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Abstract: Site assessment studies using geophysical methods have been carried out in 

the Alamein area, Egypt to distinguish the different soil/rock type materials (rock, 

sand, gravel, or clay). Seismic methods as well as electrical resistivity tomography 

(ERT) provide valuable results. An empirical approach created from shear wave 

velocity and electrical resistivity cross-plots was used to identify these soil types. 

Distinguishing soil types is required in site assessment studies for the evaluation of the 

subsurface heterogeneity. These heterogeneities are very important in engineering 

analysis to identify possibilities of finding cavities, clay pockets, and other geological 

problems that will be needed to consider in designing of possible structures. This 

research study starts with an introduction of the study area along with previous works 

on the statistical estimation technique, then briefly discusses the geophysical methods 

used for data acquisition, followed by the method of handling the data set. Afterward, 

it describes different methods for estimation of the statistical value of soil briefly 

discussed, and finally a conclusion for summarizing the results. 

Keywords: Statistical Estimation, Regression, Surface Wave, ERT, Classification, Ideas, 

Geotechnical.  

1. Introduction 

Traditional site assessment uses boring 

methods that are expensive and have limitations 

such as not providing continuous data along the 

site profile in heterogeneous environments. 

Non-invasive, rapid, and continuous 

investigations are needed to support 

conventional investigation techniques including 

geophysical methods. The need for geophysical 

methods in site assessment studies is increasing 

day by day. Seismic methods and electric 

resistivity methods are used and have proven 

that they provide valuable results in site 

assessment studies. Combining shear wave 

velocity and resistivity in an integrated 

geophysical approach provides a more accurate 

description of soil type than the individual 

properties alone (Hayashi et al., 2013). 

Providing such information as soil 

mechanics properties, engineering properties, 

and information on possible fluid content is 

highly needed. To evaluate sites quantitatively 

integrated geophysical methods were proposed 

by Hayashi et al. (2009) and Inazaki et al., 

(2009). An empirical approach that was 

introduced by Hayashi et al. (2013) to 

determine soil type from shear wave velocity 

and electrical resistivity cross-plots has shown 

predictive capabilities in Japan and the state of 

Washington. Hayashi et al. (2013) developed 

the second-order multivariable polynomial 

equation from a least square regression to fit 

the cross-plotted data from Japan. Their model 

considered clays, sands, and gravels.   

Distinguishing soil types (Clay, Sand, or 

Rock) is required in site assessment studies for 

the evaluation of heterogeneity of the 

subsurface from the engineering viewpoint. 

The heterogeneity in many engineering 

analyses is important to identify possibilities 

of finding cavities, clay pockets, and 

geological problems that will be needed to 

consider in designing of possible structures. 

Physical properties obtained through 
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geophysical methods have ambiguities in 

identifying soil type.  

In this paper, we are going to try to reduce 

the ambiguity by estimating soil type by 

adapting the empirical approach (Hayashi et 

al., 2013) for use in our study to identify 

possible locations of clay concentrated zones 

using regression techniques on geophysical 

and geotechnical data collected from Alamein, 

Egypt as shown in Figure1.  

 

Figure 1: Location map of the acquired boreholes and geophysical survey lines in the 

study area. Coordinate System [EPSG:22993] 

 

2. Background and Related Work 

2.1.  Multichannel Analysis of Surface 

Waves (MASW) Method 

In-situ field testing using geophysical 

methods provides continuous information 

along the surveying line and without the need 

to retrieve samples to the laboratory. In 

seismic methods the propagation of acoustic 

waves to identify the mechanical properties of 

the investigated soil. When seismic waves are 

produced-acoustic waves- at/or near the 

ground surface, both body (compressional “P” 

and shear “S”) waves and surface (e.g., 

Ground Roll “Rayleigh”, “Love”, … etc.) 

waves are generated. Surface waves have 

dispersion properties that the body waves lack. 

