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Abstract 

Inspired by nature, the Henry Gas Solubility Optimization (HGSO) algorithm is a novel approach for solving 

global optimization problems by simulating Henry's Law of gas solubility. However, premature convergence and 

an imbalanced exploration-exploitation ratio remain significant challenges. HGSO's simple search strategy limits 

its ability to exploit optimal solutions effectively, hindering its performance on complex optimization problems. To 

address these limitations, we propose a beta hill climbing local search to enhance HGSO's performance. This novel 

beta operator improves upon traditional hill climbing by carefully balancing exploration and exploitation. By 

incorporating this operator, the resulting Enhanced HGSO (EHGSO) can more efficiently traverse the solution 

space and identify optimal solutions. We evaluated EHGSO on nine benchmark datasets and a real-world dataset. 

For the real-world dataset, we employed a Random Forest model, while for the benchmark datasets, we used a 

KNN model. EHGSO achieved an accuracy of 0.9467 on the real-world dataset and consistently outperformed 

other meta-heuristics like GOA, WOA, DA, GWO, and SSA on the benchmark datasets. These results demonstrate 

the superior optimization capabilities of EHGSO in tackling complex optimization problems. 
 
Keywords: Henry Gas Solubility Optimization; Machine learning; Local Search; Optimization Algorithms 

1. Introduction 

     Predictive models are developed using machine learning [1]. We should reduce input variables by doing 

this we can improve the computationally expensive modeling and model performance. Here lies the feature 

selection method. Feature selection (FS) [2] is one of the most important tasks in machine learning to enhance 

prediction accuracy and reduce overfitting by selecting effective features. 

 

      Meta-heuristic algorithms, a subclass of heuristic algorithms [3], inspired mainly from natural processes, 

have been introduced as effective remedies for these defects. In this context, these algorithms are considered a 

problem-solving and feature selection method for complex problems, such that they often outperform 

traditional methods both in terms of computational expenses and complexity barriers. We organized these 

algorithms into several groups, the evolutionary algorithms that are inspired by natural selection. as Genetic 

Algorithm (GA) [4], Evolutionary Strategies (ES) [5], and Differential Evolution (DE) [6]. Swarm 

Intelligence Algorithms, inspired by the collective behavior of animals. Such as Particle Swarm Optimization 

(PSO) [7], Ant Colony Optimization (ACO) [8], and Artificial Bee Colony (ABC) [9]. Physics-inspired 

algorithms inspired by physical phenomena. Such as Simulated Annealing (SA) [10], Gravitational Search 

Algorithm (GSA) [11], and Henry Gas Solubility Optimization (HGSO) [12]. 

 

     Exploration and exploitation are two key concepts used to evaluate the optimization ability of a heuristic 

algorithm. Exploration, this refers to the algorithm's ability to search new, unexplored regions of the solution 

space. It's essential for discovering potentially better solutions. Exploitation, this refers to the algorithm's 

ability to refine promising solutions found during the exploration phase. It's important for converging to high-

quality solutions. A well-balanced heuristic algorithm should effectively balance exploration and exploitation. 
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If an algorithm explores too much, it may fail to converge to good solutions. Conversely, if it exploits too 

much, it may get stuck in local optima. 

 

      Henry Gas Solubility Optimization (HGSO), inspired by physics phenomena, has provided some of the 

promising solutions to optimize various problems. In feature selection, HGSO performs well for high-

dimensional problems based on Henry's law. While useful in terms of simplicity, it has the downside that can 

slow down convergence and have the potential for overuse. This paper's main contribution is to propose a new 

exploitation strategy in order to handle the limitations of the Henry gas optimization algorithm, which 

significantly enhances HGSO's capability of finding the best solutions. 

 

     Beta Hill Climbing (BHC) [13] is known for its effective exploitation capabilities, allowing it to precisely 

locate optimal solutions within local search spaces. This paper proposes a hybrid algorithm that integrates 

BHC's exploitation strategy into the Henry Gas Solubility Optimization (HGSO) algorithm.  

