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Owing to the outbreak of fatal diseases that require searching for new compounds
with high activity and/or novel action mechanisms, screening for promising sources
of biologically active compounds that fulfill the current needs of humanity is a matter
of life and death. Fungi generally and endophytic ones specifically represent future
factories and potent biotechnological tools for production of bioactive natural
substances, which could extend healthy life span of humanity (as done by
penicillin from centuries), and are considered promising alternatives for some
high costly produced chemicals and drugs. The present review highlights some
bioactive secondary metabolites, produced by fungal endophytes, involved in
medical, pharmaceutical, agricultural, and industrial applications.
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Introduction
Endophytic mycobiota are fungi that commonly spend
their life cycle (or part of it) inhabiting intercellular
and/or intracellular spaces in the tissues of healthy
plants without harmful aspects [1,2]. Literally, the
word endophyte indeed describes location of these
microorganisms: ‘endo’ means inside and ‘phyte’
means plants. These endophytes have key roles in
enhancing the adaptation of host plants to
environmental stresses such as salinity [3] and
temperature [4]. Moreover, endophytes play
important roles in promoting plant growth [5], and
protecting the host plant from some pathogens [6–8].

Endophytes have been isolated from almost all plants,
trees, palms, sea grasses, and lichens [9–11]. Many
reports described the isolation process of endophytes
from different plants as well as the predominance of
some genera in a given plant species. However, the
presence of such endophytes depends on many factors
including environmental factors such as the
geographical and topographic patterns, growing
season, total soluble salts and pH of the soil, as well
as nature and age of the host plant [12,13].

Various biological activities such as antitumor,
antibacterial, antiviral, antimalarial, antidiabetic,
hypocholesterolemic, and immunomodulatory are
reported (Fig. 1) for some metabolites secreted by
endophytic fungi, such as phenols, alkaloids,
isoprenoids, steroids, isocoumarines, perylene
derivatives, quinones, furandiones, xanthones,
terpenoids, depsipeptides, cytochalasin, polyketides,
Wolters Kluwer - Medknow
proteins, peptides, lipids, shikimates, and glycosides
[14,15]. Furthermore, endophytes produce various
low-molecular-weight volatile organic compounds
such as alcohols, ketones, esters, acids, and
hydrocarbons [16]. On the contrary, many enzymes
produced by endophytes are used nowadays in the
industries of food, cosmetics, biofuels, paper,
cellulose, textile, fine chemicals, detergents,
biomaterials, and leather [17,18].

This review highlights some of the biotechnological
applications of some fungal endophytes’ secondary
metabolites. Understanding the industrial, agriculture
and/or medical importance of such products
encourages screening for novel endophytic isolates,
which represent an inexhaustible source for
secondary metabolites, with potential biological
activities and numerous benefits in different fields of
biotechnology.
Antitumor medication (taxol)
Taxol (Paclitaxel) is a tetracyclic diterpene lactam that
has been approved as a human cancer medication by the
Food and Drug Administration owing to its high
potency, low toxicity, and broad-spectrum anti-
tumor activity [19]. Taxol was first isolated from
western yew (Taxus brevifolia) [20], and its action
mechanism includes inhibiting of microtubule
DOI: 10.4103/epj.epj_35_18
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Figure 1

Biological activities exerted by metabolites produced by endophytic
fungi.
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depolymerization during cell cycle and cell growth, and
then initiating cell apoptosis [21].

Nowadays, endophytic fungi are used as a
biotechnological tool to produce taxol in short time
and high productivity in comparison with the
traditional production of taxol from yew tree species,
as extraction of 1 kg of taxol requires cutting of ∼300
trees, which is a huge ecological loss [22,23]. It is worth
noting that full course in cancer treatment requires
consuming ∼2.5–3.0 g of taxol [24].