This property is that every wavelength has a 

different penetration depth resulting in 

different velocities. Using this piece of 

information, analyzing the dispersion of the 

surface waves can provide data describing the 

near-surface velocity profile. MASW is a non-

invasive method of estimating the shear-wave 

velocity “Vs” from the surface wave energy. It 

uses the dispersion curve that is produced 

from the dispersive properties of Rayleigh 

waves for visualizing the subsurface layers.  

The Multianalysis of Surface Wave 

(MSW) method was proposed before 50 years 

ago in Japan and then called the microtremor 

survey method (MSM). In the 1990s, 

electronic equipment was developed for the 

MASW by the Kansas Geological Survey 
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called multi-channel analysis of surface wave, 

MASW (Park et al., 1999). This technique has 

been developed, and used for applications in 

civil engineering, for example, for site 

characterization (Long and Donohue, 2007) 

and for compaction controlling by measuring 

the decay of soil vibrations (Adam et al., 

2007) also for the quality of stone column 

(Madun et al., 2012). The approach of the 

MASW offers considerable advantages over 

based upon a single transmitter-receiver pair.  

The method of carrying out measurements 

using a multiple-receiver strategy reduces 

acquisition time and indicates lateral 

resolution (Park et al., 1999), while the sub-

surface characterization in both the vertical 

and lateral axes provides a useful 2D 

representation (Socco and Strobbia, 2004). 

MASW introduced by Park et al. (1999) used 

similar equipment to seismic refraction, which 

can result in identifying and removing noise 

from scattered and reflected waves during the 

data analysis. As a result, a best-fit line can be 

drawn through the phase angle-distance plot, 

minimizing the influence of variations in data, 

and allowing enhanced robustness in data 

processing. 

The entire procedure for MASW consists 

of the following steps: 

1. Acquiring multichannel field 

records (or shot gathers). 

2. Processing the data to extract the 

dispersion curve for each shot 

gathered.  

3. Inverting the extracted dispersion 

curves to obtain 1D (depth) Vs 

profiles by selecting the surface 

wave zonation and filtering the 

data from the other wave types. 

4. Producing a new dispersion curve 

without the other wave type 

frequencies. 

5. Preparing the vertical sections of 

the shear wave velocities (Vs) by 

placing each 1D Vs profile at a 

surface location corresponding to 

the middle of the receiver line, a 

2D (surface and depth) Vs model 

can be created through an 

appropriate interpolation scheme. 

The MASW method has improved 

production in the field and improved the 

characterization of dispersion relationships by 

sampling the spatial wave field with multiple 

receivers. 

Rayleigh waves are generated in all 

shallow seismic surveys as shown in Figure 2 

and have the strongest energy, so they appear 

as dominant events all over the seismic 

records. Their propagation in the vertical 

direction through a vertically heterogeneous 

layered is displayed as a dispersive behavior. 

Dispersion means that different frequencies 

have different phase velocities. There occurs 

an exponential decrease in their amplitude 

with depth and most of the energy is dispersed 

in a shallow zone. In a layered medium, the 

surface wave does not have a constant velocity 

but a phase velocity that is a function of the 

frequency. The dispersion curve represents the 

relation between the frequency and the phase 

velocity as shown in Figure 3. That means, at 

higher frequency values, the phase velocity 

signified the Rayleigh velocity of the 

shallower layer (uppermost layer) and vice 

versa the lower values of frequency mean the 

Rayleigh velocity of the deepest layer. Figure 

4 describes the construction of 2D Vs seismic 

section interpolation of several 1D models. 
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Figure 2: Schematic View of the field equipment (after Foti et al. 2014). 

 

 
Figure 3: Shot gather of surface wave (a), dispersion curve showing its frequency-phase velocity 

relation (b). 
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Figure 4: Describing the construction of 2D section interpolation of several 1D Models. 
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2.2. MASW Data Acquisition 

Four seismic refraction profiles were 

acquired using an active seismic source 

(Sledgehammer). The length of each seismic 

profile was 187.5 m with a geophone interval 

of 7.5 m collected along the site on two sides 

separated by Wadi El Natrun-Alamein Road 

the eastern and the western sides. When a 

wave is generated by the seismic source with 

several impacts to enhance the data quality 

and the pulse amplitudes along the shot gather. 