     The paper is organized as follows: Section 2 reviews related work, Section 3 presents the proposed hybrid 

algorithm, Section 4 analyses experimental results, Section 5 outlines future work, and Section 6 draws 

conclusions. 

2. Related work 

     Motivated by the ideas of gas solubility, the Henry Gas Solubility Optimization (HGSO) algorithm is 

employed to address complex optimization problems. Nevertheless, HGSO can be hindered by an imbalance 

between exploration and exploitation, as well as premature convergence. 

 

2.1 Original Henry Gas Solubility Optimization Algorithm 

     Henry's law, which is famous physics law states that the partial pressure of a gas is directly proportional to 

its solubility in a liquid at constant temperature, is the basis for the HGSO. The following stages make up the 

mathematical model that was created to explain the HGSO algorithm based on this idea. 

Initialization phase: a population of N potential solutions—represented as gas particles—is randomly 

generated inside the specified search space using Equation (1), [12]: 

 

𝑥𝑖
0 = 𝑙𝑏𝑖 +  𝑟𝑎𝑛𝑑𝑖 × (𝑢𝑏𝑖 + 𝑙𝑏𝑖)                                                                (1) 

 

The initial position of each gas particle, denoted as 𝑥𝑖
0   (i = 1, 2, ..., N), is bounded by the lower bounds 

𝑙𝑏i and upper bounds 𝑢𝑏i, of the hyperspace, respectively. Symbolizes a real number generated at random in 

the interval [0, 1]. Other attributes of each gas particle are also initialized using Equation (2), [12]: 

 

𝐻𝑗
0 = 𝑙1 +   𝑟𝑎𝑛𝑑1, 𝑃𝑖.𝑗

0 =  𝑙2 × 𝑟𝑎𝑛𝑑2, 𝐶𝑗
0  =  𝑙3 × 𝑟𝑎𝑛𝑑3                                      (2) 

 
For instance  𝐶𝑗

0 indicates the initial constant value of type j, 𝑝𝑖.𝑗
0  indicates the initial partial pressure of gas i 

in cluster j, and 𝐻𝑗
0 indicates the starting value of Henry's constant for type. The constants 𝑙1,𝑙2, and 𝑙3 are 

contained in equation (2) and have values of 5E-02, 100, and 1E-02, respectively. 

Clustering phase: The gas particles are divided into k clusters on the basis of their gas type. Henry's constant 
(Hj). is assigned a unique value for each cluster. 

 

Evaluation phase: The fitness of each gas particle within its respective cluster is evaluated to assign the best 

cluster 𝑋𝑗.𝑏𝑒𝑠𝑡. All candidate solutions are ranked based on their fitness values. Every potential solution is 

scored based on its fitness values, and the population's best solution is identified based on its fitness.  

 

Updating Henry's Coefficient phase: Since the pressure on gas particles changes with each repeat, it is 

essential to update Henry's coefficient for each cluster j. This update is calculated using equation (3), [12]: 
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𝐻𝑗
𝑡+1 = 𝐻𝑗

𝑡 × 𝑒𝑥𝑝 [−𝑐𝑗 ×   (
1

𝑇𝑡 −  
1

𝑇𝜃)] . 𝑇𝑡 = exp (
−𝑡

𝑡𝑚𝑎𝑥
)                                  (3) 

 

Where 𝐻𝑗
𝑡   represents Henry's coefficient for cluster j in iteration t, 𝑇𝑡  denotes the temperature at iteration t, 

𝑇𝜃 is a constant with a value of 298.15, and is the maximum number of iterations𝑡𝑚𝑎𝑥. 

Updating Gas Particle Solubility phase: during the tth iteration, the solubility 𝑆𝑖𝑗
𝑡  of the ith gas particle in 

the jth cluster must be updated using Equation (4), [12]:  
 

               𝑠𝑖.𝑗
𝑡 = K × 𝐻𝑗

𝑡+1 × 𝑃𝑖.𝑗
𝑡                                                                             (4) 

Where K is a constant, and   𝑃𝑖.𝑗  
𝑡  is the partial pressure on ith gas particle in jth cluster. 

