical annotations. This 
structured format, augmented by the precision of the 
masks, enables meticulous segmentation of lung tissue 
and enhances the accuracy of disease classification. The 
training process is fine-tuned with hyperparameters such 

https://pubmed.ncbi.nlm.nih.gov/?term=%22Reshan%20MSA%22%5BAuthor%5D
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as a batch size of 32, the Adam optimizer for efficient 
gradient descent, and a total of 40 epochs to ensure robust 
learning and generalization. The suggested CNN model 
produced a 97% accuracy rate with very little loss. This 
model is constrained by several limitations, including a 
restricted range of disease categories, a limited dataset, 
and the risk of overfitting. These factors hinder its ability 
to generalize effectively across a broader spectrum of 
medical conditions and diverse patient populations. 

Marriam Nawaz et all. [27] introduced the CXray-
EffDet model, a deep learning-based framework for 
detecting and classifying chest diseases from X-ray 
images, addressing challenges such as structural 
complexities, image artifacts, and inter-/intra-class 
similarities. Leveraging the EfficientNet-B0-based 
EfficientDet-D0 architecture [28], the model effectively 
extracts features and performs classification across eight 
chest disease categories. Evaluated on the NIH CXR 
database, it achieved a mean Average Precision (mAP) 
score of 0.926, with precision and recall rates of 90% and 
92.36%, respectively, outperforming peer approaches by 
19.40% in mAP and demonstrating a minimum 
execution time of 0.20 seconds. The results highlight the 
model’s robustness in handling image distortions and its 
proficiency in precise localization and classification, 
offering a reliable tool for aiding medical professionals 
in diagnosing chest abnormalities. 

3. Application Model 

We have engineered a sophisticated IMCS, hosted on 
web servers, designed to augment the diagnostic 
capabilities of healthcare practitioners by accelerating 
the decision-making process. The system leverages 
cutting-edge deep learning algorithms, particularly for 
the analysis of medical imagery, enabling the precise 
identification and diagnosis of various pathologies. 
Through its advanced image processing and 
classification capabilities, this system empowers 
clinicians to obtain rapid and reliable diagnostic insights, 
thereby enhancing clinical efficiency and improving 
patient outcomes.  

 

Figure 1. IMCS Context Diagram 

 

 

3.1 Data Sources 

In Figure 1, the context diagram of our intelligent chest 
hospital system, the central entity, denoted as the ‘Chest 
Hospital,’ represents the nucleus of the system’s 
operations. Surrounding this are six principal entities: 
‘Patients,’ ‘Physicians,’ ‘Receptionists,’ ‘Pharmacists,’ 
‘Technicians,’ and ‘Nurses.’ Each entity is 
interconnected with the hospital through bidirectional 
flows, indicating the reciprocal and continuous exchange 
of critical data. Patients submit personal and clinical 
information and receive health guidance, while 
Physicians contribute diagnostic insights and access 
patient records. The Receptionist facilitates 
administrative processes, the Pharmacist orchestrates 
pharmaceutical orders, the Technician oversees imaging 
and laboratory outcomes, and the Nurse administers 
directives. This diagram captures the comprehensive 
communicative architecture essential to the system’s 
operational efficacy. 
The datasets employed in this study are meticulously 
curated from the Kaggle archive, encompassing a 
comprehensive collection of medical imaging data from 
both chest X-rays and CT scans, integral for the training 
and validation of advanced deep learning models aimed 
at pulmonary disease prediction. 
 

3.2 X-ray image analysis 

We leveraged the expansive National Institutes of Health 
(NIH) Chest X-ray Dataset, which comprises 112,120 X-
ray images sourced from 30,805 unique patients [29]. 
This robust dataset is annotated with a diverse array of 
disease labels, including Atelectasis, Consolidation, 
Infiltration, Pneumothorax, Edema, Emphysema, 
Fibrosis, Effusion, Pneumonia, Pleural Thickening, 
Cardiomegaly, Nodule/Mass, Hernia, and a ‘No 
findings’ category (normal). These labels were derived 
using Natural Language Processing (NLP) techniques to 
extract relevant disease classifications from 
accompanying radiological reports, rendering this dataset 
an exemplary resource for developing deep learning 
models to enhance diagnostic accuracy and assist 
clinicians in detecting pulmonary diseases. 

