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Assessment the microbiological and molecular aspects of soil
isolated bacteria that suppress Pythium ultimum in Abha/KSA
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Background
Pythium ultimum is largely threatening many economically important plants by
causing seedling damping-off disease. Microbial control approach is considered a
new, effective, and safe trend in the eradication of phytopathogens.
Aims
The current work focused on the isolation and molecular identification of soil
isolated bacteria that suppress the damping-off-causing pathogen (P. ultimum).
Moreover, optimization of environmental factors and detection of themode of action
of P. ultimum suppression was taken into consideration.
Materials and methods
Soil bacteria were isolated and screened for their antagonistic potential toward P.
ultimum. The most vigorous isolate was characterized and identified. Some
environmental factors were optimized using a well-plate assay. The inhibitory
effect of bacteria, whether fungistatic or fungicidal, was detected. Mode of
action of fungal inhibition was studied as well.
Statistical analysis
Statistical analysis was carried out using one-way analysis of variance in Excel.
Results
The bacterial isolate was identified as Enterococcus faecalis. The extracellular
filtrate presented higher fungal inhibition (68%) compared with the bacterial cells
(53%). The environmental factors for fungal inhibition were optimized to be pH 8,
28°C, 100% inoculum size, and third day of incubation reaching maximal values of
75, 76, 81, and 83%, respectively.
Conclusion
E. faecalis is a promising fungicidal agent against P ultimum through the production
of diffusible metabolites.
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Introduction
Damping-off is one of the most frequent plant diseases
worldwide. Among the etiologic agents Pythium spp.,
which belong to fungal-like organisms called
oomycetes [1]. It extensively induced the devastating
root rot, causing seedling damping-off. Therefore,
Pythium diseases are important limiting factors in
the successful cultivation of crop plants and
responsible for losses of multibillion dollars
worldwide [2,3]. The control process would be
difficult and is considered a very common problem
in fields and greenhouses as Pythium spp. tends to be
very generalistic and unspecific in its host range [4,5].
For many years, chemical pesticides have been
extensively used to reduce crop diseases, despite the
seriousness of pesticide residues in food and
environment. Therefore, this necessitates toxi-
cological safety and pathogen resistance, and thus
increasing costs that are involved in pesticide
development. In contrast, biological control is the
Wolters Kluwer - Medknow
widespread approach in agriculture as well as an
environmental-friendly alternative to chemical use
[6]. Actually, many microorganisms played a vital
role in biocontrol of Pythium damping-off, such as
Trichoderma spp (T. virens and T. barzinum),
Streptomyces griseoviridis and Gliocladium spp [7–9].
Pseudomonas and Bacillus are the most common
examples of biocontrol agents toward Pythium

ultimum, leading to the high rate of seedling
emergence of soybean crops [10,11]. Notably,
indigenous agricultural soil bacteria were developed
and formulated as biofungicides for diminishing the
early crop loss caused by seedling damping-off and root
rot [12]. Currently, Khabbaz et al. (2015) [13] explored
novel strains of rhizobacteria, Bacillus subtilis Bs 8B-1,
DOI: 10.4103/1687-4315.197587
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Pseudomonas fluorescens Pf 9A-14, and Pseudomonas

spp. P sp. 8D-45 having a broad spectrum
antagonistic activity toward Pythium spp., resulting
in the suppression of Pythium damping-off and root
rot of cucumber. Many mechanisms were put forward
to explain growth inhibition of one organism by
another, such as competition, production of
siderophores, antibiotics, enzymes, and volatile
substances [14]. The objective of our study was to
isolate and identify soil bacteria as a biocontrol agent
toward P. ultimum and optimize the medium and
growth conditions leading to the highest rate of P.

ultimum inhibition. Moreover, the inhibitory effect of
bacteria whether fungistatic or fungicidal was detected.
Materials and methods
Microorganisms and growth conditions
P. ultimum strain was provided by the Biology
Department, College of Science, King Khalid
University. P. ultimum was grown using both potato
dextrose agar medium and potato dextrose broth
medium and incubated at 28°C, pH 6 for 72h.
Antagonistic bacteria were isolated from rhizosphere
soil in Abha (Kingdom of Saudi Arabia) on 12
November 2014 using nutrient agar medium and
nutrient broth medium and incubated at 30°C, pH 7
for 24h. All microorganisms were maintained at –4°C.
Isolation and screening of antagonistic bacteria
Isolation of soil bacteria was carried out using the serial
dilution method. Colonies with different
characteristics were selected. All isolates were
screened for antifungal activity using the dual-
culture plate assay. The inhibition percentage of the
pathogen was calculated according to the following
equation: Inhibition %=P–C/C, where P is the
diameter of the pathogen growth on the nearby site
of the fungus disk that faces the bioagent isolate and C

is diameter growth of the pathogen control.

