alagleall aly @oliba il AL 2laa

L A
(gystan Association for Technological Devdopmes ¥
Declared No. 2158 for the year 2014 s

"

Artificial
intelligence

information
security oo

Educational Firmware Over—-the—Air (FOTA) Kit for Automotive

Systems in STEM Education

sl L cladly Laldl) LU (FOTA) s oo @byl dpant A et Ao gand

"(STEM) ciluialy iy daiglly LinglgiSilly aglat)
Ghada Abdelhady', Emad H. Abdelmalak?, Omar Elsehity®

'Faculty of Engineering, October University for Modern Sciences and Arts, Giza, 12572 Egypt.
2 Swift Act Co., Smart Village, Giza, 12577 Egypt
¥ School of Information Technology, New Giza University, New Giza, 12585 Egypt

Volume Two - Issue Six - November 2024

VoY abgl— Cualad) dsd) - AU alaal)

ISSN-Online: 2812-6122 ISSN-Print: 2812-6114
s raall 48 pall dliy o Alaall aBga

https://aiis.journals.ekb.eg/contacts?lang=ar

=¢44 =

Yore ymedgs — Gwoludl asdl — SUJI Waed)

https://aiis.journals.ekb.eg/contacts?lang=ar
https://aiis.journals.ekb.eg/contacts?lang=ar

lagleall aly @bt A2ull tlaa

Abstract: The growing complexity of automotive electronics and the increasing demand
for hands-on STEM education highlight the need for practical tools that introduce
students to cutting-edge technologies. Firmware Over-the-Air (FOTA) technology,
widely used in the automotive industry for remote software updates, remains
underutilized in educational contexts. To bridge this gap, we present the Educational
Firmware Over-the-Air (FOTA) Kit, a comprehensive learning platform designed to
teach foundational and advanced concepts in embedded systems, secure
communication, and automotive technologies.

The kit integrates hardware components such as Raspberry Pi, STM32 microcontrollers,
and Controller Area Network (CAN) Bus interfaces with software modules covering
bootloaders, encryption protocols, and an intuitive Graphical User Interface (GUI).
These elements simplify complex automotive technologies for classroom use. Through
interactive activities, including writing custom bootloaders, configuring CAN networks,
and implementing AES encryption, students gain practical, real-world experience while
developing technical proficiency.

Initial deployment of the Educational FOTA Kit has demonstrated its effectiveness in
enhancing student engagement, bridging theoretical knowledge and practical
application. Quantitative results indicate improvements in problem-solving skills and a
deeper understanding of secure firmware updates. By fostering innovation and technical
expertise, this kit prepares students for emerging fields such as loT, automotive
engineering, and cybersecurity. The Educational FOTA Kit marks a significant
advancement in STEM education, offering a dynamic and versatile platform aligned
with the technological demands of modern industries.

Keywords: Automotive Communication Protocols, Educational Kit; Firmware Over-
the-Air (FOTA), Infotainment System, Secure Firmware Update.

: palidiual)

b 51 53l 5 o slall SVae (8 anll alail) e) Siall allall g i bl deliva (8 Sl 5 SSTY) 2t 3y 33
a3 A Aasiial) Ll O e Aee ol) Aslal 5 (STEM) sl s Al s
Gl bd) Aelia A aul 5 3lai e deadiva) «(Firmware Over-the-Air - FOTA) 2 g Slas il
de gana pa0 ob gadll o2 i Apandadll L) 8 ol JSG Alatie pe JI B Y () e Glaaa pll Enaadl
deaias ALl aalad Laie a5 «(Educational FOTA Kit) 2 g Gl) Euaad 4yl dualas
) LS 5 AeY) YL 5 el Aakai) 8 Aadiiall 5 Al asliall ala)

4GS Gleal 55 «STM32 4dsdall &aill Glas 55 <Raspberry Pi Jis 5 ey b Ka de gandll e
dgal gy « el &Y S5 s (Bootloaders) g8Y) Oilass Aaxd daas p Glas g 2o CAN Bus
Q\J\T}.\J\ iclia é IXYEA| C_Luaﬂ\ ia..p.u.u L;‘:)mbaj\ 0da (Jaxi (:\MY\ ‘U@.a.u (GU') ?M B\&A‘}u\‘)

=0 v =

YovE med g — sooladl sasdl = SEI alanedl

lagleall galy @bt A2ull tlaa

duaaidl & Y] COase LS Jia dyleld Aaiil JMA (e Al jall Jseadll 8 alasin S daida o <3
Adle A58 DIl (9) ghay 93 pilae dolee 3 @Ml iy CAES 5l 3kt g «CAN Sl 0 oS3

48 jaall Loy y 5 Ol Jeld 3 a3 A Lewlled Educational FOTA Kit de seaal 44 531 45 ail) <yl
il Bacl aghs COSELN Ja O jlge 8 Glipaad) el i) ol | el Guadailly 4 il
AL SVl 8 Jaall OOl de sanall oda 2ad Al 5 il y HISLY) 330 S (e A8V e)
Laai FOTA 4l dpaleti de gana Jiah | pmall 0¥y el o) dunia g ¢ (10T)sladY) < il Jia
Apall L ol Sl clllaie pa (il el i) $aante 5 ASualind daie 2l Cua ¢ STEMathas 8 1508

