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Hydrogen sulfide donors or related derivatives are the future
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Hydrogen sulfide (H2S) is one of the three gasotransmitters that possess anti-
inflammatory, antiapoptotic, and antioxidant properties. It maintains the function of
the kidney through its effect on the glomeruli and the renal transport system.
Literature review using PubMed, Excerpta Medica database (EMBASE), Google
scholar, and Cochrane review revealed that H2S donors are introduced as
exogenous H2S and have been found to target many organs in in-vitro and in-
vivo studies. This review provides themain research that was performed on the H2S
donors in the context of kidney disease. Exogenous H2S supplementation can be
administered in different therapeutic areas promising therapeutic strategy in the
setting of kidney diseases. Therefore, suitable pharmaceutical preparations of H2S
donors are necessary to be launched in the markets for the prevention and
treatment of acute/chronic renal diseases.
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Introduction
Hydrogen sulfide (H2S) is a colorless gas, soluble inwater
and lipophilic solvents in a ratio of 1 : 5; this property
explains its permeability across the plasmamembrane. Its
concentration under optimum physiological conditions
ranged between 10 and 300μmol/l. It is produced
enzymatically in mammals from the sulfur-containing
amino acids (e.g. l-cysteine) under the influence of
cystathionone-β-synthetase (mainly in the brain),
cystathionine-γ-synthase (mainly in the heart, blood
vessels, kidney, and liver), and mercaptopyruvate sulfur
transferase enzymes. This gas serves as a signaling
molecule or gasotransmitter [similar to nitric oxide
(NO) and carbon monoxide], and it behaves as oxygen
sensor under ischemic conditions [1]. It is oxidized
in the mitochondria to thiosulfate and sulfate by
sulfide–quinone oxidoreductase, persulfide dioxygenase,
rhodanese, and sulfite oxidase enzymes. It is removed
from the body by means of desulfurization, cytosolic
methylation, and sulfhemoglobin formation. The
purpose of this study was to focus on the future of
these H2S donors on the renal diseases because these
compounds exert a beneficial effect on the glomeruli and
the transport system of the kidney. In addition, they have
pleotropic effects such as anti-inflammatory and
scavenging free radicals.

In this review, the data were collected from articles and
reviews published in PubMed, Excerpta Medica
database (EMBASE), Google scholar, and Cochrane
review, taking into considerations their biological
activity, mechanism of action, and possible indications
Wolters Kluwer - Medknow
of H2S donors based on the experimental and clinical
studies.
Biological actions of hydrogen sulfide
H2S is involved in several vital processes in the body,
including neuromodulation, proliferation of vascular
smooth muscle cells, regulations of the systemic and
pulmonary blood pressures, inflammation, edema, and
hemorrhagic shock. It has antioxidant properties and is
capable of reducing the oxidative stress by removing the
reactive oxygen species (ROS). It participates in the
regulation of the renal function, including the
glomeruli and the tubular system. Its effect on the
kidney was established in both physiological and
pathological conditions through two possible
mechanisms: (a) inducing vasodilation of the arteries
through the activation of the potassium channel (KATP)
and (b) counteracting the excessive production of ROS
generated after renal tissue injury [1]. Low levels of H2S
reduce the production of hydrogen peroxide, superoxide
anion (O2

−), and peroxynitrite (ONOO−), whereas high
levels of H2S play a role in the production of ROS and
reactive nitrogen species. The other harmful effects of
H2S include the following.
(1)
 Induction of brain infarction [2]. In one
experimental animal study, ligation of the
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middle cerebral artery resulted in the upregulation
of cystathionine β-synthase enzyme accompanied
with overproduction of H2S and aggravation of
neuronal cell death [3].
(2)
 Aggravation of the symptoms of Down’s
syndrome. Overproduction of endogenous H2S
was observed in Down’s syndrome patients [4].
(3)
 Acceleration of atherosclerosis and induction of
hypertension and coronary artery disease through
its direct vasoconstrictor effect and suppression of
the NO production [5,6].
(4)
 Induction of pulmonary hypertension [7].