This process is repeated with different source 

offsets (normal-middle-reverse) to sample the 

desired frequency range. Both seismic and 

resistivity profiles were measured on the same 

alignment as close as possible to the 

geotechnical borehole previously made. The 

profile is parallel to the underdeveloped new 

Alamein Road at that time.  As a limitation the 

collected data appeared to have noisy results 

due to the presence of the road and 

constructions processing steps were needed to 

enhance the results. 

The seismic data was acquired using a 

multi-channel seismograph (OYO McSeis 

1500-24-Channels Seismograph). This device 

is usually used for recording, filtering, and 

stacking seismic data. A sledgehammer (18 

kg) was used as a source of energy in this 

survey generating seismic waves by repeating 

several vertical impacts (stacks) on a metal 

striker plate. Twenty-four vertical 

electromagnetic geophones with a natural 

frequency of 14 Hz were used as detectors and 

they were well-planted (good coupling) into 

the ground. The data is then saved in SEG 2 

format for later use by software to process and 

model. After the model was created, it was 

exported to an XML format to be contoured 

for further usage. 

2.3. Electric Resistivity Tomography 

(ERT) Method 

Geoelectrical resistivity imaging has 

played an important role in addressing a wide 

variety of hydrogeological, environmental, 

and geotechnical issues. Resistivity is a 

physical property of materials. It is the ability 

to resist a flow of charges; it is the 

measurement of how strongly a material 

resists the flow of electric current (Denchik 

and Chapellier, 2005). The purpose of 

electrical surveys is to determine the 

subsurface electrical resistivity distribution by 

making measurements on the ground surface. 

The 2D resistivity measurements are normally 

made by injecting current into the ground 

through two current electrodes and measuring 

the resulting voltage difference at two 

potential electrodes (Nordiana et al., 2012).  

Resistivity imaging technique depends on 

Ohm’s law, which states that the electric 

current in a material is proportional to the 

potential difference across it (Abdelwahab, 

2013). From these measurements, the true 

resistivity of the subsurface can be estimated 

(Loke, 2012). Electrical resistivity is known to 

be highly variable among other physical 

properties of rock (Adli et al., 2010). The 

resistivity of the 2D model is assumed to vary 

both vertically and laterally along the survey 

line but is constant in the direction 

perpendicular to the survey line (Aizebeokhai 

et al., 2010). The resistivity of a soil or rock is 

dependent on several factors that include the 

amount of interconnected pore water, porosity, 

amount of total dissolved solids such as salts 

and mineral composition (clays) (Nordiana et 

al., 2012), and degree of water saturation in 

the rock (Srinivasamoorthy et al., 2009). 

The work on introducing current into the 

ground for prospecting purposes started 

around a century ago. Early work was done 

qualitatively by locating conductive anomalies 

by moving a potential electrode pair while 

keeping the current electrodes fixed, i.e. a 

gradient technique. Such work was carried out 

in Sweden in 1906 and onwards, initially 

using Daft and William’s method and 

equipment (Petersson, 1907), and later by 
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equipment made locally (Bergström, 1913). 

Conrad Schlumberger started his pioneering 

work on electrical prospecting in 1912, and 

approximately at the same time, Wenner 

developed the same idea in the USA 

(Schlumberger, 1920; Kunetz, 1966). The 

resistivity method is based on measuring the 

potential between one electrode pair while 

transmitting DC between another electrode 

pair (Figure 5).  

The depth of penetration is proportional to 

the separation between the electrodes, in 

homogeneous ground, and varying the 

electrode separation provides information 

about the stratification of the ground. The 

measured quantity is called apparent 

resistivity. Interpreting the resistivity data 

consists of two steps: a physical interpretation 

of the measured data, resulting in a physical 

model, and a geological interpretation of the 

resulting physical parameters.  Figure 6 shows 

the roll-along configuration setup for the ERT 

survey. 