Al cletuall 8

o) sed) sae AU el) Cpant dgardad sac ¢l Jlnd) 8 JuaiV) Y S 5 g 5 rdsalidall cilalst)
e AN el) Cuani cagd yill 5 il slaal) aai ((FOTA)

1.Introduction

Firmware Over-the-Air (FOTA) is a transformative technology in the automotive
industry [1], enabling secure and efficient updates to vehicle software. With millions of
lines of code managing advanced vehicle functions, maintaining and improving
firmware has become essential for manufacturers. FOTA eliminates the need for
vehicles to visit service centers for software updates, reducing costs, increasing
efficiency, and ensuring user convenience while enhancing vehicle reliability and
security.

Despite its widespread industrial success, FOTA technology remains underutilized as a
teaching tool in STEM education. Current STEM curricula often prioritize theoretical
concepts over practical exposure to real-world technologies, limiting students' ability to
bridge academic knowledge with industry requirements (Maspul, 2024). This
disconnect hampers the readiness of graduates to meet the technical demands of modern
engineering and loT systems (Gugole et al., 2023). Addressing this gap requires
innovative educational tools that integrate emerging technologies into hands-on learning
environments.

To fill this void, the Educational Firmware Over-the-Air (FOTA) Kit offers a
comprehensive platform designed to teach students both foundational and advanced
concepts in embedded systems, secure communication protocols, memory management,
and automotive technologies. The kit incorporates accessible hardware components
such as Raspberry Pi, STM32 microcontrollers, and Controller Area Network (CAN)
Bus interfaces, paired with software modules that include custom bootloaders,
encryption protocols, and a user-friendly Graphical User Interface (GUI). By leveraging
simplified implementations and intuitive design, the kit ensures that complex
automotive technologies are accessible to learners at various educational levels.[Y]

=0.\=

YovE med g — sooludl saadl = SEI alanedl

lagleall aly @bt A2ull tlaa

The Educational FOTA Kit not only bridges the gap between theoretical knowledge and
practical application but also equips students with essential skills for emerging fields
such as IoT, automotive engineering, and cybersecurity. This paper presents the Kit's
design, implementation, and potential to revolutionize STEM education by fostering
innovation and technical proficiency in a practical, interactive environment.

2. State of the Art

Firmware Over-the-Air (FOTA) technology has been extensively explored in industrial
and research contexts, focusing on its implementation in 10T, automotive, and sensor
networks. Nikolov et al. proposed a cloud-based FOTA system that utilized bootloaders
to ensure memory segmentation and reliability [3]. Their system demonstrated the
importance of rollback mechanisms for maintaining functionality during updates.
However, it lacked security measures to protect data during transmission.

Kerliu et al. implemented AES encryption for secure firmware updates in sensor
networks, achieving high reliability under controlled conditions. Although effective,
their system did not address memory management or scalability for complex
applications [4]. Similarly, Schmidt et al. proposed secure FOTA packages optimized
for 10T devices, balancing security, memory usage, and processing speed. While
comprehensive, their approach lacked detailed benchmarks for evaluating performance
in real-world scenarios.[°]

Although these studies have advanced the field of FOTA, their focus has been on
industrial applications rather than education. There is a lack of educational tools
designed to teach FOTA concepts to students. Existing solutions prioritize industrial
applications, often requiring expertise beyond the reach of most learners. This gap
underscores the need for an educational adaptation of FOTA systems, which this paper
addresses by creating a comprehensive kit designed for accessibility and hands-on
experimentation. The Educational FOTA Kit builds on these foundations by adapting
these technologies for teaching purposes, offering students hands-on experience in areas
such as secure communication and memory sectorization.

3. Educational Design of the FOTA Kit

The Educational Firmware Over-the-Air (FOTA) Kit is designed to address the gap
between theoretical knowledge and practical applications in STEM education. By
incorporating real-world automotive technologies into classroom activities, the Kit
offers students a dynamic and engaging platform to develop technical proficiency and
innovative thinking.

=0.Y =

YovE med g — sooladl sasdl = SEI alanedl

lagleall galy @bt A2ull tlaa

3.1 Integration into STEM Curricula

The FOTA Kit aligns with core STEM objectives by introducing students to cutting-
edge technologies in embedded systems, secure communication, and automotive
applications. Its design supports multi-disciplinary learning and emphasizes experiential
education. Studies have shown that hands-on activities in STEM significantly enhance
student engagement and comprehension of complex topics.[V]

3.1.1 Foundational Concepts

The kit covers essential topics such as memory management, encryption algorithms
(e.g., AES), and CAN Bus communication, which are fundamental in courses on
embedded systems and automotive engineering.[V]

By using accessible hardware such as Raspberry Pi and STM32 microcontrollers, the kit
makes these advanced technologies approachable for learners at various levels.