(5)
 Aggravation of peptic ulcer and gastritis [8]. The

expression of cystathionine-γ-lyase was found to
be higher in patients with Helicobacter pylori-
negative gastric ulcer than in those with H.
pylori-positive gastric ulcer, and it is positively
correlated with the expression of NF-κβ [8]. On
the other hand, H2S donors protect the gastric
mucosal cells from injury induced by
acetylsalicylic acid [9]. Therefore, endogenous
and exogenous H2S exerts a dual effect on the
gastric mucosa.
Hydrogen sulfide donors
H2S donors are classified according to their ability to
release H2S or with respect to their availability or the
pharmaceutical preparations (Tables 1 and 2) as
follows.
(1)
 Inorganic sulfide salts (e.g. NaHS, Na2S).

(2)
 Synthetic organic slow-releasing H2S donors (e.g.

GYY4137).

(3)
 H2S-releasing hybrid drugs (e.g. ACS15-

diclofenac).

(4)
 H2S precursors (e.g. cysteine analogs, nucleoside

phosphorothioates).

(5)
 Plant-derived polysulfides in garlic.
e 1 Pharmacological actions of slow-releasing hydrogen sulfid

rmacological actions Slow-releasing H2S donors

inflammatory GYY4137, ADT-OH, S-propargyl-cystein

xidant and free radical
engers

ADT, ADT-OH, AP39, N-acetylcysteine,
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ove wound healing 4-Hydroxythiobenzamide
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er investigation S-aroylthiooximes, arylthioamides, N-(be
thioglycine, l-thiovaline, N-(acetylthio)ben
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poly(ethylene glycol)-ADT
Therapeutic targets of hydrogen sulfide donors
Previous studies highlighted the importance of H2S in
the pathogenesis of many diseases. Therefore, many
systems and organs are the targets of H2S donors as a
therapeutic modality.
(1)
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Cardiovascular system: In hypertension,H2S donors
can reduce blood pressure and are able to protect the
organs fromdamage [10]. In theexperimental animal
study, it was observed that H2S donors protect
the heart against ischemic–reperfusion (I/R) injury
through the activation of the activated mitogen
protein kinase enzyme pathway, thus restoring
the autophagic flux [11]. There is evidence that
atherosclerosis is associated with low endogenous
levels of H2S production, and that H2S donor
supplementation such as NaHS and GYY4137
may attenuate the atherosclerosis process [12].
H2S donors may be the future therapeutic agents
for heart failure. Current studies have shown that
H2S plays a role in the regulation of specific cardiac
microRNAs and thereby ameliorates the cardiac
dysfunction [13]. In peripheral artery disease, H2S
adversely affects thepatientsbecause it interfereswith
NO production. In one clinical study, it has been
found that the plasma ratio of H2S to NO was
significantly higher in patients with peripheral
artery disease [14].
(2)
 Central nervous system:H2S donors (e.g. ADT-OH
or NaHS) combined with tissue plasminogen
activator significantly reduced the hemorrhage that
followed the ischemic stroke [15]. The synthesis
of brain H2S is severely reduced in Alzheimer’s
disease patients, and the free plasma H2S levels
are inversely correlated with the severity of
dementia. In an experimental animal study, H2S
donors, through several mechanisms, reduced the
progression of dementia by assessing the cerebral
nors

esson’s reagent

tylcysteine ethyl ester, SAC, phosphorodithioates

yanhydrides

on’s reagent, S-SH compounds, S-memantine, ACS1

thio)benzamides, PhNCS, PhNCS-COOH,
des, H2S photo-donor5, gem-dithiol compounds, allyl
xybenzyl isothiocyanate, erucin, sinigrin,



Table 2 Pharmacological actions of hydrogen sulfide-releasing hybrid drugs

Pharmacological actions H2S-releasing hybrid drugs

Anti-inflammatory ACS15-diclofenac, ACS83-l-DOPA, ACS84-l-DOPA, ACS85-l-DOPA, ACS86-l-DOPA, ATB-337-
diclofenac, ATB-343-indomethacin, ATB-345-naproxen, ATB-346-naproxen, ATB-429-
meselamine, NOSH-aspirin, NOSH-naproxen (AVT-219), NOSH-sulindac (AVT-18A),
S-diclofenac