 

Figure 5: The configuration of modern electrical resistivity, the configuration usually is of four 

electrode system. One set of 2 electrodes is connected to a battery for current injection and the other 

two is connected to a voltmeter to measure potential difference. This figure also shows the paths of 

electric current. 

 

Figure 6: Roll-along configuration setup for ERT survey, the system is connected to a large number 

of electrode that switches between them to simultaneously take readings of several resistivity 

measurements. For the lateral extension for the readings a segment on the measuring electrodes is 

laterally move to the end of the section. 
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2.4. ERT Data Acquisition 

ERT data was collected using SYSCAL 

Pro Switch 72 using the Dipole-Dipole 

method to create a pseudo section on a roll-

along sequence. The resulting data is 

presented after the processing and 

interpretation as a 2D section for the measured 

line and exported to XML format to be 

contoured. Figure 6 shows the ERT sample 

displayed using ZONDRES2D software of the 

observed apparent resistivity, the calculated 

apparent resistivity, and the contoured 

interpreted resistivity. 

After overlapping the two sections of 

ERT and MASW the ERT section is shown to 

be wider and deeper than the MASW section. 

Therefore, the ERT section is cropped to 

match the width and depth of the MASW 

section.  

 

 

Figure 7: ERT sample displayed using ZONDRES2D software where the top image is the 

observed apparent resistivity, the middle is the calculated apparent resistivity, and the bottom 

is the contoured interpreted resistivity. The software takes the measured observed resistivity 

data and preform interpretation processes to result a section of apparent resistivity which is 

close to the actual lethology. 

2.5. Processing and Interpretation of 

the Geophysical Data  

Dispersion curve was created using the 

MASW processing technique pioneered by 

Park et al. (1999). After recording the data, 

ZONDST2D can be used to manually pick the 

ground roll surface waves, then to create and 

pick the dispersion curve with its L-shaped 

along the maximum amplitudes, and finally to 

invert it to 1D shear wave velocity Vs profile.  

By picking the dispersion curve for each 

shot gathered along the seismic profile, the 1D 

shear wave velocity profiles are interpolated 

together using a kriging method to create an 

inverted 2D shear wave velocity model. 

For ERT data the most important step of 

data processing is removing bad data points. 

In ZONDRES2D after opening the window of 

the “Quality control module” the apparent 

resistivity is viewed concerning the data level. 

Bad data points appear as very high or very 

low values with respect to the neighboring 

values which sharp localized changes in the 

subsurface are clearly wrong. The cause of 
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these abnormal data is usually of an outsource 

noise such as bad ground conductivity with 

certain electrodes, faulty relays at one 

electrode, shorting in cables to very wet 

ground conditions, …etc. Dropping/Deleting 

those data is the best way to handle them if not 

deleted it may influence the model with higher 

or lower values. After interpretation the 

interpreted values is exported to SURFER to 

be contoured using the kriging method and the 

dataset is cropped to match the size of the 2D 

shear wave profile. 

Figures 8 and 9 show the interpolated sections of both MASW and ERT profiles of the eastern 

and western sides of the Wadi El-Natrun-Alamein Road study area, respectively.  

 

Figure 8: Interpolated sections at the eastern side of the road; the MASW_L1, 

MASW_L2 lines a), and the resistivity values of the ERT_2 b).  

 

Figure 9: Interpolated sections at the western eastern side of the road; the 

MASW_L1, MASW_L2 lines a), and the resistivity values of the ERT_2 b). 
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2.6. Geophysical Data Interpretation 

Interpretation of interpolated sections 

software showed that the subsurface of the 

study area consists of four major units. 

Looking at the provided boreholes the 

geophysical results are a good match with the 

borehole log from top to bottom as follows:  

1. A unit with relatively high resistivity 

(150 Ω.m ~ 750 Ω.m) and low shear 

wave velocity layer (0.5 km/sec ~ 0.8 

km/sec) with thickness varying from 1 

to 5 meters. This can be interpreted as 

a topsoil layer. 