The integration of AUTOSAR (Automotive Open System Architecture) [8] with the
Raspberry Pi 4 offers significant potential for advancing automotive technologies,
especially in the field of autonomous vehicle development. Using the Raspberry Pi 4 as
a flexible platform enables the implementation of key features such as real-time data
processing and computer vision, that are critical components in the current automotive
systems

3.1.2 Project-Based Learning

Students gain hands-on experience in critical areas such as designing bootloaders,
configuring CAN networks, and implementing secure over-the-air firmware updates.
This project-based approach enhances learning outcomes by encouraging exploration
and innovation.[]

3.1.3 Interdisciplinary Applications

The FOTA Kit integrates concepts from computer science, electrical engineering, and
cybersecurity, providing a holistic learning experience. This interdisciplinary
framework prepares students for the challenges of modern loT and automotive
industries.[*]

3.2 Implementation in Educational Settings

Figure 1 illustrates the workflow of the Firmware Over-the-Air (FOTA) system, where:

=anr=

YovE med g — sooludl saadl = SEI alanedl

lagleall aly @bt A2ull tlaa

e The system checks for new updates.

e The FOTA master microcontroller unit (MCU) requests an update package from
the data center.

e The update package is downloaded to the master MCU.

e The update is securely installed on the target MCU within the vehicle.
This workflow is central to the Educational FOTA Kit, enabling students to engage in
hands-on activities that replicate real-world automotive software update processes. By
visualizing the system architecture, students can better understand the interaction
between hardware, software, and cloud-based services in modern automotive systems.

_____ @----I

' &

I I
P o
|
|

/—\ | Bl

| A — "'! >

4. Installation

EI08
uuuu&:?
d

FOTA Master MCU FOTA Target MCU

Data Center
Figure 1: FOTA Workflow between the Data Center and the Vehicle
3.2.1 Laboratory Exercises

The kit includes structured exercises that guide students through tasks like configuring
CAN Bus drivers, developing firmware update mechanisms, and implementing
encryption protocols. These tasks reinforce theoretical concepts through practical
application.

3.2.2 Capstone and Research Projects

The FOTA Kit serves as a platform for advanced student projects, enabling the design
and implementation of custom automotive systems. Such projects can inspire
innovation while developing critical problem-solving skills [11].

=0.¢ =

Yore ymedes — Gwoludl asdl — SUII Waed)

lagleall galy @bt A2ull tlaa

3.2.3 Collaborative Learning

By working in teams, students gain experience in collaborative problem-solving, a key
skill in engineering disciplines. This also aligns with active learning strategies proven to
enhance student engagement.[) Y]

3.2.4 Assessment and Feedback

Instructors can evaluate student performance through tasks such as successfully
deploying firmware updates, debugging CAN communication, and implementing secure
communication protocols. This feedback loop ensures alignment with educational goals.

3.3 Advantages of the FOTA Kit for STEM Education
3.3.1 Accessibility and Scalability

The hardware components of the kit are affordable and widely available, making it
scalable for use in diverse educational institutions.

Its modular design allows educators to adapt the kit to different levels of complexity,
from introductory to advanced courses.

3.3.2 Real-World Relevance:

The integration of technologies like CAN Bus communication and AES encryption
mirrors industrial applications, bridging the gap between academia and industry.[) Y]

3.3.3 Innovation and Engagement:

The hands-on nature of the kit fosters curiosity and innovation, motivating students to
explore emerging fields such as 10T, autonomous systems, and secure automotive
technologies.[) ¢]

The CAN Bus module introduces students to automotive communication protocols. By
configuring standard and extended CAN frames, students learn to prioritize messages
and troubleshoot errors in multi-device networks. The hands-on nature of this module
helps students understand the intricacies of reliable data transmission.

Security protocols are another critical aspect of the kit. Students implement AES
encryption and SHA-256 hashing to secure firmware updates and verify data integrity.

= 0.0 =

YovE med g — sooludl saadl = SEI alanedl

lagleall aly @bt A2ull tlaa

These exercises provide a practical introduction to cybersecurity concepts, emphasizing
their importance in embedded systems. The flowchart of the system is shown in Figure

2.

R

[Vehicle start |

, ,

J

System check

for new updates

No

version exists

Send the file to
the target ECU

Yes Request update
package

[FoOTAfile |
server ‘

Download
update package

Security
Package Check

Enter (3 times)

security
key

Not Valid

Install the received
program

Gsplay System has\
™\ latest version
\ %

Figure 2: Kit Flow Chart

As illustrated in Figure 2, the system begins by checking for new firmware updates as
part of the vehicle's startup process. It connects to the FOTA server and compares the
firmware 1D currently installed on the vehicle with the version available on the server.
If any updates are detected, the kit automatically initiates a request to download the

firmware updates package.