Update Gas Particle Position phase: the position of the ith gas particle in the jth cluster for iteration t = 1 + 

1 is updated using Equation (5) ,[12]: 

 

xi.j
t+1 = xi.j

t + F × rand1 × γ × (xj.best−xi.j  
t ) + F × rand2 

× α × (Si.j
t ×   Xbest −  Xi.j

t ). 

                 Where  γ =   β  × exp (−  
Fbest+∈

t

Fi.j+∈
t ) . ε = 0.05                                             (5) 

Where F is used to control search direction by flagging, γ is the ability of a gas particle with respect to its 

cluster, and α is the influence of other gas particles on ith particle. In Equation (5), 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are two 

different randomly generated real values between [0, 1], and ε is a small value to avoid the divide by zero 

error. 

Escape from local optimum: HGSO selects the worst solutions, as in Equation (6) , [12], for re-initialization 

in order to implement the strategy of avoiding local optima problems: 

   Nw = N × [rand × (C2 − C1) + C1]. C1 = 0.1  and  C2 = 0.2                                  (6) 

Where N denotes the population size and rand denotes a random number between [0, 1]. Equation (1) is used 

to re-initialize the position of the worst solutions chosen in this step.  

 

3. Proposed Work 

     The proposed enhanced HGSO algorithm, which incorporates more efficient Beta Hill Climbing local 

search techniques to address the challenges of feature selection and optimization in high-dimensional datasets, 

was evaluated using a comprehensive framework as illustrated in Fig. 1. The steps involved in the evaluation 

process are outlined below: 

3.1 Dataset and parameter settings 

      The first step in evaluating our model is choosing the dataset. Reputable benchmark datasets were used. 

These datasets are materials that are publicly accessible or may be requested; they have been deliberately 

published as datasets. It is meant for assessment purposes and includes well-defined evaluation 

methodologies. The datasets represent the complexities and challenges of real-world scenarios. They usually 

involve complicated problems or large datasets that push the boundaries of models and algorithms, leading to 

advancements in domains such as machine learning, computer vision, and natural language processing. Table 

1 gives a detailed description of the specific datasets used in this study. From the UCI Machine Learning 

Repository, the datasets are available for download. These datasets are readily available and can be 

downloaded from (https://archive.ics.uci.edu/ml/index.php). Table 2 summarizes the parameter settings for all 

algorithms used in this study. 

 

https://archive.ics.uci.edu/ml/index.php
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Fig 1. Proposed framework 
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Table1 Datasets Description 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Table 2 Algorithms Parameters Setting 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

3.2 Improved Henry Gas Algorithm for Solubility Optimization 

     The ability of the Henry Gas Solubility Optimization (HGSO) algorithm to refine the global best solution can 

be greatly improved by incorporating Beta Hill Climbing (BHC) [13] as a local search method. The β-hill 

climbing algorithm (BHC) is a novel and a very competent explorative local search algorithm. The algorithm 

proceeds with an arbitrary solution to a specified issue 𝑥 = (𝑥1 𝑥2  … . . 𝑥𝑁). Neighbourhood navigation or the 

N operator and β-operator are the two operators that BHC incorporates iteratively to produce new random 

solutions 𝑥′= (𝑥1
′  𝑥2

′  … . . 𝑥𝑁
′ ). 

     During every iteration of the BHC algorithm, the N operator uses the improve (N(x)) function along with 

‘random walk’ acceptance rule for the determination of a neighboring solution of x, using. Equation (7), [13]: 

𝑥1
′ = 𝑥𝑖 ± U (0,1) × bw ∃! ∈ [1, N]                                                                               (7) 

     Note that 𝑖 is randomly selected within the dimensionality range of the solution, 𝑖 ∈ [1,2, …. 𝑁]. 

Furthermore, for the selected dimension 𝑖, a parameter known as bw (bandwidth) establishes the range 

permitted for the difference between the current value and the new value. 