Antioxidant and free radical
scavengers

ACS6-sildenafil, ACS14-aspirin

Vasodilatation H2S-EXP 3174-active metabolite oflosartan

Improve vascular function S-zofenopril

Proerectile ACS6-sildenafil

Antithrombotic ACS14-aspirin, compound 8e-3-n-butylphthalide

Antiangiogenesis ACS2-valoproate, ACS15-diclofenac, ACS18-sulindac

Antiosteolysis ACS32-diclofenac

Regulation of insulin release ACS67-latanoprost

Target organ protection (cardio, neuro,
gastroprotection)

ACS6-sildenafil, ACS14-aspirin, ACS21-salicylic acid, ACS84-l-DOPA, S-diclofenac

Anticancer ACS2-valoproate, ACS15-diclofenac, ACS18-sulindac, ACS33-valoproic acid, ATB-346-
naproxen, HS-acetylsalicylic acid, NOSH-aspirin
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histopathological, biochemical, and immunological
indices [16].
(3)
 Gastrointestinal tract: Tsubota and Kawabata [17]
highlighted the implication of endogenousH2S for
the treatment of irritable bowel syndrome and the
exogenous H2S as with H2S donors for the
treatment of inflammatory bowel disease (e.g.
Crohn’s disease).
(4)
 Others: erectile dysfunction, organ transplantation,
cancer, etc.
What are the reasons that make the hydrogen sulfide
donors suitable medications for acute/chronic kidney
diseases?
H2S is a potential signaling molecule that protects the
kidney from different harmful insults because it has the
following biological effects.
(1)
 It has beneficial effects against the inflammatory
process that is associated with kidney disease −
complicated by chronic disorders such as
rheumatoid arthritis, diabetes mellitus, and
atherosclerosis by acting through the following
mechanisms.
(a) Improvement in renal blood flow [18] through

the following mechanisms:
(b) ATP-sensitive K+ channels (KATP).
(c) Upregulation of intracellular cAMP.

Downregulation of the inflammatory and immune
(2)

responses by the evidence of [19–21]:
(a) Inhibition of activation of NF-κβ and p38

mitogen-activated protein kinase enzyme.
(b) Inhibition of caspase-3 cleavage.
(c) Downregulation of the proinflammatory

markers including tumor necrosis factor α
(TNF-α), interleukin (IL)-1β, IL-6, and
IL-8.
Scavenging the oxidants and reduced tissue injury
(3)