=0." =

Yore ymedes — Gwoludl asdl — SUII Waed)

lagleall galy @bt A2ull tlaa

Once the downloading process of the package updates is complete, the system applies a
security check to verify the integrity of the file. This process is followed by asking the
user to enter a password to confirm their authorization before proceeding with the
installation. Based on the user's approval, the update is sent to the target ECU for
installation. After completing the installation process, a confirmation message is
displayed to inform the user that the vehicle is now running to the latest firmware
version.

If the password entered is incorrect, the system allows up to three attempts before
canceling the update request. It is important to note that all of these operations will not
proceed if the vehicle is in motion to ensure safety during the update process.

4. Methodology and Design

This section outlines the iterative design and implementation process for the
Educational FOTA Kit, covering hardware configuration, bootloader development,
flash programming, and software integration. This study adopted the Agile Software
Development model for kit implementing, starting with bootloader development then
flash programming and CAN network, till the Infotainment System.

4.1 Hardware Configuration

The hardware kit includes a Raspberry Pi 4 acting as the FOTA master ECU,
STM32F103 microcontrollers as target ECUs, and a serial-to-CAN converter for
communication. The Raspberry Pi 4 also functions as a decryption engine and user
interface host, utilizing an LCD touchscreen to emulate a vehicle infotainment system.
Figure 3 and Figure 4 show the schematic diagram and the simplified circuit diagram of
the FOTA kit respectively. The schematic diagram includes microcontrollers, CAN
communication modules, and associated power connections. This diagram represents a
setup for a distributed control system or communication network, where
microcontrollers exchange information over the CAN bus for reliable and real-time data
transfer.

=0.V =

YovE med g — sooludl saadl = SEI alanedl

alagleall aly @oliba il AL 2laa

Figure 3: Kit Schematic Diagram

U VEEV U

Figure 4: Simplified Circuit Diagram of the FOTA Kit
4.2 Bootloader Development

The bootloader development process began with configuring the GNU C Toolchain, as
shown in Figure 5, and modifying the linker script to allocate a dedicated RAM section
for bootloader execution, enabling independent operation from ROM .

=0.AN=

Yore ymedes — Gwoludl asdl — SUII Waed)

alagleall galy @bl A2 Ko

Source Code

Gt i ki » CCode

Include Header Files

& expand macros Pre-Processor

Generate Assembly
Code

Generate Machine Assembler
Cod

I

Linking Static Library Linker
lib & .a
Executable Machine Executable File |
Code exe

Figure 5: GNU C Toolchain

While working with linker scripts in STM32CubelDE and Eclipse, various challenges
were encountered, including errors when attempting to modify or create new sections
within the linker script. To address these issues, the development process transitioned to
Keil IDE, where scatter files were utilized as a replacement for linker scripts, providing
greater reliability and simplicity. This transition is illustrated in Figures 6 and 7, which
show the structure and configuration of a script.ld file in Eclipse.

27 /* Entry Point */

28 ENTRY(Reset_Handler)

/\A

30 /* Highest address of the user mode stack */

31 _estack = ORIGIN(RAM) + LENGTH(RAM); /* end of "RAM" Ram type memory */
32

33 _Min_Heap_Size = 0x200; /* required amount of heap */

34 _Min_Stack_Size = 0x400; /* required amount of stack */

36 /* Memories definition */

37 MEMORY

38

39 RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 36K
40 FLASH (rx) : ORIGIN = Ox8000000, LENGTH = 128K
a1}

42

Figure 6: Initial Section of the Script.ld file in Eclipse

97 .mysection

98 {

99 . = ALIGN(4);

100 __mysection_start__ = .;
101 *(.mysection¥*)

102 __mysection_end__ = .;

103 } > MY_MEMORY

Figure 7: Additional Section of the Script.ld file in Eclipse

=0.4 =

Yore ymedgs — Gwoludl asdl — SUJI Waed)

lagleall aly @bt A2ull tlaa

Using scatter files, a dedicated RAM section was created specifically for the bootloader,
as depicted in Figure 8. This setup ensured effective memory segmentation and allowed
the bootloader to operate independently of the ROM.

w3k ok sk ok ok ok 3k ok 3k ok 3k 3K ok Sk 3k ok sk ok 3k 3k ok Sk 3k 3k s ok 3k Sk ok s Sk sk sk ke sk sk sk ko kR ok sk sk sk ko sk ok sk ko ok Rk sk kR ok
>

; *** Scatter-Loading Description File generated by uVision ***
; KKK KKK KK KKK KKK KK KRR KKK KR KRR KR KRR KRR KRRk Rk Rk Rk ko kR kR k kR k kR kR Rk *k

LR_IROM1 ©x08000000 ©x00010000 { ; load region size_region
ER_IROM1 0x@8000000 0x00010000 { ; load address = execution address
*.0 (RESET, +First)
*(InRoot$$Sections)
.ANY (+RO)
LANY (+X0)

RW_TIRAM1 OX20000000 0x00010000 { ; RW data
LANY (+RW +ZT)
}

}

Figure 8: Scatter file configuration in Keil IDE (file.sct)

The scatter file specifies the RAM and ROM sections along with their access
permissions, starting addresses, and sizes. It also facilitates essential operations such as
copying the vector table into RAM, which prevents bus errors during simultaneous
ROM access. To implement this functionality, a new section was added for the vector
table, and the table was transferred into RAM using SCB_VTOR, as demonstrated in
Figures 9-12.