3.3 CT Scans image analysis 

With a focus on lung cancer, the NTI_cnn_ct dataset 
from Kaggle was used for the CT scan analysis. This 
collection includes high-resolution photos with thorough 
annotations for a number of cancer kinds, such as 
squamous cell carcinoma, large cell carcinoma, 
adenocarcinoma, and normal. By arranging these images 
into training, testing, and validation sets, a thorough 
foundation for developing models that can identify and 
categorize various types of lung cancer is created. The 
capacity of the model to recognize intricate patterns and 
correctly identify lung cancer from CT scan images 
depends on the comprehensive annotations and high-
quality imaging data. The CT scan images used in this 
lung cancer dataset were gathered from the openly 
accessible "Kaggle" web resource [30]. There are 967 
images in CT scan dataset, which are separated into three 
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subsets of data. 613 images for the training set, the  315 
images for validation set, and 72 images for the testset . 
Each category is divided evenly across its four classes 

4. Model Framework Development 

This analytical framework initiates with a publicly 
accessible, meticulously curated image repository, 
consisting of chest X-ray and CT scan images procured 
from open-access websites. A rigorous pre-processing 
phase is implemented across the entire dataset, enhancing 
image quality and standardizing dimensions to optimize 
input compatibility with deep learning techniques. The 
proposed models, developed as Convolutional Neural 
Networks (CNNs) with sequential architectures, undergo 
systematic testing, training, and validation using a 
conventional hold-out validation protocol to ensure 
model reliability and generalizability across various data 
partitions [31,32]. 

Each CNN model leverages a sophisticated 
architecture, comprising a series of intricately layered 
convolutional blocks and dense fully connected layers. 
These blocks are crafted to capture complex spatial 
hierarchies and minute structural distinctions inherent in 
pulmonary imaging. Through this design, the models 
achieve precise categorization of normal (non-
cancerous) lung structures and diverse cancer 
phenotypes, including adenocarcinoma, large cell 
carcinoma, and squamous cell carcinoma. 

 

 
Figure 2. IMCS Framework 

 

As illustrated in Fig. 1, the models’ input layers are 
configured to accommodate multi-dimensional CT and 
X-ray images, enhancing versatility and scaling 
capabilities. This structural design, paired with robust 
feature extraction mechanisms, enables refined 
classification capabilities, ensuring that even subtle 
morphological variations associated with various cancer 
types are accurately identified and distinguished within 
both chest CT scans and X-ray images. The proposed 
CNN models thus offer a comprehensive diagnostic tool, 
designed to assist in the nuanced classification and early 
detection of complex pulmonary conditions 

4.1 Dataset Preparation and Enhancement 

To evaluate the model for image detection or 
classification, an effective pre-processing system is 
essential. Feature extraction plays a crucial role in 
preparing images by reading, resizing, segmenting, 

denoising, and applying morphological transformations. 
Our system conducts multiple pre-processing tasks, 
including data splitting and augmentation. Augmentation 
enhances the dataset by generating varied samples 
through random transformations like rotation and 
flipping. Effective pre-processing allows the network to 
learn relevant features and improves model performance. 
Model accuracy over training epochs is visualized by 
plotting validation and training accuracy, illustrating 
how pre-processing influences learning and convergence 
across time. 

4.2 Model Optimization and Tuning 

Optimization is crucial in neural network training, 
aiming to find the optimal model parameters (weights 
and biases) that minimize the loss function. Common 
optimization algorithms like Stochastic Gradient Descent 
(SGD) [33], Adam, and RMSProp iteratively update 
parameters based on gradients, accelerating 
convergence, helping escape local minima, and 
enhancing overall model performance. Choosing the 
right optimization method is essential for effective 
training. 