2. A unit with relatively moderate to high 

resistivity (100 Ω.m ~ 500 Ω.m) and 

high shear wave velocity layer (1.25 

km/sec ~ 1.55 km/sec) with thickness 

varying from 2 to 9 meters. This can be 

interpreted as hard rock. 

3. A unit with relatively low to high 

resistivity (5 Ω.m ~ 900 Ω.m) and low 

to moderate shear wave velocity layer 

(0.65 km/sec ~ 1.1 km/sec) with 

thickness varying from 7 to 12 meters. 

This can be interpreted as a fractured 

rock with zones of clay pockets. 

4. A unit with relatively very high 

resistivity (≥300 Ω.m) and moderate 

shear wave velocity layer (≥ 1.1 

km/sec) with a thickness of around 10 

meters completing the rest of the 

section. This can be interpreted as solid 

bedrock. 

2.7. Data Handling and Geotechnical 

Soil Type Estimation 

Data resulting from geophysical 

investigations are represented by numerical 

values for which is interpreted and labeled by 

a geophysicist to give a geological meaning 

based on geological and geophysical 

knowledge. Hayashi et al. (2013) introduces 

an empirical soil type estimation method using 

crossplots of shear wave velocity Vs , 

resistivity data ρ and borehole core samples as 

anchor points to identify a small segment of 

geophysical measured section and label it with 

the parameter needed to be classified 

depending on the measured geophysical 

methods to form a group of training data for 

our upcoming model which is used for 

estimation of the whole measured section. The 

result of this process is a contoured section 

with the parameters used in the classification 

which in our case is soil type (Clay, Sand and 

Rock). 

In this paper, three supervised learning 

methods are used for the identification of the  

coefficients of Hayashi’s empirical formula: 

 

Equation 1:  Hayashi's empirical formula. 

where S is a representation of the 

classification parameter-geological feature in 

our case- treating the geological data gathered 

as numbers where there is a value given for 

each where Clay = 1, Sand = 2, and Rock = 3. 

For the coefficients {a, b, c, … h} supervised 

learning methods (Stochastic gradient decent, 

Bayesian regression, and support vector 

machine) are used to identify them using the 

sci-kit library from Python programming 

language after coefficients are identified an 

estimation is then calculated for the rest of the 

measured section resulting in a contoured 

section of soil type values.  

2.8. Geotechnical Measurements 

Available geotechnical data provided is 

for three geotechnical boreholes drilled with a 

diameter of 76 mm and depths up to 36 meters 

deep.  Two of the boreholes fall on the 

western side, and one is in the eastern side. 

The data from the boreholes show different 

variations of soil and rock types but for 

𝑆 = 𝑎𝑉𝑠
2 + 𝑏𝑉𝑠 + 𝑐(log10(𝜌))2 + 𝑑 log10(𝜌) + 𝑒𝑉𝑠

2 log10(𝜌) + 𝑓𝑉𝑠(log10(𝜌))2 + 𝑔𝑉𝑠 log10(𝜌) + ℎ (1) 
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simplification, the lithologies are categorized 

into Sand, Clay, and Rock. Using the collected 

data and with the intersection with the 

measured geophysical sections, a value of 

shear wave and resistivity was assigned for 

each depth point along its lithology with 1 m 

sampling. A cross-plot can now be created 

using shear wave velocity on the x-axis and 

the resistivity on the y-axis as shown in Figure 

11. 

 

 

Figure 10: Cross-plot of the obtained borehole samples and their geophysical values. 

3. Methodology 

In Hayashi’s approach a polynomial 

approximation is used for building a relation 

between soil type, shear wave velocity Vs and 

resistivity ρ. As previously mentioned in this 

paper a cross plot is established with the data 

collected from boring samples of known 

criteria and their values of resistivity and shear 

wave velocity from the geophysical 

exploration. The polynomial fitting for the 

data is done by several computing methods to 

determine the values of the constants in 

Hayashi’s formula Equation 1.  