No. Dataset No.of features No.of instances No.of classes 

1 CongressEW 16 435 2 

2 IonosphereEW 34 351 2 

3 HeartEW 13 270 2 

4 BreastEW 30 569 2 

5 Lymphography 18 148 4 

6 Exactly2 13 1000 2 

7 SonarEW 60 205 2 

8 SpectEW 22 267 2 

9 Spambase 58 4601 2 

algorithm parameters 

β-HGSO 

Gases Number (N = 10) 
Maximum number of iterations (100) 

Cluster number = 2 

M1 and M2 = 0.1 and 0.2 
β = 1, α = 1 and K = 1 

l1, l2, l3 are constants with values equal 5E−03, 100, 1E−02 

l1, l2, l3 are constants with values equal 1, 10, 1 
Beta = 0.5,1.0 

bw = 0.5,0.05,0.005 

HGSO The same as β-HGSO 

WAO 
a decreases linearly from 2 to 0 [t] b = 1 

Maximum number of iterations (100) 

Dimension corresponds to the number of features 

GWO 
a decreases linearly from 2 to 0 

Maximum number of iterations (100) 

Dimension corresponds to the number of features 

GOA 
C max = 1 & C min = 0.00004 

Maximum number of iterations (100) 

Dimension corresponds to the number of features 

DA 
Maximum number of iterations (100) [t] 

Dimension corresponds to the number of features 

SSA 

c 1 and c 2 are randomly distributed 

Maximum number of iterations (100) 
Dimension corresponds to the number of features 
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     The β-operator plays a crucial role by guiding the exploration of the search space. During this stage, the 

values for the new solution's variables are determined based on a parameter β (beta) that lies between 0 and 1. 

Or depending on the values in the current solution. According to Equation (8), [13]: 

𝑥𝑖
′  ←  {

𝑥𝑟    𝑟𝑛𝑑 ≤  𝛽   
𝑥𝑖    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

                                                                 (8) 

   Where rnd generates a uniform random number between 0 and 1, and 𝑥𝑟 ∈ 𝑥𝑖  is the decision variable 

     Convergence towards the best solution in the β-Hill Climbing algorithm depends on two basic operators: 

the β-operator, which accelerates the optimization process by altering specific components of the current 

solution. And the N-operator that randomly selects a neighbouring solution with a higher objective value. 

   In this process, the β-operator serves as the source of exploration, while the N-operator is primarily 

responsible for exploitation.  

     This hybrid approach involves HGSO identifying a promising candidate solution that appears to be close to the 

optimum solution. Then BHC is applied to this candidate solution to refine it further within its neighbourhood. 

    BHC operates by iteratively perturbing the solution using a mutation operator. This mutation rate, controlled by 

a beta parameter, gradually decreases over time. Initially, a higher mutation rate allows for wider exploration of 

the solution space. As the search progresses, the mutation rate decreases, focusing on more targeted exploration of 

promising regions. In each iteration, BHC generates a new solution by slightly modifying the current best 

solution. If this new solution yields a better objective function value, it replaces the current best solution. This 

process continues until a stopping criterion is met, such as reaching a maximum number of iterations or a 

satisfactory solution quality. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Classification Model 

     Once the improved HGSO process is finished, it returns an optimal solution. It keeps only the best features 

in the original dataset. To evaluate classification performance, we employ a hold-out strategy, randomly 

partitioning the dataset into 80% training data and 20% testing data. To assess the accuracy, we employ two 

classification algorithms: The k-NN [14] algorithm, with a fixed value of k = 5, is used to evaluate the 

performance, which is used to evaluate benchmark datasets. And a Random Forest classifier [15] is trained on 

the training set, and its predictions are compared against data in the testing set, which is used for the real-

world dataset. To obtain statistically significant results, each experiment is repeated ten times independently. 