For the first proposed sequential CNN models based 
on CT images, The images undergo meticulous pre-
processing to ensure consistency and compatibility with 
the model, initiating with rescaling to normalize pixel 
values within the range of 0 to 1. This standardization 
technique is critical for enhancing model training and 
optimizing performance. Further pre-processing 
operations, such as normalization to adjust pixel values' 
mean and standard deviation, alongside advanced 
augmentation techniques like rotation, shearing, and 
flipping, are strategically employed to bolster the model's 
capacity to discern pertinent features and augment its 
generalization potential. Prior to training on the CT scan 
dataset, comprehensive hyper-parameter tuning is 
conducted, including setting the batch size to 64, 
adjusting image dimensions to 224 x 224, and 
configuring training to span 100 epochs. The model 
utilizes ReLU activation functions for hidden layers, 
SoftMax for classification, and a learning rate of 0.001 
with the Adam optimizer to optimize convergence and 
accelerate learning efficacy [34]. 

For the second proposed model based on X-ray 
Image, with the dataset splits ready, we use Keras's 
ImageDataGenerator to streamline preprocessing and 
augmentation. This generator not only facilitates image 
creation from a data frame but also includes features like 
standardization and augmentation. For normalization, 
samplewise_center and samplewise_std_normalization 
were employed with True to adjust each sample to have 
a mean of zero and a standard deviation of one, ensuring 
consistent input distributions for training. Additionally, it 
applies augmentations such as slight shearing 
(shear_range = 0.1), zooming (zoom_range = 0.15), 
rotation (rotation_range=5), and shifts in width and 
height (width_shift_range = 0.1, height_shift_range = 
0.05). Horizontal flipping (horizontal_flip=True) is also 
enabled to enhance variability, while vertical flipping 
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(vertical_flip=False) is avoided as it is less meaningful 
for X-ray data. The fill_mode='reflect' ensures that 
augmented areas are filled appropriately to prevent 
distortion. We also normalize the test and validation data 
using the mean and standard deviation computed from 
the training dataset to ensure fairness. To avoid 
computational expense, these statistics are approximated 
from a random sample, ensuring a balance between 
efficiency and accuracy. This approach guarantees fair 
and reliable model evaluation. 

4.3 Impact Class Imbalance on Cross-Entropy. 

This plot shows that there is a significant difference in 
the prevalence of positive cases across the different 
pathologies, and these trends reflect the distribution of 
positive cases across the entire dataset.  

 

Figure 3. Class Imbalance before Balancing 
 

A perfect training dataset would be one where both 
positive and negative training cases contribute equally to 
the overall loss when we train our model. The problem 
is, when using a standard cross-entropy loss function 
with such a highly imbalanced dataset, as shown here, the 
model will be incentivized to prioritize the majority class 
(i.e., the negative cases), since this class contributes to 
the overall loss more than any other class. Class 
imbalance presents a significant challenge when training 
machine learning models, especially with the cross-
entropy loss function. We can rewrite the overall average 
cross-entropy loss over the entire training set D of 
size N as: 

𝐿𝐶𝐸(𝐷) =  −
1

𝑁
 (∑ log (𝑓(𝑥𝑖) +  ∑ log (1 − 𝑓(𝑥𝑖) 

𝑛𝑒

)) 

𝑝𝑒

 

In the case of a large class imbalance, the loss function is 
dominated by the majority class, with the minority class's 
contribution being minimal, leading to biased model 
performance. Using this formulation, we can see that the 
contribution of each class (i.e. positive or negative) is: 

𝑓𝑟𝑒𝑞𝑝 =  
𝑛. 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐸𝑥

𝑁
 

𝑓𝑟𝑒𝑞𝑛 =  
𝑛. 𝑜𝑓 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐸𝑥

𝑁
 

As shown in the plot above, the contributions of positive 
cases are much lower than those of the negative ones. To 

equalize these contributions, one approach is to multiply 
each example from each class by a class-specific weight 
factor, ensuring that the overall contribution of each class 
is balanced. This way will be balancing the contribution 
of positive and negative labels. 

𝑤𝑝  𝑥 𝑓𝑟𝑒𝑞𝑝 =  𝑤𝑛 𝑥 𝑓𝑟𝑒𝑞𝑛   

  𝑤𝑝 =  𝑓𝑟𝑒𝑞𝑛  ,  𝑤𝑛 =  𝑓𝑟𝑒𝑞𝑝  

After computing the weights, the final weighted loss for 
each training case ensures that the positive and negative 
labels within each class contribute equally to the loss 
function. 