by inducing apoptosis and/or scavenging the free
radicals generated by neutrophils [22,23].
Therefore, H2S donors (Table 1) are potentially useful
in renal diseases, and previous studies implicated these
agents in the following conditions.
Ischemic–reperfusion injury
One of the most common causes of acute kidney
injury is renal I/R, which resulted from shock or
complicated surgical procedures that follow kidney
transplantation and resection [24–26]. H2S plays
a role in ameliorating renal I/R injury by the
following effects: antioxidant, antiapoptotic, and
anti-inflammatory effects [27–30]. Ibrahim et al.
[31] demonstrated that NaHS protects the kidney
from I/R injury by inhibiting the proinflammatory
cytokines (TNF-α) and downregulating the exp-
ression of inducible NO synthetase enzyme
and upregulating the endothelial NO synthetase
enzyme. The mitochondria-targeted slow-releasing
H2S donor (AP39) provides renal protection against
I/R injury by downregulating the production of
proinflammatory markers (IL-12) and scavenging
the free radicals, which manifested with a reduction
in the nitrogen blood urea and creatinine and
improving the histological changes in renal epi-
thelial cells [32]. Systemic administration of NaHS
before or after ischemic insult limits I/R injury and
provides significant long-term protection [31,33].
NaHS (50 μmol/kg/day) improved regional blood
flow in ischemic limb [34]. Therefore, this obser-
vation may lead us to observe the effect of NaHS on
the experimental animal model of acute tubular
necrosis and to extend the research to humans if
the results obtained are promising.
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Diabetic nephropathy
In experimental animalmodels of diabetes,H2S reduced
the renal injury from glycation [35]. Its effects on the
renal tissue included the glomeruli and the tubular
system, leading to increased renal blood flow,
glomerular filtration rate, and urinary sodium
excretion [36]. H2S per se inhibits the synthesis of
protein in renal epithelial cells induced by
hyperglycemia [35]. In an experimental diabetic
animal model study that used streptozotocin in rats,
NaHS significantly reduced the levels of blood
pressure, serum glucose, creatinine, and blood
nitrogen urea, as well as had favorable effects against
oxidative and nitrative stress syndromes [37].Moreover,
in this animal model of diabetes, NaHS acts in a
synergism profile with losartan in reducing the blood
pressure and serum creatinine [37]. S-propargyl-
cysteine, a novel H2S-releasing compound, protects
the kidney from streptozotocin-induced diabetes
mellitus by suppressing the expression of mRNA of
fibronectin and type IV collagen, inhibiting mesengial
cell proliferation and hypertrophy induced by high
glucose, and attenuating the inflammatory process
that accompanies diabetic kidneys [38]. In one clinical
trial that included 1004 type-2 diabetic patients, it has
been found that excess urinary secretion of sulfate (a
metabolite of H2S) is associated with a decline in renal
risk markers, including microalbuminuria and serum
creatinine level [39]. Moreover, chronic hemodialyzed
patients due to diabetic nephropathy have low plasma
levels of H2S compared with those without diabetic
nephropathy, and it is positively correlated with high-
sensitivity C reactive protein and TNF-1β, indicating
that the H2S molecule is involved in the signaling of
abnormalities that occurred in diabetic nephropathy
[40]. It is important to mention here that the
production of H2S occurred in the β-cell of pancreas
and its synthesis ismediated by cystathionineγ-lyase and
cystathionine β-synthase, and hyperglycemia induced an
increased production of H2S through cystathionine
γ-lyase only [41,42]. Multiple mechanisms are
involved in renal protection offered by H2S at the
kidney level rather than at the pancreas because it is
well known that H2S induced cytotoxic effect upon
β-pancreatic cells and caused diabetes mellitus [43].

In diabetes mellitus, H2S donors showed a wide
spectrum of beneficial effects and thereby may
protect the kidney from diabetic complications. The
evidence on the beneficial effects of H2S donors
included the following.
(1)
 The synthesis of H2S declines as the complications
of diabetes increases. Using H2S donors may be
highly successful in obviating these complications
[44,45].
(2)
 Plasma H2S levels are reduced in overweight and
obese patients, a feature of metabolic syndrome
and commonly observed in type-2 diabetes [46].
(3)
 H2S or its donors have an antiatherogenic property
and act by inhibiting the oxidation of LDL as a
result of scavenging the free radicals (notably
hypochlorus acid and hydrogen peroxide),
inhibition of the myeloperoxidase enzyme, and
inhibition of the foam cell formation by several
mechanisms [47,48].
Analgesic nephropathy
Administration of H2S donors to patients treated with
NSAIDs and patients who presented with analgesic
nephropathy is potentially of great benefit for the
following reasons.
(1)
 A significant decrease in endogenous H2S
enzymatic production was observed using indo-
methacin, aspirin, diclofenac, and ketoprofen
[49]. Therefore, it is reasonable to expect that
H2S donors are effective in preventing NSAID-
induced renal damage. Previous studies showed
that NaHS and diallyl disulfide protect the
gastric mucosa from injury caused by NSAIDs
[19,49].
(2)
 H2S-releasing NSAID derivatives are synthesized
by conjugating a molecule of an NSAID with one
H2S donor. An example of these compounds is
S-diclofenac, which has a low gastrointestinal
toxicity compared with diclofenac and protects
the targets from I/R injury in animals [50].
S-Diclofenac significantly increases the tissue
levels of glutathione and inhibits the production
of NF-κβ and TNF-α in addition to its inhibitory
effects upon angiogenesis and cell proliferation.
(3)
 Moreover, H2S-releasing NSAID derivatives
have superior anti-inflammatory and analgesic
properties compared with parent NSAID [51].
Homocysteinemia
High plasma levels of homocysteine were reported in
patients with chronic kidney disease or those managed
withhemodialysis and is involved ina further renovascular
injury because homocysteine increases blood pressure as a
result of inducing arteriolar constriction and stiffness,
endothelial damage, and increased sodium absorption
[52–55]. H2S protects the kidney and alleviates renal
damage by upregulating the vascular endothelial
growth factor, attenuating the production of the
extracellular matrix proteins, and decreasing the
expression of inflammatory cytokines [25,56]. Its effect
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extended to ameliorate the renal function in chronic renal
failure that resulted from homocysteinemia [57].
Experimental obstructive nephropathy
Kidney fibrosis is the late sequel of ureter obstruction
and it is accompanied by inhibition of the enzyme
activity involved in the synthesis of endogenous H2S.
Jung et al. [58] reported in experimental studies that
using NaHS attenuated the low renal levels of
endogenous H2S and improves the renal antioxidant
activities.