Taxol was produced for the first time from endophytes
in 1993 by Stierle et al. [25] using the endophytic
fungus Taxomyces andreanae, which colonizes yew
trees. Successive studies have been reported
investigating endophytic fungi capable of producing
taxol, such as Pestalotiopsis microspora isolated from the
Himalayan yew (Taxus wallichiana) [26], Bartalinia
robillardoides Tassi isolated from Indian bael (Aegle
marmelos Correa ex Roxb) [27], Chaetomella

raphigera isolated from Arjun tree (Terminalia
arjuna) [28], Gliocladium sp. isolated from English
yew (Taxus baccata) [29], Fusarium oxysporum from a
mangrove tree (Rhizophora annamalayana) [30],
Guignardia mangiferae isolated from Anglojap yew
(Taxus media) [31], Fusarium redolens isolated from
east Himalayan yew (Taxus baccata L. subsp.
wallichiana Zucc.) [32], Phoma medicaginis isolated
also from Himalayan yew (T. wallichiana var.
mairei) [33] and Grammothele lineata isolated from
Jute mallow (Corchorus olitorius) [34].
Pigment production
Most of the natural dyes are eco-friendly (nontoxic and
nonpolluting), have low cost of production, are less
hazardous to health [35], and usually causes no allergic
reactions in comparison with synthetic dyes. Moreover,
some of these natural dyes have extra advantages over
synthetic dyes such as having antioxidant and
antimicrobial activities [36,37].

Generally, the produced pigments were tested for their
color stability, by applying the dye on a set of four pieces
of cloth (cotton, silk,wool, andpolyester), and then their
color properties were characterized [38]. Some
mushroom extracts give colorful dyes such as Bankera
violascens, which produces green dye; Agaricus arvensis,
which generates blue shades; Chroogomphus vinicolor,
which gives red dye; and Collybia iocephala, which
gives a purple-blue dye [39]. However, cultivating
these mushrooms under laboratory conditions is very
difficult, and hence suchmushrooms are not suitable for
industrial production of dyes.

On the contrary, many ascomycetous and
basidiomycetous fungi produce pigments such as
anthraquinones, anthraquinone carboxylic acids and
pre-anthraquinones as secondary metabolites, and these
pigments canbeextractedandthenused in industries such
as textile dying, cosmetics, as a food coloring ingredient,
and in pharmaceuticals [40]. Some dematiaceous fungi
suchasCurvularia lunata andAlternaria alternataproduce
stable pigments used in textile dyeing [41], Monascus

roseus produces pink to orange shades [42],
Helminthosporium avenae produces bronze coloration
[42], Penicillium purpurogenum produces red dye [43]
and Paecilomyces sinclairii produces red dye [44].

Endophytes participate also inpigment production.A red
dye was produced by an endophytic fungus identified as
Penicillium sp., isolated from the leaves of the medicinal
plant Polygonum multiflorum [45]. The reddish orange
pigment lawsone (hennotannic acid) was produced by the
endophytic fungus Gibberella moniliformis isolated from
the leaf tissues of henna tree [46].
Biodegradation of polymers
Fungi have the most sophisticated and complex
enzymatic machinery that are involved in countless
applications in all biotechnological fields, owing to
their magical capability of performing chemically
difficult reactions. An example of the use of fungal
enzymes is plastic biodegradation. Hence, fungi have
been screened for their ability to degrade polymers.
Many species were capable of doing such a mission,
thanks to laccase enzymes, which have nonspecific
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oxidative action mechanism [47]. Myceliophthora sp. is
one of the most potent reported fungi so far in terms of
its ability to biodegrade polymer through metabolizing
insoluble polymer and partially solubilizing it [48].

Laccases are used also in the detoxification of
pollutants and in bioremediation of phenolic and
nonphenolic compounds [49]. Moreover, these
enzymes can successfully biodegrade wood, azo dyes
[50], and jet fuel into simple compounds that can be
used as nutrients. Moreover, these enzymes are
involved in pulp delignification, in paper processing,
in textile industry to improve the whiteness during
conventional bleaching of cotton [51], and in the
synthesis of some fine chemicals [52–55].