𝐿𝐶𝐸
𝑤 (𝑥) =  − (𝑤𝑝 𝑦𝑙𝑜𝑔(𝑓(𝑥)) + 𝑤𝑛(1 − 𝑦) log(1 − 𝑓(𝑥))). 

 

 

Figure 4. Class Imbalance After Balancing 
 

5. PROPOSED CNN ARCHITECTURE 

This system centers on leveraging the advanced 
capabilities of artificial intelligence, specifically through 
sophisticated machine learning and deep learning 
methodologies, to engineer a diagnostic framework 
meticulously designed for a pulmonary healthcare 
facility. In this study we employed two distinct models, 
each applied to a separate dataset.  

 
Figure 5. Architecture of IMCS Process 

 
 

In the primary model, we leveraged the sequential 
model—a pivotal component within the Keras 
framework—to construct an advanced deep 
convolutional neural network (CNN) for lung cancer 
prognostication. This sequential architecture offers a 
streamlined methodology for formulating neural 
networks through the systematic layering of components, 
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making it particularly suitable for CNN configurations. 
In the second model, we will utilize the DenseNet121 
model from the Keras Applications package and load the 
pretrained weights. Afterward, we will evaluate the 
model's performance by analyzing the ROC curve and 
AUROC values for the various diagnostic categories. 
 

5.1 SEQUENTIAL MODEL 

This study delineates the development of a sophisticated 
deep learning model utilizing the Keras Sequential API 
for the prognostication of lung cancer from CT images. 
The model harnesses the power of a convolutional neural 
network (CNN) architecture meticulously engineered to 
extract intricate, hierarchical features from medical 
imaging data, thereby enabling precise cancer 
classification. Fig.6 show the model’s framework 
incorporates a series of convolutional blocks, 
strategically designed to optimize feature extraction and 
stabilize the training process. Batch normalization layers 
contribute to the acceleration of convergence and overall 
stability during the training phase, while dropout layers 
are integrated to mitigate overfitting and bolster 
generalizability. The final layer of the model employs a 
softmax activation function, tailored for multi-class 
classification, ensuring that output values represent a 
probabilistic distribution across four diagnostic 
categories [35]. The architecture is designed to 
progressively capture both low- and high-level features, 
making it an efficacious tool for the accurate and efficient 
diagnosis. 

 

Figure 6. The Sequential CNN Model 

Block 1: Pairs of layers of convolution with 64 filters, 
each constitute the first convolutional block. Batch 
normalization and max-pooling come next. 

Block 2: The second block adds two convolutional 
layers with a total of 128 filters to the feature extraction 
procedure. Max-pooling and batch normalization are 
then performed. 

Block 3: After learning more detailed feature 
representations, the third block has two convolutional 
layers of 256 filters. Each of them is followed by batch 
normalization and max-pooling. 

Block 4: The last convolutional block improves 
feature representation even more by using three 

convolutional layers, each with 512 filters, to make it 
easier to extract discriminative features. 

 

 

 

 

 

 

 

 
Figure 7. CNN Blocks of Sequential Model 

 

     A feature map generated undergoes a flattening 
transformation before traversing a fully connected 64-
layer network that mirrors the convolutional architecture. 
This operation serves to facilitate feature synthesis and 
dimensionality reduction, enhancing the model’s 
interpretability and computational efficiency. During 
training, a dropout layer with a rate of 0.25 is applied, 
randomly omitting 25% of the units to mitigate the risk 
of overfitting and bolster model generalization. The 
model culminates in an output layer comprising a dense 
layer with softmax activation, yielding probabilistic 
outputs across each classification category 
adenocarcinoma, large cell carcinoma, squamous cell 
carcinoma, and normal CT scan enabling nuanced 
categorization based on the input imaging data. Fig. 7 
illustrates the four blocks of the sequentially proposed 
model. 

In this study, the training regimen spans 50 epochs, 
ensuring thorough model convergence and optimization 
of performance. To fortify the model’s resilience, data 
augmentation is applied, enriching the variability within 
the training dataset. The Adam optimizer, paired with the 
categorical cross-entropy loss function, is employed for 
multi-class classification, as both are commonly used and 
highly effective for such tasks. After defining the model 
architecture, these elements are assembled, and the 
model's accuracy is tracked to gauge performance during 
training. 