3 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k % 3k 3k 3k 3k %k %k %k 3k 3k 3k 5k %k 3k 3% %k 5k 3k 3k 3k 3 3k %k 3k %k % 3 % %k %K 3 3% %k 3k %k % % %k % %k % Xk kK kK Kk

; *¥** Scatter-Loading Description File generated by uVision ***
; 3 3k 3k 3k 3k 3k kK 3k 3k 3k 3k 3K 3k 3K %K %K 3K 3K 3K K %K K K K %k %k %k %k % %k 3k 3 3k 3 3 3 % K K Kk KKK KKKKKKKKKKKKKKKKXK

LR_IROM1 Ox08000000 0x00010000 { ; load region size_region

ER_IROM1 Ox08000000 0x00010000 { ; load address = execution address
*.0 (RESET, +First)
*(InRoot$$Sections)
.ANY (+RO)
LANY (+X0)

}

RW_IRAM1 Ox20000000 0x00004000 { ; RW data
LANY (+RW +ZI)

B4

RAM_FUNC 0x20004000 ©x00001000{

.ANY (.myramfunction)

i

h

Figure 9: Allocation of a new RAM section for the bootloader.

=0\ =

Yore ymedes — Gwoludl asdl — SUII Waed)

lagleall galy @bt A2ull tlaa

}
RW_IRAM1 Ox20000000 0x00003000 { ; RW data

.ANY (+RW +ZI)
}

RAM_FUNC ©x20003000 0x00001000{
.ANY (.myramfunction)

}
myvtor Ox20004000 0x0000800{

.ANY (.VCTORTABLE_)

}
}

Figure 10: Adding a section for the vector table in RAM

16 fstatic u32 vctTable[300] attribute ((section (".VCTORTABLE ")))={(0};

Figure 11: Defining an array to store the copied vector table

106 __asm volatile ("cpsid i");
107

108 *SCB_VTOR = 0x: : H

109 ptr= 0ld Vtor Address;

110

111 for (i=0;i< Ji++) |

112 vctTable[i] = ptr[i];

113 }

114

115 __asm volatile ("cpsie i");

Figure 12: Transferring the vector table to RAM

To ensure system reliability, vector table copying was implemented as a critical section,
disabling the global interrupted flag during execution. This approach minimized
unpredictable behavior and ensured smooth bootloader operation.

Developing the bootloader offers students an opportunity to explore memory
management and debugging techniques in embedded systems. By encountering and
resolving issues with linker scripts, students gain valuable problem-solving skills
applicable to real-world software development scenarios.

4.3 Flash Programming and CAN Network

STM32's Flash Program and Erase Controller (FPEC) was used to perform key flash
memory operations, including unlocking, erasing, and writing, as illustrated in Figure
13.

=0\ =

Yore ymedgs — Gwoludl asdl — SUJI Waed)

lagleall aly @bt A2ull tlaa

181
182 Aint main(void) {
183

184 typedef void (*Function t) (void):

185 Function t addr to call = 0;

186 static u32 CodeAddress= 0x08001004;

187 while (1) {

188 if (DATA Received==1) {

189 BOOTLOADER_RAM (Page_Address, DATA WriteAddress, DATA);
190 }

191 else if(timer == timeout) {

192 addr_to_call = *(Function_t*) (CodeRddress);
193 addr_to_call(); /* Jump on code erea*

194 }

195 timer++;

196 }

197 |}
Figure 13: Main Code Logic

The bxCAN module, with its compatibility with CAN protocol versions 2.0A and 2.0B,
supported communication via a CAN network. Key operational and test modes, such as
silent and loop-back modes, were configured to validate network performance as shown
in Figure 14 .

mcu
Application

CAN
Controller

CAN CAN
RAx Tx

CAN
Transceiver

Fang on 11 t !

CAN Bus

CAN node 1
CAN node 2
CAN node n

Figure 14: CAN Network Topology
4.3.1 bxCAN Main Features

The bxCAN module is a crucial component of the FOTA system, facilitating efficient
communication between devices on the Controller Area Network (CAN). Its robust
design ensures seamless data transfer while supporting various operational and testing
modes to optimize performance.

Table 1 highlights the primary features of the bxCAN module, focusing on its
transmission and reception capabilities. The transmission section details the three
transmit mailboxes, configurable priority levels, and time-stamping for data frames. The
reception section emphasizes the two receive FIFOs, each with three stages, and
configurable FIFO overruns, which enhance data handling in high-traffic scenarios.

=9\Y=

Yore ymedes — Gwoludl asdl — SUII Waed)

lagleall galy @bt A2ull tlaa

Additionally, the 14 filter banks enable precise message filtering, reducing CPU load
and ensuring reliable operation.

These features collectively enable the bxCAN module to handle the demands of real-
time automotive systems, making it an ideal choice for educational purposes in the
FOTA Kit.