Laccases were produced by many endophytes such as
Monotospora sp., isolated from Bahama grass (Cynodon
dactylon) [56], Colletotrichum gloeosporioides gr. Isolated
from Piper beetle [57], Daldinia sp. isolated from the
leaves of Himalayan cypress (Cupressus torulosa) [49],
and Myrothecium verrucaria isolated from pigeon pea
[58].
Other enzymes used in applications
According to global markets, enzymes occupy an
extremely important position in terms of sales as
biotechnological tools. Enzymes are involved in
leather tanning, starch and food processing, textile
industry, protein hydrolysis, pharmaceutical and
chemical manufacturing, detergent production, and
as biofuel [59–66]. Moreover, many enzymes are
involved in biodegradation of residual wastes
[67,68], and in detoxification of heavy metals and
many other toxic compounds [69,70].

Many fungi are capable of producing more than one
enzyme efficiently; here, we will focus on some enzyme
production, such as proteases, which are one of the
largest and most diverse families of enzymes
occupying a superior position in the list of total
worldwide enzyme sales [71]. Proteases have a wide
range of applications especially as analytical tools in
basic research and molecular biology [72], peptides
synthesis [73], leather processing [74], detergent
production [75], meat tenderization [76], cheese
manufacture, pharmaceutical industry [77], and many
other industrial applications [78,79]. Endophytes such
asAcremonium typhinum isolated fromPoa ampla secrete
proteinase [80], whereas F. oxysporum isolated from
Musa sp. (Banana); A. alternate, isolated from
Eremophila longifolia (Berrigan), and A. alternata

isolated from gymnosperm tree C. torulosa (Himalayan
cypress) produce protease [81–83].
On the contrary, fungal pectinases represent ∼25% of
the sales of global food and industrial enzymes [84].
Pectinases are involved in many industrial
applications such as improving extraction of juices
[85] and decreasing the viscosity of fruit juices [86].
They have other applications related to plant–fungal
interactions [87]. Generally, pectinases are secreted
by endophytes to facilitate their entrance through the
cell wall of the host plant [88]. Aspergilli were the
most potent genera used for commercial production
of pectinases in the field of food processing [89].
Many endophytic fungi have the ability to synthesis
pectinases such as Talaromyces sp. isolated from the
medicinal plant Calophyllum inophyllum

(Alexandrian laurel balltree) [90], and Aspergillus

japonicus isolated from Opuntia ficus-indica Mill.
(Forage cactus) [91].

Another example of the important enzyme group is
amylases, which are also ranked among the most
important enzymes used in many biotechnological,
food and pharmaceutical applications, especially those
concerned with starch hydrolysis and cyclodextrin
production [92]. Amylases were secreted by
endophytes such as Discosia sp. isolated from C.

inophyllum (Alexandrian laurel balltree) [93],
Cylindrocephalum sp. isolated from Alpinia calcarata

(Haw.) Roscoe (Cardamom ginger) [90], and Preussia

minima isolated from E. longifolia (berrigan) [94].

There is an endless list of enzymes used enormously in
various fields, and fungi are the ideal producers of such
enzymes. Therefore, research and screening for new
fungal isolates that produce enzymes, investigating new
biotechnological application, and studying those
enzymes biochemical characteristics might lead to
identification of novel enzymes with novel and
improved applications.

Antimicrobial and antiviral activities
Many reports have described endophytic fungi exerting
antimicrobial activities [95,96], such as Phomopsis sp.,
which produces phomopsichalasin [97]; the antifungal
compound, cryptocandin, produced by Cryptosporiopsis
cf. quercina [98]; and the antiparasitic metabolite,
cercosporin, produced by Mycosphaerella sp. [99]. On
the contrary, cytonic acid A and B were isolated from
Cytonaema sp. These compounds are inhibitor of
human cytomegalovirus protease [100].
Endophytes as biocontrol agents and plant growth
promoters