In this paper the results of using three 

different regression methods used in machine 

learning for the computation of the constant 

values and compares them by their accuracy of 

estimation and their results are involved. 

3.1. Gradient Decent Method 

This method was first introduced by 

Kiefer and Wolfowitz (1985). Gradient decent 

is an optimization algorithm that is used to 

find the local minimum of a function to 

identify the values of that function’s constants. 

The application of this method depends on the 

initial parameters that are identified from 

borehole and given to the algorithm that uses 

calculus to iteratively adjust the values to 

reduce the cost function as minimum as 

possible.  This method depends on the learning 

rate and the number of iterations to reduce the 

cost function as minimum as possible.  

 

𝑥𝑛+1 = 𝑥𝑛 − 𝛼∇𝑓(𝑥𝑛) (2) 

Equation 2: Cost function of Gradient Decent Method where Xn is the current guess, α is the 

learning rate, Xn+1 is the new guess and ∇f(x_n ) is the partial derivative of the function. 
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3.2. Bayesian Ridge Method 

This method was first introduced by 

Neal (1995). Bayesian regression is a linear 

regression that uses Bayesian statistics to 

estimate the constants of a function or any 

unknowns in a model. It uses Bayes’ theorem 

to estimate the likelihood of a set of 

parameters given observed data. Bayes 

Theorem.  gives the relationship between an 

event’s prior probability and its posterior 

probability after evidence is considered. The 

goal of Bayesian regression is to find the best 

estimate of the parameters of a linear model 

that describes the relationship between the 

independent and the dependent variables.  

 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴). 𝑃(𝐴)

𝑃(𝐵)
 (3) 

Equation 3: Present Bayesian Theorem, 

where P(A|B) is the probability of event A 

happening given that event B has already 

occurred, P(B|A) is the probability of event B 

occurring given that event A has already 

occurred, P(A) is the probability of event A  

3.1. Supported Vector Machine 

(SVM) Method  

This method was first introduced by 

Vapnik (1992). SVM is considered a 

nonparametric technique because it relies on 

kernel functions. The working methodology is 

that this method finds a hyperplane in a high-

dimensional space that best separates the data 

into different categories. It aims to maximize 

the distance between the separator 

“hyperplane” and the nearest points of each 

category, where this distance is called the 

margin in addition to minimizing classification 

errors. SVM can handle classification 

problems of data in both linear and non-linear 

states.  

Stochastic Gradient Descent (SGD) is 

a simple yet very efficient approach to fitting 

linear classifiers and regressors under convex 

loss functions such as (linear) Support Vector 

Machines and Logistic Regression. Using the 

scikit-learn library in python language the data 

sample of known Vs, ρ and soil type is fitted 

using the embedded function for Stochastic 

Gradient Descent, then the resulted model is 

used for predicting the unknown value of S for 

the rest of the geophysical section. After 

predicting S for the rest of the geophysical 

section, accuracy for S is plotted and values of 

S are contoured as mentioned in the previous 

methods.  In Figure 11 shown how this 

method classifies the data showing the spread 

of the data along the classification zone and 

the decision boundaries estimated.  

 

Figure 11. Decision boundary model created by the SVM. 

     S = 3 “Rock Sample” 

       S = 2 “Sand Sample” 

       S = 1 “Clay Sample” 
 

       Classified as Rock 

       Classified as Sand 

       Classified as Clay  
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4. Results and Discussions 

4.1. Gradient Decent Method 

In our case study, the initial values for 

the constants were randomly chosen and after 

a series of trial and error it was found that 

number of iterations of 20000 and learning 

rate of 0.01 gives best results for the 

regression. After reducing the cost function to 

as minimum as possible Figure 12 the 

constants are exported and used in the 

prediction of the S using the known data 

sample. The accuracy of S is calculated by 

comparing the values of the measured S with 

the actual data from the training sample. The 

data is grouped into 4 categories depending on 

the S values [1:1.5, 1.5:2, 2:2.5, and 2.5:3] and 

the comparison is demonstrated as in Figure 

13.  