Table 1: Transmission and Reception Features of the bxCAN Module

Transmission Reception

Three transmit mailboxes | Two receive FIFOs each
has three stages

Configurable transmit 14 filter banks
priority

Time Stamp on SOF | Configurable FIFO

transmission overruns

£€,¥,YOperating Modes of the bxCAN Module

The bxCAN module operates in three primary modes: initialization, normal, and sleep.
After a hardware reset, the CANTX pin has an active internal pull-up resistor, and the
bxCAN defaults to Sleep mode to conserve energy. To transition to initialization or
sleep mode, the software sets the INRQ or SLEEP bits in the CAN_MCR register. Once
the desired mode is engaged, the internal pull-up is deactivated, and bxCAN confirms
the transition by updating the INAK or SLAK bits in the CAN_MSR register.

In normal mode, neither INAK nor SLAK is configured, and the bxCAN must
synchronize with the CAN bus before operating. Synchronization occurs when the CAN
bus is idle, requiring 11 consecutive recessive bits to be detected on the CANRX pin.
These operating modes are illustrated in Figure 15.

Reset

=°\Y‘=

YovE med g — sooludl saadl = SEI alanedl

lagleall aly @bt A2ull tlaa

Figure 15: bxCAN's primary operational modes, including initialization, normal, and
sleep.

4.3.3 bxCAN Validation and Test Modes

The bxCAN module supports several test modes to verify and validate network
functionality. These modes are configured using two bits, SILM and LBKM, in the
CAN_BTR register. The test mode must first be selected while the bxCAN is in
initialization mode. To switch back to normal mode, the INRQ bit in the CAN_MCR
register is cleared. Test modes provide a reliable way to ensure the system's proper
operation under various conditions.

4.3.4 Silent Mode for Passive Monitoring

In Silent mode, the bxCAN module can receive both standard data frames and remote
frames from the CAN bus but does not actively transmit dominant bits. Instead, it
transmits recessive bits only, and any attempt to send a dominant bit is internally
redirected to the CAN Core for observation. This mode, as depicted in Figure 16, allows
for passive monitoring of the CAN bus traffic without affecting the network. Silent
mode is particularly useful for debugging and analyzing network communication.

bxCAN

CANTX CANRX
Figure 16: bxCAN operating in Silent mode for passive monitoring of CAN traffic.
4.3.5 Self-Testing with Loop Back Mode

Loop Back mode is designed for self-testing purposes, enabling the bxCAN to operate
independently of external events. In this mode, the CAN Core bypasses acknowledge
faults and reroutes transmitted data internally, converting the Rx input into Tx output.
This functionality allows the bxCAN to ignore the actual state of the CANRX input pin
while still validating transmitted messages, as shown in Figure 17. The CANTX pin can
also be used to monitor outgoing messages, making this mode ideal for validating
network functionality during development.

=0\¢ =

YovE med g — sooladl sasdl = SEI alanedl

lagleall galy @bt A2ull tlaa

bxCAN

Tx Rx

y
CANTX CANRX

Figure 17: bxCAN in Loop Back mode, internally routing transmitted messages for self-
testing

4.4 Software Components

The software architecture of the FOTA Kit comprises four key modules: a custom
bootloader for firmware updates, a CAN Bus driver for communication, a Graphical
User Interface (GUI) for user interaction, and a PHP-based server hosting encrypted
firmware. These components work together to ensure secure, efficient, and reliable
over-the-air firmware deployment.

4.4.1 Bootloader

The bootloader is a core component of the FOTA Kit, responsible for enabling the
microcontroller to receive firmware updates via communication protocols such as
UART, USB, or CAN. It manages the process of flashing the received firmware into the
microcontroller’s memory. As discussed in Section 4.3, the bootloader also integrates
critical functionalities such as memory segmentation, vector table copying, and rollback
mechanisms to ensure system reliability.

To enhance fault tolerance, the microcontroller's memory is divided into two sections,
each containing a firmware version (e.g., v1.0 and v2.0). If a firmware update is
corrupted or incomplete, the microcontroller reverts to the previous version,
maintaining functionality. This redundancy ensures the system remains operational
even in the event of a failed update.

4.4.2 CAN Bus Driver

The CAN Bus driver facilitates communication between the microcontroller and other
devices on the Controller Area Network (CAN). Building on the details provided in
Section 4.3, the CAN protocol is a widely adopted standard in the automotive industry,
offering features such as cyclic redundancy checks for error detection and an identifier

=0\e =

YovE med g — sooludl saadl = SEI alanedl

lagleall aly @bt A2ull tlaa

field for managing multi-device communication. The CAN Bus driver enables the
FOTA Kit to handle real-time data exchange with high reliability, making it essential
for firmware updates and diagnostic communication.