Bacterial isolates that inhibited fungal proliferation
were selected and preserved [15].
Characterization and identification of the bacterial
isolate
Thebacterial candidate exhibiting thehighest antifungal
activity toward P. ultimum was selected and
characterized. It was identified using the 16S rRNA
sequence method. Total genomic DNA was extracted
from pure bacterial culture using DNeasy Blood and
Tissue Kit (Qiagen, West Sussex, UK). PCR
amplification of the 16S rRNA gene from bacterial
isolates was performed using the universal primers
27F5′AGAGTTTGATCMTGGCTCAG3′and
1495′TACGGYTACCT GTTACGAC TT 3′. The
amplified DNA fragments were gel-purified using QIA
Quick Gel Extraction Kit (Qiagen, Valencia, USA)
following the manufacturer ’s instructions and
sequenced by Macrogen Inc. (Seoul, Korea) using an
ABI3730 XL Automatic DNA Sequencer (Applied
Biosystems, Renton, Washington, USA). Multiple
alignments of sequences were carried out with Clustal
X [16]. The evolutionary history was inferred using the
maximum likelihood method. The bootstrap consensus
tree inferred from 1000 replicates was taken to represent
the evolutionary history of the taxa analyzed and the
phylogenetic analysis was conducted using Mega 6
(molecular evolutionary genetic analysis) software [17].
Detection of antifungal activity of extracellular filtrates
Two methods were adopted to estimate antifungal
activity, well-plate assay and dual-culture plate assay,
which were performed according to the method
described by Petatán-Sagahón et al. (2011) [15].
Optimization of environmental conditions
Optimization of some environmental factors was
carried out to achieve maximum antifungal activity
using well-plate assay [15].
Detection of the best incubation period
The selected antagonist was cultured at the previous
growth conditions for different incubation periods (1,
2, 3, 4, 5, 6, and 7 days). Afterwards, the antifungal
activity was investigated.
Evaluation of inoculum size
Five dilutions (100, 50, 25, 12.5, 6, and 3%) from the
bacterial isolate were prepared and used as initial
inocula [18].
Evaluation of temperature
The bacterial isolate was incubated at different
temperatures (5, 15, 20, 25, 28, 30, and 35°C),
followed by measuring the antifungal activity.
Evaluation of initial pH
The bacterial isolate was incubated at different initial
pH values (4, 5, 6, 7, 8, 9, and 10). Thereafter, the
antifungal activity of each sample was determined.
Detecting whether the antagonist is fungistatic or
fungicidal
The agar disc broth method was adopted [19]. After
incubation, the agar disc was examined under light
microscopy to determine the growth inhibition in
comparison with a control disc. Later on, the fungal
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disc was cultured to assess whether a particular
antifungal isolate is fungistatic or fungicidal.
Biocontrol mechanism
Biocontrol mechanism of the bacterial candidate was
predicted by checking the production of antifungal
activity of the bacterial candidate was monitored
through the production of diffusible metabolites.
Antifungal activity of bacterial isolates against Pythium ultimum.
Statistical analysis
All analyses were reported as the means of three
replicates. The SD was determined for each mean.
The obtained data were analyzed for significant
variations (P≤0.05) of main effects using one-way
analysis of variance in Excel.
Figure 2
Results
Isolation and screening of bacteria with antifungal
activity
Thirty-seven bacterial isolates were isolated from two
soil samples. Among them, 14 isolates could suppress
P. ultimum with various potentials. The findings
showed that the isolate number 3 was the most
potent one that reduced the growth of P. ultimum

by 53% and was chosen for subsequent work (Fig. 1).

Antifungal activity of extracellular filtrate against Pythium ultimum,
where (a) refers to the control and (b) refers to the sample.

Figure 3
Detection of antifungal activity of extracellular filtrates
The results showed that the extracellular filtrate
exhibited higher antifungal activity compared with
bacterial cells. The results confirmed that the isolate
number 3 was the most potent one that significantly
reduced the growth of P. ultimum by 68% (Fig. 2a and
b). Furthermore, the extracellular filtrate completely
inhibited fungal growth when it was mixed with the
medium (Fig. 3a and b).
Antifungalactivityofextracellular filtrateofPythiumultimumembedded in
the medium, where (a) refers to the control and (b) refers to the sample.