 

Algorithm 1 Beta-HGSO pseudo-code 

1:  Initialize   HGSO and BHC parameters: 

2:  Divide the population into clusters based on gas types with the same Henry's constant value (Hj) 

3:  Calculate the fitness value of each search agent in the population 

4:  Identify the best gas 𝑋𝑗,𝑏𝑒𝑠𝑡    in each cluster and the overall best search agent 𝑋𝑗,𝑏𝑒𝑠𝑡according to      

     fitness values 

5:  Initialize iteration counter t = 0 

6:  while t < maximum number of iterations do: 

7:            Update the position of all agents using Eq. (5)         

8:            Update Henry's coefficient for each gas type using Eq. (3) 

9:            Update the solubility of each gas type using Eq. (4) 

10:          Rank all agents based on their fitness and select the worst-performing agents using Eq. (6) 

11:          Update the position of the worst-performing agents using Eq. (1)         

12:         Apply BHC local search to 𝑋𝑏𝑒𝑠𝑡to obtain an improved solution 𝑋𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 using Eq. (7) 

13:         If the fitness of 𝑋𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑    is better than 𝑋𝑏𝑒𝑠𝑡  

                   Replace 𝑋𝑏𝑒𝑠𝑡with 𝑋𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑   

14:         t = t + 1 

15:  end while 

16:  Return 𝑋𝑏𝑒𝑠𝑡  as the final optimized solution 
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4. Results Analysis and Discussion 

     Each experiment utilizing Beta-HGSO was carried out separately ten times to guarantee accurate 

experimental results. Every algorithm was configured to execute for 100 iterations. Table 2 provides a 

summary of the parameters used for both the original algorithm and Beta-HGSO. The following is a summary 

of our experiment results. 

 

4.1 Comparison of β-HGSO with other metaheuristics for benchmark datasets 

     We thoroughly compared our improved HGSO algorithm against six swarm intelligence algorithms: 

original Henry Gas Optimization (HGSO), Grasshopper Optimization Algorithm (GOA) [16], Dragonfly 

Algorithm (DA) [17], Whale Optimization Algorithm (WOA) [18], Grey Wolf Optimizer (GWO) [19], and 

Salp Swarm Algorithm (SSA) [20]. To assess its efficacy, we employed a K-Nearest Neighbours (KNN) 

machine learning model. The results of mean accuracy, mean fitness, and mean selected features for these 

older algorithms on the first six datasets can be found in detail in Tables 6, 8, and 10 of paper “An efficient 

henry gas solubility optimization for feature selection “[12] (pages 9, 10, and 11, respectively). Tables 3, 4, 

and 5 in this paper present the comparative results of β-HGSO against these older algorithms. 

 

 
Table 3 Table Accuracy Comparison of βeta HGSO and Other Algorithms (k -NN classifier)  
 

 

Datasets Metric  β-HGSO HGSO DA WAO GAO GWO SSA 

HeartEW 
AVG 0.9065 0,8778 0,8043 0,8111 0,7691 0,7840 0,8167 

STD 0.013 0,0104 0,0186 0,0197 0,0314 0,0250 0,0132 

BreastEW 
AVG 0.96 0,9532 0,9444 0,9509 0,9257 0,9386 0,9564 

STD 0.0058 0,0074 0,0120 0,0145 0,0132 0,0132 0,0091 

Exactly2 
AVG 0.7845 0,8152 0,7123 0,7160 0,6792 0,7015 0,7270 

STD 0.0129 0,0009 0,0139 0,0126 0,0206 0,0196 0,0114 

CongressEW 
AVG 0.991 0,9839 0,9732 0,9797 0,9556 0,9556 0,9556 

STD 0.0073 0,0094 0,0114 0,0089 0,0153 0,0123 0,0071 

Lymphography 
AVG 0.9133 0,9114 0,8956 0,9122 0,8122 0,8811 0,9300 

STD 0.0163 0,0330 0,0358 0,0406 0,0450 0,0388 0,0332 

IonosphereEW 
AVG 0.9157 0,9737 0,9169 0,9390 0,8892 0,9155 0,9385 

STD 0.0126 0,0151 0,0150 0,0154 0,0137 0,0161 0,0136 

SonarEW 

 