4.4.3 Graphical User Interface (GUI)

The GUI, developed using Python's CustomTkinter library, provides a user-friendly
interface for interacting with the FOTA Kit. Hosted on a Raspberry Pi with an LCD
touchscreen, the GUI allows users to monitor the system, fetch firmware updates from
the server, and initiate updates. By simulating an infotainment system, the GUI also
helps students understand how software updates are managed in modern vehicles,
bridging the gap between theoretical learning and practical application.

4.4.4 PHP-Based Server

The server, built using PHP, hosts encrypted firmware update files and handles
communication between the system and the cloud. This server ensures that firmware
updates are securely deployed using AES encryption and SHA-256 hashing,
safeguarding data integrity and preventing unauthorized access during transmission.
The encryption and decryption algorithms, discussed briefly in this section, are essential
for protecting firmware updates from tampering and ensuring secure delivery.

5. Infotainment System

The infotainment system in the Educational FOTA Kit serves as the primary user
interface for interacting with firmware updates. Built using a CustomTkinter-based
GUI, it emulates the functionality of a real-world automotive infotainment system,
providing students with hands-on experience in managing software updates. By
engaging with the system, students gain a deeper understanding of how infotainment
systems integrate with other automotive technologies, including bootloaders, CAN Bus
communication, and servers.

5.1 Overview of Infotainment System in FOTA Kit

The GUI simulates key functionalities of modern automotive infotainment systems,
including tabs for car overview, updates, and settings. Through this interface, users can:

* Monitor the vehicle’s status.
» Receive notifications for firmware updates.
« Initiate or approve installation of new firmware.

=0\ =

YovE med g — sooladl sasdl = SEI alanedl

alagleall aly @oliba il AL 2laa

This simulation bridges theoretical learning with practical application, enabling students
to understand the role of infotainment systems in modern vehicles. Critical updates,
such as those addressing security vulnerabilities, are performed automatically when the
system is connected to a network. Figure 18 illustrates the dark theme design of the
GUI, showcasing its layout and functionality

SFOTA Car Dashboard

& SFOTA

Battery Data Weather Data

DR
D’

+ 400 Km Traveled
350 Km Left Sunny
keep your Speed

Below 50 Km/h Wind Speed
17Km/h

Figure 18: Dark-themed GUI of the FOTA Kit with interactive tabs.
5.2 GUI Design with CustomTkinter

CustomTKinter, an enhanced Python library, is used to develop the GUI for the FOTA
Kit. It offers modern, customizable widgets with cross-platform compatibility, adapting
to light or dark themes and HighDPI scaling. These features make CustomTkinter
suitable for creating visually appealing and interactive interfaces.

The GUI includes four main tabs:

« Car Overview: Displays the vehicle's current status and system information.

« Update Center: Allows users to manage firmware updates, view notifications, and
track progress.

« Music: Simulates entertainment functionalities.

« Settings: Provides options for system configuration and preferences.

The dark-themed design of the GUI, shown in Figure 18, provides an intuitive and user-
friendly interface for students to engage with the system.

5.3 FOTA Kit Interface Workflow

=0\V =

Yore ymedgs — Gwoludl asdl — SUJI Waed)

lagleall aly @bt A2ull tlaa

The FOTA Kit's interface follows a systematic process to manage firmware updates:

» User Login: The system requires user authentication to access the interface.

« Server Connection: Upon login, the system connects to the FOTA server to
retrieve the latest firmware version.

» Version Comparison: The retrieved version is compared with the currently
installed firmware to determine if an update is available.

« Download Process: If an update exists, the system displays the download
progress and retrieves the firmware package.

« Security Check: After the download, AES encryption and SHA-256 hashing
verify the package's integrity.

» User Authorization: The user is prompted to enter a password to authorize the

installation.

Installation: The firmware is sent to the target ECU, installed, and verified for

successful completion.

Reboot and Confirmation: The system reboots and displays a confirmation

message upon successful installation.

For critical updates, the system automates the installation process when connected to
the network, bypassing user authorization to ensure timely deployment.

6. Security Measures

The Educational FOTA Kit integrates robust security measures to protect firmware
updates from unauthorized access or tampering. AES encryption, implemented using
the Cryptography library, ensures secure firmware transmission by employing 128-bit
keys generated via SHA-256 hashing. This approach guarantees both confidentiality
and data integrity during over-the-air (OTA) updates.

Specifically, the system uses AES-CCM mode, which combines encryption and
message authentication to provide robust protection. By utilizing a unique initialization
vector for each session, the algorithm strengthens resistance against replay attacks and
other unauthorized activities. SHA-256 hashing further validates the integrity of
firmware packages, ensuring that data remains authentic and unaltered throughout the
transmission process.

Incorporating these security measures into the Educational FOTA Kit introduces
students to essential cybersecurity concepts, such as secure boot processes, encryption

protocols, and digital signatures. Firmware updates, while critical for maintaining
=0\A =

YovE med g — sooladl sasdl = SEI alanedl

lagleall galy @bt A2ull tlaa

vehicle performance, are vulnerable to malicious interference without adequate security.
By working hands-on with these techniques, students gain practical experience in
implementing secure OTA updates, preparing them to address the cybersecurity
challenges of modern automotive systems.