 

5.2 Customized model built on EfficentNetB1 
 

 
Figure 8. The Customized Model 
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The CustomNet121 model is designed with an input layer 
that accepts images of shape (224, 224, 3), or 
alternatively (128, 128, 3) as specified. The architecture 
begins with a 7x7 convolutional layer with 64 filters, 
followed by batch normalization, ReLU activation, and 
max-pooling. The model then proceeds through several 
dense blocks, which are sequentially stacked as per the 
num_blocks parameter, specifying the number of layers 
in each block (e.g., [6, 12, 24, 16] for four blocks). 
Transition blocks are inserted after each dense block 
(except the last one) to reduce the number of features. 
The output layer applies batch normalization, ReLU 
activation, and global average pooling, followed by a 
final dense layer with num_classes units and a softmax 
activation for classification. During model compilation, 
the Adam optimizer is used with a learning rate of 1e-4 
and amsgrad = False. The model uses a custom weighted 
loss function, get_weighted_loss (pos_weights, 
neg_weights), ensuring balanced loss between positive 
and negative classes, and binary accuracy is employed as 
the evaluation metric. 
 

6. RESULTS and COMPARISON 

The integration of advanced deep learning models, such 
as the sequential CNNs and Customized model 
architectures, has proven highly effective for the 
classification and recognition of chest CT and X-ray 
images. Remarkably, the sequential CNNs attain 
accuracy of 98.9%, surpassing previous state-of-the-art 
of classification. The customized model build based on 
EfficentNetB1, meanwhile, has demonstrated the ability 
to analyze X-ray images in an efficient and accurate  
manner, having been able to achieve an outstanding 
94.6% accuracy and have been able to accurately identify 
14 pathological conditions with high performance. This 
two-part series of AI-driven models demonstrates the 

power of AI-driven medical systems to enhance 
diagnostic accuracy, streamline clinical workflows, and 
ultimately improve patient outcomes through early and 
precise disease detection. Experts assess a classification 
model's efficacy using performance measures for 
categorization include F1-score, accuracy, precision, and 
recall [39,40]. 

 

6.1 CT Scan Analysis with Sequential Models. 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 9. Training and Validation Loss 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Training and Validation Accuracy 

 
 
 
 
 
 
 
 

 
 

 

6.2 X-Ray Analysis with Customized model 

The customized model ensures faster diagnostics and 

helps in the effective detection of diseases. By fine-

tuning EfficentNetB1. 

 

 

 

 

 

 

 

Figure 11. Distribution of Common Findings in X-Ray Image. 

 

Table 1. Comparison proposed Sequential model with previous studies 

Ref Method 
Performance Metric 

Accuracy Precision Recall F1-Score 
[5] CNN 86% 91% 92% 87% 

[10] CNN 92% ------ 91.7% ------ 

[16] Ensemble on pretrained models 96% 97% 99% 96% 

[19] Transfer Learning CNN 98.5% 100% 98.5% 99.1% 

Proposed Model Sequential CNN 98.9% 100% 98.9% 99.3% 
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Figure 12. X-Ray Images after classification. 

 

 
 

 
Figure 13. ROC Curve Analysis of Medical Condition. 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

7. CONCLUSION 

This research presents a two deep CNNs, sequential deep 
learning and Customized model built on EfficentNetB1 
for the classification of chest cancer types based on CT 
scan and X-Ray images. Through meticulous 
experimentation, we achieve exceptional accuracy 
levels, significantly surpassing previous benchmarks. 
The proposed IMCS is a system with  software 
application based on AI that is installed on web servers 
to help medical professionals carry out their duties and 
diagnose patients more quickly and easily. One of the 
characteristics of this system is its ability for disease 
diagnosis effectively. The proposed model ultimately 
improving patient outcomes in the management of chest 
cancer. By exporting significant traits, grouping, and 
classifying them. An accuracy rating of sequential model 

close to 99% and an accuracy for Customized model 
close to 95% . The proposed model feasible to predict 
whether a patient will get the disease or not. 
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