Endophytes can protect and promote the growth of
their host plant in different ways such as by
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synthesizing phytohormones, increasing their host
plant tolerance to external stress, inducing its
defense system, and/or acting as a biocontrol agent
that vanquishes pathogen threats in their host plant
[2,101–103]. Many endophytes were reported to
inhibit specific plant pathogens in vivo and in

vitro. For example, C. gloeosporioides isolated from
Cacao is used to biologically control Phytophthora sp.
and Moniliophthora roreri, causing frosty pod rot and
witches broom diseases in cacao, respectively [104].
Plants pathogens Aspergillus flavus and Fusarium

verticillioides were sensitive to Pyrrocidines A and
B produced by the endophytic fungus, Acremonium
zeae, isolated from maize [105]. Phomopsis cassiae

secretes cadinane sesquiterpenes that protects its
host Cassia spectabilis from the pathogenicity of
Cladosporium sphaerospermum, and C. cladosporioides

[106]. Trichoderma harzianum isolated from onion
stalks showed antagonistic activity in vitro against
the onion purple blotch pathogen Alternaria porri

[107].
Table 1 List of some endophytes, their host plants, and their isola

Endophytic
fungi

Host plants Me

Scientific
names

Common
names

Phomopsis sp. Erythrina
crista-galli

Coral tree Mevinic acid

Pestalotiopsis
microspora

Terminalia
morobensis

Arjun tree Pestacin and isopestac

Aspergillus
clavatonanicus

Torreya mairei Maire’s
yew

Clavatol

Cytonaema
sp.

Quercus sp. Oak Cytonic acid A and B

Aspergillus
niger PN2

Taxus
baccata

English
yew

Lovastatin

Xylaria sp. XC-
16

Toona
sinensis

Chinese
mahogany

Cytochalasins

Fusarium
subglutinans

Tripterygium
wilfordii

Thunder
duke vine

Subglutinol A and B

Penicillium sp. Quercus
variabilis

Chinese
cork oak

Penicidones A, B, and

Gliocladium
roseum (NRRL
50072)

Eucryphia
cordifolia

The ulmo 2,6-dimethyl, 3,3,5-trime
decane, 3,3,6-trimethyl;
(volatile hydrocarbons)

Alternaria
alternata RSF-
6L

Solanum
nigrum

Black
nightshade

Indole acetic acid

Penicillium
chrysogenum

Teucrium
polium L.

Felty
germander

Indole acetic acid

Trichoderma
gamsii YIM
PH30019

Panax
notoginseng

Chinese
ginseng

VOCs such as dimethy
methanethiol, ketones

Cochliobolus
sp.(UFMGCB-
555)

Piptadenia
adiantoides
(Fabaceae)

Piptadenia
adiantoides

Cochlioquinone A and i
Onthe contrary, endophytes have awell-established role
as an economical and eco-friendly plant growth
promoter, which leads to an increase in crop
production [108]. For example, the endophytic fungus
Piriformospora indica isolated from roots of many plants
was commonly used as a plant growth promoter [109].

There are unlimited uses of the numerous promising
secondary metabolites originated and secreted by
endophytes, and many examples are listed in Table 1.
The chemical structures of some of these important
metabolites are illustrated in Fig. 2. Screening and
isolation of new endophytes can be the low-cost
alternative for many currently used compounds. More
studies are encouraged to understand and investigate
metabolites secreted by these microorganisms and study
activities and action mechanisms of novel ones, in
addition to elucidating the relation between these
endophytes and their host plant. Finally, further work
is required to commercialize the production of
biologically active compounds by endophytic fungi.
ted biologically active metabolites

tabolites Importance References

Anti-inflammatory [110]

in Antioxidant [111]

Antimicrobial [112]

Inhibitor of human
cytomegalovirus
protease

[100]

Lowering blood
cholesterol

[113]

Anticancer [114]

Immunosuppressive
activity

[115]

C Cytotoxic [116]

thyl; cyclohexene, 4-methyl;
and undecane, 4,4dimethyl

Biofuels [117]

Promote plant
growth

[102]

Promote plant
growth

[118]

l disulfide, dibenzofuran, Biocontrol agent [119]

socochlioquinone A Leishmanicidal
activity

[120]



Figure 2

Chemical structure of some important metabolites produced by endophytic mycobiota.
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