AVG 0.9586 0.9286 ------ ------ ------ ------ ------ 

STD 0.0124 0.0151 ------ ------ ------ ------ ------ 

SpectEW 
AVG 0.8196 0.784 ------ ------ ------ ------ ------ 

STD 0.028 0.0196 ------ ------ ------ ------ ------ 

Spambase 
AVG 0.9204 

 

0.903 

 
------ ------ ------ ------ ------ 

STD 0.0059 

 
0.0039 

 
------ ------ ------ ------ ------ 

Over All Accuracy 0.9077 0.8719      

 

     As shown in Table 3, β-HGSO, combined with a k-NN classifier, consistently demonstrates superior 

average accuracy on six out of nine datasets (HeartEW, BreastEW, CongressEW, SonarEW, SpectEW, and 

Spambase) under identical experimental conditions. HGSO and SSA exhibit the best performance on two 

(IonosphereEW, Exactly2) and one (Lymphography) dataset, respectively. Notably, β-HGSO achieves the 

highest overall accuracy of 90.77%, significantly outperforming HGSO's 87.19%. Figures 1 and 2 provide 

additional visual insights. 
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Fig 2. Average accuracy Comparison of βeta HGSO and HGSO based on KNN classifier 
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Fig 3. The overall accuracy of Beta HGSO and HGSO based on KNN classifier  
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Table 4. Fitness Comparison of βeta HGSO and Other Algorithms (k -NN classifier) 

 

Datasets Metric B HGSO HGSO DA WAO GAO GWO SSA 

HeartEW 
AVG 0.0983 0.1263 0.1994 0.1926 0.2339 0.2184 0.1861 

STD 0.0122 0.0103 0.0179 0.0189 0.0309 0.0245 0.0126 

BreastEW 
AVG 0.044 0.0488 0.0591 0.0516 0.0786 0.0642 0,0468 

STD 0.0054 0.0069 0.0121 0.0146 0.0133 0.0130 0.0089 

Exactly2 
AVG 0.218 0.1838 0.2906 0.2871 0.3230 0.3014 0.2764 

STD 0.0122 0.0005 0.0134 0.0122 0.0207 0.0184 0.0106 

CongressEW 
AVG 0.0119 0.0171 0.0305 0.0232 0.0488 0.0342 0.0191 

STD 0.0055 0.0090 0.0119 0.0092 0.0156 0.0124 0.0077 

Lymphography 
AVG 0.0905 0.0916 0.1076 0.0908 0.1908 0.1218 0.0731 

STD 0.0158 0.0331 0.0361 0.0408 0.0445 0.0386 0.0332 

IonosphereEW 
AVG 0.087 0.0275 0.0861 0.0627 0.1144 0.0865 0.0642 

STD 0.0122 0,0149 0.0150 0.0153 0.0137 0.0161 0.0139 

SonarEW 

 

AVG 0.0458 

 
0.0755 

 
------ ------ ------ ------ ------ 

STD 0.0121 0.0148 

 
------ ------ ------ ------ ------ 

SpectEW 
AVG 0.1825 

 

0.2182 

 

 

------ ------ ------ ------ ------ 

STD 0.0276 

 

0.0192 

 
------ ------ ------ ------ ------ 

spam 
AVG 0.084 

 

0.1008 

 
------ ------ ------ ------ ------ 

STD 0.0056 

 
0.0038 

 
------ ------ ------ ------ ------ 

Over All Fitness 0.0958 0.0988 ------ ------ ------ ------ ------ 

     Table 4 shows that β-HGSO with a k-NN classifier achieves lower average fitness values on five out of 

nine datasets. HGSO, the second-best optimizer, only outperforms it slightly on two datasets: Exactly2 and 

IonosphereEW, with margins of 0.1838 and 0.0275, respectively. β-HGSO achieves the lowest overall fitness 

of 0.0958, significantly outperforming HGSO's 0.0988. Figures 4 and 5 provide additional visual insights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4. Average fitness comparison of βeta HGSO and HGSO based on KNN classifier 
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Fig 5. The overall fitness of Beta HGSO and HGSO based on KNN classifier 