Table 1: Constants values using stochastic gradient decent method 

Category a b c d e f g h 

Value 0.91268 1.01301 0.18265 -

0.26802 

-

0.80302 

0.18507 0.93604 -

0.56673 

 

 

Figure 12:  Plot showing the decrease the fitting error for every 

iteration by the decrease of the cost function as the number of 

iterations is increased until a certain limit and then the change of 

the cost function per iteration is negatable. 
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Figure 13: Plot Showing the Accuracy of The S Value Estimation by Using the Gradient 

Decent Method. 

 

Using the Hayashi equation previously mentioned. the values of S was calculated using the 

shear wave velocity Vs, resistivity ρ and the constants obtained from regression. The calculated 

values are contoured using SURFER software to give a contoured section with values of S as shown 

in Figure 14. 

 

 

Figure 14: Contoured values of S for the eastern and western sections using 

stochastic gradient decent method. 
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4.2. Bayesian Ridge Method 

This method was first introduced by 

Neal (1995). Bayesian regression is a linear 

regression that uses Bayesian statistics to 

estimate the constants of a function or any 

unknowns in a model. It uses Bayes’ theorem 

to estimate the likelihood of a set of 

parameters given observed data. Bayes 

Theorem. gives the relationship between an 

event’s prior probability and its posterior 

probability after evidence is considered. The 

goal of Bayesian regression is to find the best 

estimate of the parameters of a linear model 

that describes the relationship between the 

independent and the dependent variables.  

 

Using the scikit-learn library in python 

language the data sample of known Vs, ρ and 

soil type is fitted using the embedded 

Bayesian Ridge function. Following the fitting 

the parameters of the function is exported and 

accuracy of S is calculated, and values of S is 

calculated and contoured for the rest of the 

section in the same method used in Gradient 

Decent.  

Table 2: Values of Hayashi's equation constants using the Bayesian Ridge Regression. 

Category a b c d e f g h 

Value 0.14744 0.12748 0.07312 0.08882 0.15260 0.17395 0.21832 0.0 

 

 

Figure 15: Plot showing the accuracy of the S value estimation using the Bayesian 

regression method. 

 



44 

44 
 

 

Figure 16: Contoured values of S for the eastern and western sections using Bayesian 

regression. 

4.3. Supported Vector Machine 

(SVM) Method  

This method was first introduced by 

Vapnik (1992). SVM is considered a 

nonparametric technique because it relies on 

kernel functions. The working methodology is 

that this method finds a hyperplane in a high-

dimensional space that best separates the data 

into different categories. It aims to maximize 

the distance between the separator 

“hyperplane” and the nearest points of each 

category, where this distance is called the 

margin in addition to minimizing classification 

errors. SVM can handle classification 

problems of data in both linear and non-linear 

states.  

 

Figure 17: Plot showing the accuracy of the S value estimation by using the Stochastic 
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Gradient Decent Classifier. 

 

 

Figure 18: Contoured Values of S For the Eastern and Western Sections using Stochastic Gradient 

Decent Classifier. 

 

4. Conclusions and Future Work 

Statistical soil type estimation from 

shear wave velocity and resistivity data can be 

used as a tool for enhancing the interpretation 

of geological complex zones. For the 

polynomial approximation, various methods 

can be used which can lead to more accurate 

predictions and interpretation. Looking back 

to the results, the generated sections from 

regression methods show a higher level of 

ambiguity than the sections from the 

classification. Comparing figures (Figure 13, 

Figure 15, Figure 17) the values of S have a 

range of values, and both used methods 

proved to be hard to identify the sand with 

high statistical value leading to high ambiguity 

in the determination of the soil type. 

Otherwise, the classification method due to its 

nature of dividing the data into categories 

proved to give higher accuracy in the 

determination of the soil type. Further 

comparisons between different regressions and 

classification techniques, with larger data sets 

to perform more accurate evaluating methods 

such as (the test-split method) are needed to 

confirm the optimized method for statistical 

estimation for best soil type estimation 

methodology using regression methods. 
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