Figure 4
Characterization and molecular identification of
bacterial isolate
The selected isolate was characterized as Gram-
positive streptococci possessing yellow, round, entire,
and opaque colony. According to 16S rRNA sequence,
it is identified as Enterococcus faecalis. Fig. 4 shows the
phylogenetic relationship between the isolated strains,
other strains of E. faecalis, and other related bacterial
strains found in the Gen Bank database.
Evaluation of pH
The percentage of inhibition of P. ultimum

significantly increased by elevating initial pH value,
reaching the maximal value (75%) at pH 8 (Fig. 4).
Effect of pH on the stability of extracellular filtrates.
Evaluation of temperature
It was observed that the percentage of inhibition of P.
ultimum increased gradually with the increase in
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temperature, reaching the maximum value (78%) at
28°C, and then it began to decline (Fig. 5).
Evaluation of inoculum size
The results showed that the antifungal activity is
directly proportional to the inoculum size, wherein
100% inoculum size exhibited the antifungal activity
by 81%, and then it gradually decreased with the
dilution of inoculum size (Fig. 6).
Effect of temperature on the stability of extracellular filtrates.
Effect of incubation period
The findings revealed that the antifungal activity of the
bacterial candidate significantly increased with the
increase in incubation period, reaching maximal value
of 83% at the third day, and then it began to decline
(Fig. 7).
Figure 6
Detecting whether the antagonist is fungistatic or
fungicidal
Microscopic examination proved that there was no
fungal growth. Concomitantly, a complete inhibition
of fungal growth is the crucial evidence that the
bacterial isolate is a fungicidal for P. ultimum.
Biocontrol mechanism
Bacterial candidate produced diffusible metabolites,
which inhibited the growth of P. ultimum.
Evaluation of inoculum size of the bacterial isolate.

Figure 7

Effect of incubation period on the stability of extracellular filtrates.
Discussion
P. ultimum caused serious loss in a number of
agricultural crops, which led to a considerable effort,
devoted to the development of novel control agents.
Microbial control of plant diseases offers a powerful
and environmentally friendly alternative to dangerous
chemical pesticides. Many promising approaches to
explore microbial control of Pythium damping-off
have been recorded [11,12]. In the current work, we
focused on the same issue. E. faecalis is the most potent
antagonist to P. ultimum.As such, the cell-free filtrates
showed the large extent of inhibition of P. ultimum and
it is more effective compared with the bacterial cells
themselves. These results are in accordance with those
of Chang et al. (2007) [20] and El Kahoui et al. (2011)
[21] but not in accordance with the results of Petatán-
Sagahón et al. (2011) [15] and Zamani et al. (2009)
[22]. Essentially, the effects of bacterial filtrate may be
due to the action of antibiotics that is associated with
inhibition of spore germination or germ-tube
elongation [23]. Apparently, the main reasons for
the variability in biocontrol performance are varying
environmental conditions, which affect survival,
activity, and antibiotic production [24]. The highest
antifungal production was observed at pH 8. This
result is close to that reported by Ithnin (2007) [25].
Normally, pH is very important for bacterial
metabolism and, consequently, for the biosynthesis
of antimicrobial products. The elevation in pH is
associated with permeability of the cell wall and
membrane reflecting the peculiarities, either in the
ion uptake by the cells or in a loss to the nutrient
solution of soluble essential metabolites [26].
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Antifungal activity was also affected by temperature
independently from growth. In the current study, the
best fungal growth inhibition took place at lower
temperatures. This may be due to denaturation of
hydrolyzing enzymes at higher temperatures. This is
in agreement with the findings of Schmidt et al.

(2004a) [24] and Ithnin (2007) [25]. The inoculum
size is one of the important factors affecting the
antifungal activity. According to our findings, the
antifungal activity is directly proportional to the
inoculum size. Our results inferred that the increase
of inoculum size lead to increase of antifungal activity
of the bacterial isolate. This result is in agreement
with that of Schmidt et al. (2004a,b) [24,27].
Incubation period is certainly an effective factor
concerning antifungal activity. In this study, the
maximum antifungal activity was achieved at the
third day of incubation. These results are in
accordance with other results, which reported that
the synthesis of antimicrobial compounds generally
starts at the end of the exponential phase and reaches
the maximum level during the stationary phase
[21,28,29]. In addition, the increase in incubation
period and the decrease of nutrients in media,
which lead to vulnerable growth of bacteria and in
turn to deficiency in antifungal metabolite production.
Generally, the mode of action of antagonistic bacteria
involved the competition for nutrients and space or
the production of extracellular lytic enzymes,
siderophores, salicylic acid, antibiotics, or
lipopeptides [30–32]. The bacterial isolate E.

faecalis showed a fungicidal effect over the studied
fungus through diffusible metabolites rather than
through volatile metabolites. This result is in
accordance with that of Abou-Zeid et al. (2008)
[33]. Moreover, other substances exerted a
fungistatic and fungicidal effect for P. ultimum such
as fosetyl-Al and metalaxyl, respectively [34].
Conclusion
A bacterial candidate E. faecalis isolated from the
rhizosphere would be a promising biocontrol agent,
which acts against P. ultimum by excreting diffusible
metabolites. Thus, this strain could be commercially
exploited for the development of novel antifungal
drugs. In the present study, an attempt has been
made to isolate and identify antagonistic bacteria
from soil (E. faecalis) against P ultimum and to
optimize the environmental conditions leading to
the highest antifungal activity through the
production of diffusible metabolites. Thus, this
strain could be commercially exploited for the
development of novel antifungal drugs.
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