 

Table 5.Average number of Features Selected: Comparison of βeta HGSO with Other Algorithms 
 

Datasets Metric Β-HGSO HGSO DA WAO GAO GWO SSA 

HeartEW 
AVG 5.8 6,9333 7,4000 7,3333 6,9667 5,8667 6 

STD  1.249 1,5742 1,9405 2,8446 1,4499 2,0965 2,0172 

BreastEW 
AVG 13.05 7,3667 12,2333 8,9667 15,1000 10,2333 11,1333 

STD 2.0609 2,9418 2,2389 3,2641 2,4403 3,5202 1,8333 

Exactly2 
AVG 6.1 1,1000 7,5000 7,7000 7,0000 7,6333 7,9667 

STD 1.5133 

 
0,5477 1,7956 2,8545 2,1173 2,6061 1,8843 

CongressEW 
AVG 4.9 1,8667 6,2667 5,0333 7,7000 6,8000 5,1000 

STD 2.7731 0,5074 2,1961 1,9205 1,6846 1,7301 1,6682 

Lymphography 
AVG 8.4 6,9667 7,5333 7,0000 8,8000 7,4667 6,7667 

STD 1.1136 2,0424 2,5425 3,1184 1,9547 2,8736 1,8511 

IonosphereEW 
AVG 12.1 

 
4,8667 13,0667 7,6333 15,9333 9,6333 11,4000 

STD 2.9138 

 
1,5477 2,8640 2,3116 2,6901 2,6061 2,9781 

SonarEW 

 

AVG 28.74 

 
28.8 ------ ------ ------ ------ ------ 

STD 4.0832 5.9296 ------ ------ ------ ------ ------ 

SpectEW 
AVG 8.5 

 

9.5 

 
------ ------ ------ ------ ------ 

STD 1.8303 

 

2.8018 
 

------ ------ ------ ------ ------ 

Spambase 
AVG 29.4 

 
32.4 

 
------ ------ ------ ------ ------ 

STD 3.2619 

 

4.0447 

 
------ ------ ------ ------ ------ 

 

     Table 5 presents the average number of features selected by β-HGSO and other competitor algorithms 

using the k-NN classifier on various UCI datasets. By analysing the results, we conclude that the average 

number of selected features obtained by β-HGSO is the best for four out of nine datasets, while HGSO is the 

best for five datasets. Note that the best-selected features by β-HGSO achieved the best accuracy and fitness in 

most datasets employed in this study. 
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4.2 Evaluation of performance on real world dataset 

     To emphasize the efficiency of the proposed model, we employed a real-world dataset to identify the 

variables that affect individual earnings. We used our model to predict relevant data from this dataset. 

Specifically, we utilized an American Community Survey (ACS) dataset obtained from census.gov, spanning 

the period from 2015 to 2022. Additionally, we employed a random forest classifier as the machine learning 

model for classification. The outputs are shown below. 

 
Table 6. Dataset Description 

 

 

 
 

Table 7 ACS dataset Accuracy results (RFC classifier) 

 

 

 

 

     Table 7 presents the accuracy of the Beta-HGSO and HGSO models, evaluated using three metrics: best, 

mean, and worst. These metrics assess the models' classification performance on the ACS dataset. Beta-

HGSO outperformed HGSO, achieving a best accuracy of 0.9467, a worst accuracy of 0.9362, and a mean 

accuracy of 0.9417.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.6. ACS dataset Accuracy results of Beta HGSO and HGSO based on RFC classifier 
 

Table 8 ACS dataset Fitness results 

 

 

 

Table 8 presents the performance of two models, Beta-HGSO and HGSO, on the ACS dataset, evaluated 

across three fitness metrics: Best, Mean, and Worst. These metrics indicate the fitness value achieved by each 

model. The Beta-HGSO model achieved the following fitness values: 0.0616 (Best), 0.0628 (Mean), and 

0.0643 (Worst). 