H2S donors (NaHS) suppressed the oxidative stress by
preserving catalases such as Cu-Zn-SOD and Mn-
SOD, and glutathione levels [59]. H2S-releasing
hybrid sildenafil may be potentially useful in the
management of benign prostatic hypertrophy. In one
study, it was observed that sildenafil relaxed the urinary
bladder by increasing the production of H2S as
a result of activation cystathionine β-synthase and
cystathionine γ-lyase enzymes, which are available in
the urinary bladder dome [59].
Renal transplantation
Snijder et al. [60] pointed out that H2S interacts with
NO and carbon monoxide in renal transplantation and
exerts cytoprotection and reduction in tissue injury in
the transplanted organ. H2S protects the donor kidneys
against cold I/R injury. In experimental animal models
of kidney transplantation, NaHS improves the survival
and the function of the early allograft and minimizes
cell necrosis, but it does not affect allograft rejection
[61].
Anemia of chronic renal failure
Anemia due to chronic renal failure resulted from low
renal production of erythropoietin. Experimental
studies demonstrated that H2S donors activate the
cellular production of erythropoietin hormone under
hypoxia [62]. Therefore, these compounds may be
useful medicines in the treatment of anemia that
complicated chronic renal failure.
Renal cancer
H2S is proangiogenic and cytoprotective transmitter
against cell cancer. Sonke et al. [63] found that
endogenous H2S levels were high clear cell renal cell
carcinoma characterized by Von Hippel–Lindau
deficiency, and systemic inhibition of endogenous
H2S production reduced the vascularization of Von
Hippel–Lindau-deficient clear cell renal cell carcinoma
xenografts. H2S promotes cancer cell death and
inhibits cancer angiogenesis and metastasis through
its effects on the signaling pathway such as the
mitogen-activated protein kinase pathway. In
addition, H2S plays a role in the regulation of the
cell cycle and microRNAs, and the metabolism of
cancer cells [64].
Discussion
In this review, the endogenous H2S as a
gasotransmitter as well as the exogenous H2S
of different pharmaceutical preparations offered
promising effects on kidney diseases because this
transmitter acts on the glomeruli and the transport
system. Although the renoprotection of H2S is
attributed to the different mechanisms, the exact
effect is still unknown [36]. Its protection was
observed not only in the kidney but also in
other organs, particularly whenever there is evidence
of atherosclerosis, endothelial dysfunction, inflam-
mation, and oxidative stress syndrome [65]. H2S-
releasing NSAIDs to protect gastrointestinal mucosa
and to enhance the activity of these compounds were
investigated and showed promising results [66]. As the
discovery of these compounds is still in the infancy, it is
expected that H2S-releasing selective NSAIDs are still
not investigated. H2S-releasing compounds, as
mentioned in Tables 1 and 2, are also extended to
include other substances (e.g. natural compounds such
as garlic or synthetic drugs such as sildenafil, and
mesalamine) [67]. Literature survey does not reveal
any evidence of Food and Drug Administration
approval of these compounds; this may be due
to conflicting publishing results − that is, dual
effect [68].
Conclusion
H2S donors provide a broad spectrum of biological
activities and protect the renal tissues against a wide
variety of primary or secondary renal disorders. A
suitable pharmaceutical preparation is necessary to
be launched in the markets for the prevention and
treatment of acute/chronic renal diseases.
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