7. Conclusion and Future Work

The Educational Firmware Over-the-Air (FOTA) Kit represents an innovative and
practical approach to teaching FOTA principles within STEM education. By combining
accessible hardware and software components, the kit enables students to explore key
concepts in automotive systems, embedded systems, and secure communication
protocols. Through hands-on activities, students gain valuable skills in areas such as
memory management, CAN communication, and AES encryption, equipping them for
careers in technology sectors like 10T, automotive engineering, and cybersecurity.

Future enhancements to the FOTA Kit will focus on integrating wireless
communication protocols, such as Wi-Fi and Bluetooth, and expanding compatibility
with additional microcontroller platforms, such as ESP32 and ARM Cortex-M series.
These developments will make the kit even more versatile, enabling it to adapt to the
rapidly evolving technological landscape. By continuously aligning with emerging
technologies, the kit will remain a valuable resource for fostering innovation and
developing technical expertise among students, supporting the advancement of STEM
education.

References

[Y] C. Plappert and A. Fuchs, “Secure and Lightweight ECU Attestations for
Resilient Over-the-Air Updates in Connected Vehicles,” in Annual Computer Security
Applications Conference, New York, NY, USA: ACM, Dec. 2023, pp. 283-297. doi:
10.1145/3627106.3627202.

[Y] P. C. Yau, D. Wong, and Q. Hongying, “Educational STEM Laboratory,” in
Proceedings of the 2020 6th International Conference on Education and Training
Technologies, New York, NY, USA: ACM, May 2020, pp. 9-12. doi:
10.1145/3399971.3399986.

[Y] N. Nikolov, “Research Firmware Update Over the Air from the Cloud,” in 2018
IEEE XXVII International Scientific Conference Electronics - ET, IEEE, Sep. 2018, pp.
1-4. doi: 10.1109/ET.2018.8549628.

=0\4 =

YovE med g — sooludl saadl = SEI alanedl

lagleall aly @bt A2ull tlaa

[¢] K. Kerliu et al., “Secure Over-The-Air Firmware Updates for Sensor Networks,”
in 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems
Workshops (MASSW), IEEE, Nov. 2019, pp. 97-100. doi:
10.1109/MASSW.2019.00026.

[¢] S.and T. M. and H. M. Schmidt, “Secure Firmware Update Over the Air in the
Internet of Things Focusing on Flexibility and Feasibility Proposal for a Design,” in
Internet of Things Software Update Workshop (1oTSU), Jun. 2016.

['] P. C. Yau, D. Wong, and Q. Hongying, “Educational STEM Laboratory,” in
Proceedings of the 2020 6th International Conference on Education and Training
Technologies, New York, NY, USA: ACM, May 2020, pp. 9-12. doi:
10.1145/3399971.3399986.

[V] S. Corrigan, “Introduction to the Controller Area Network (CAN) Application
Report Introduction to the Controller Area Network (CAN),” 2002. [Online]. Available:
www.ti.com

[A] AuToSAR, “AN5247 Application note Over-the-air application and wireless
firmware update for STM32WB series microcontrollers,” 2023. [Online]. Available:
www.st.com

[Y] M. Gugole, F. Fiore, T. Rosi, G. Zendri, and A. Montresor, “Stem-Kit: An
interdisciplinary approach to learning physics and computer science,” in 2023 IEEE
Frontiers in Education Conference (FIE), IEEE, Oct. 2023, pp. 1-8. doi:
10.1109/FIE58773.2023.10343208.

[Y+] D. Agarwal, K. C. Teja, and R. Srinivasan, “A Novel Approach to Product
Identification in Automobile Sector Using Raspberry pi 4. A Computer Controlled
Production System,” in 2023 International Conference on Communication, Security and
Artificial Intelligence (ICCSAI), IEEE, Nov. 2023, pp. 940-944. doi:
10.1109/ICCSAI59793.2023.10421150.

['V] K. A. Maspul, “Exploring STEM Education for Real-World Climate Change
Concerns to Empower Students as Change Agents,” Journal of Physics Education and
Science, vol. 1, no. 2, p. 12, Jan. 2024, doi: 10.47134/physics.v1i2.249.

['Y] H. Guissouma, A. Diewald, and E. Sax, “A Generic System for Automotive
Software Over The Air (SOTA) Updates Allowing Efficient Variant and Release
Management”.

=0Y. =

YovE med g — sooladl sasdl = SEI alanedl

lagleall galy @bt A2ull tlaa

['Y] K. Kerliu et al., “Secure Over-The-Air Firmware Updates for Sensor Networks,”
in 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems
Workshops (MASSW), IEEE, Nov. 2019, pp. 97-100. doi:
10.1109/MASSW.2019.00026.

[Y¢] N. Nikolov, “Research Firmware Update Over the Air from the Cloud,” in 2018
IEEE XXVII International Scientific Conference Electronics - ET, IEEE, Sep. 2018, pp.
1-4. doi: 10.1109/ET.2018.8549628.

YovE med g — sooludl saadl = SEI alanedl