 

 

 

 

 

 

 

No.of features No.of instances No.of classes 

25 90000 2 

Model Best Mean Worst 

Beta -HGSO 0.9467 0.9417 0.9362 
HGSO 0.9128 0.9022 0.8633 

Model Best Mean Worst 

Beta -HGSO 0.0616 0.0628 0.0643 

HGSO 0.0882 0.0912 0.0946 
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Fig.7. ACS dataset fitness results of Beta HGSO and HGSO based on RFC classifier 

 

 
Table 9. ACS dataset number of selected Features results 

 

  

 

 

 

Table 9 describes the number of features selected by the two models across three metrics: Best, Mean, and 

Worst. 
 

5. Future work 

     The proposed future work involves investigating adaptive parameter tuning techniques, a commendable 

step toward enhancing the algorithm's robustness and efficiency. Additionally, testing the algorithm on a 

broader range of datasets, including more complex and diverse real-world data, will help evaluate its 

generalizability and effectiveness. 

 

6. Conclusion 

     In this work we provide a new optimization method called Beta HGSO. In order to address the 

shortcomings of the traditional HGSO method, Beta HGSO addresses the problem of insufficient exploitation 

associated with HGSO's single location update technique by enhancing its exploitation capabilities through 

the use of the Beta-Hill Climbing (BHC) strategy. 

     Beta HGSO is a hybrid algorithm that dynamically employs BHC. Our hybrid algorithm establishes a 

balance between exploration and exploitation across various optimization problems, resulting in dependable 

and consistent performance. 

     A real-world dataset and nine benchmark datasets were used to emphasize the efficiency of the improved 

algorithm. Their results were compared to the results obtained using the original HGSO method. Through 

considerable experimentation, Beta HGSO was shown to have satisfactory robustness and optimization 

capacity, successfully discovering global optima for a range of functions. 

 

 

Model  Best Mean Worst 

Beta -HGSO 12 13.6 12 

HGSO 10 12.3 12 
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 ملخص البحث:

المستوحاة من الطبيعة نهجًا جديداً لحل مشكلات التحسين الشامل من  (HGSO) تعد خوارزمية تحسين هنري لذوبان الغازات

بين الاستكشاف خلال محاكاة قانون هنري لذوبان الغازات. ومع ذلك، تظل مشكلة التقارب المبكر والنسبة غير المتوازنة 

تحد من قدرتها على استغلال الحلول المثلى  HGSO والاستغلال تمثل تحديات كبيرة. كما أن استراتيجية البحث البسيطة لـ

         Beta hill بشكل فعال، مما يعيق أدائها في مشكلات التحسين المعقدة. لمعالجة هذه القيود، نقترح استخدام البحث المحلي

climbing  زيز أداء الخوارزمية. يعمل المُشغّل الجديدلتع Beta على تحسين البحث المحلي التقليدي hill climbing  من

 HGSO خلال تحقيق توازن دقيق بين الاستكشاف والاستغلال. من خلال دمج هذا المُشغّل، تتمكن النسخة المحسّنة من

 EHGSO ث وتحديد الحلول المثلى. قمنا بتقييم خوارزميةمن التنقل بكفاءة أكبر في مساحة البح (EHGSO) والمعروفة بـ

الواقعية، استخدمنا نموذج الغابات  للبياناتباستخدام تسعة مجموعات بيانات معيارية وبيانات من العالم الواقعي. بالنسبة 

دقة بلغت  EHGSO مع مجموعات البيانات المعيارية. حققت KNN ، بينما استخدمنا نموذج(Random Forest) العشوائية

 SSAو GWOو DAو WOAو GOA في مجموعة البيانات الواقعية وتفوقت على الخوارزميات الأخرى مثل 0.9467

 .في معالجة مشكلات التحسين المعقدة EHGSO في مجموعات البيانات المعيارية. تظُهر هذه النتائج القدرات المتفوقة لـ
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