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Epilepsy remains one of the most challenging diseases worldwide. According to the
WHO, ∼50 million people around the world experience epilepsy with all its
implications on the patient’s overall quality of life and social life as well as social
stigma. The causes of epilepsy are mostly unknown. Epilepsy treatment is
considered as a huge economic burden on the patient and health care systems.
This review aimed to shed light on the different types of epilepsy, the different
mechanisms of action of the most novel antiepileptic drugs in the market, as well as
the current antiepileptic drugs under investigation and undergoing clinical trials.
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Introduction
Epilepsy is a chronic brain disorder characterized by
spontaneous (unprovoked) recurrent epileptic seizures
that could be focal or generalized [1,2]. Epilepsy is a life-
shortening condition accompanied with considerable
comorbidities, including increased mortality, anxiety,
and depression [3]. It affects ∼1–2% of the population
worldwide[4,5].Epilepsyexertsahugeeconomicburden
on both developed and developing countries [6,7].

Most of the causes of epilepsy are idiopathic. However,
different potential etiologies have been proposed for
epilepsy including brain tumor, genetic predisposition,
central nervous system infection, stroke, head
trauma, drug and alcohol withdrawal, and metabolic
abnormalities [8–10]. Seizures occur owing to electrical
disturbances of cortical neurons, leading to an immediate
imbalance between inhibitory and excitatory activities,
resulting in a net excitation [11].
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Prevalence in Egypt
In Egypt, there are no available data for the overall
prevalence and incidence of epilepsy. However, few
epidemiological studies have been reported from Al-
Quseir, Al Kharga, and El-Minia cities. Interestingly,
epilepsy epidemiological studies from Al-Quseir City-
Red Sea Governorate and Al Kharga District-New
Valley Governorate revealed that the lifetime
prevalence rate is 5.5/1000 and 6.76/1000,
respectively, with the highest peak during early
childhood. The annual incidence rate is 48/100 000
and 43.14/100 000, respectively, showing high
incidence in early infancy and elderly life. The
Wolters Kluwer - Medknow
epilepsy treatment gap was 83.8 and 61.5%,
respectively [12,13].

Another study evaluated the prevalence of epilepsy in
primary school children in El-Minia City, Egypt. The
lifetime prevalence rate was 7.2/1000 in conventional
schools and 133.3/1000 in mentally subnormal
children in Elfikria School for subnormal males. The
maletofemaleratiowas2:1.Thefrequencyofgeneralized
seizures was more than partial. Moreover, 62.2% of the
school childrenwere receiving treatment.Theprevalence
rate was significantly higher between lower
socioeconomic classes. The most common risk factors
for the development of epilepsy in those children were
perinatal, neonatal insult, febrile convulsions, parent of
consanguineous marriage, and family history of epilepsy
[14].

Egyptian contribution to epilepsy
Ancient Egyptians were the first to describe
neuroscience in terms of brain, epilepsy, migraine,
tetanus, strokes, and head injuries [15]. Discovered
papyrus and artwork displays neurological patients.
Medical ancient Egyptian texts dating back to 1700
BCwere the first to describe focal seizures. A condition
called ‘nesejet’ was mentioned in an original papyrus
describing five patients experiencing involuntary
convulsions of the body [16]. According to
Herodotus, in ancient Egyptian civilization, there
DOI: 10.4103/epj.epj_37_18
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were doctors specialized in head diseases and could
therefore be considered the profounder of all
neurologists [15].

In this era, there is an enormous research work for
Egyptian researchers in scientific databases in the field
of epilepsy. Among these, the following articles were
selected from the most recently published.

Discovering novel anticonvulsant candidates from
synthetic origin: a series of (1-(benzyl (aryl) amino)
cyclohexyl) methyl esters (14 compounds) were
synthesized and evaluated for their anticonvulsant
effect. Butyl-derivative and 4-chlorophenyl-
derivatives showed pronounced anticonvulsant effect
without neurotoxicity in minimal motor impairment
test and hepatotoxicity in the serum enzyme activity
assay. The results of sc-pentylenetetrazole (PTZ)
activity of the screened compounds 7a-n were
consistent with the molecular modeling study [17].

The synthesis of novel naphthalen-2-yl acetate and
1,6-dithia-4,9-diazaspiro [4.4]nonane-3,8-dione
derivatives was studied. The diazaspiro nonane and
1-(2-naphthyl)-2-bromoethanone demonstrated a
significantly high delay in the onset of convulsion, as
well as prolongation of survival time compared with the
reference drug. The molecular modeling study of the
synthesized compounds displayed modulation of
benzodiazepine allosteric site in γ-aminobutyric acid
(GABA)-A receptors [18].

The medicinal plant, Phragmanthera austroarabica, at
doses of 400 and 800mg/kg significantly demonstrated
anticonvulsant and neuroprotective activities in PTZ-
induced kindling model in mice [19].

Moreover, electroconvulsive therapy (ECT) was
studied by Ragab and Elaghoury in 2017, who
evaluated the safety and efficacy of the ECT in an
adolescent with intractable epilepsy, and psychiatric
morbidity. ECT was found to be safe, rise the seizure
threshold, reduce seizure frequency, and improve
psychiatric morbidity usually accompanied with
patients with epilepsy. These data pointed out the
importance of ECT as a practical therapeutic option
for intractable epilepsy [20].

Recently, Tawfik et al. [21] demonstrated the
neuroprotective mechanisms of intraperitoneal
administration of sildenafil and selenium in PTZ
model through amelioration of the nitric oxide/
oxidative stress pathway as well as modulation of
angiogenesis.
Types of seizures in epilepsy
Epilepsy is classified into different types, including
generalized and focal epileptic seizures, and epileptic
spasms [22,23].

Generalized epileptic seizures
Generalized seizures account for ∼40% of all seizures
[24]. Their onset is characterized by bilateral
symmetric electrical activity recorded in both
hemispheres [8]. This results in abnormal motor
activity and/or loss of consciousness.

Generalized seizures include the following main
subtypes.

Tonic

A continuous increase in the muscle contraction that
lasts from few seconds to minutes and may comprise
vibratory symptoms.

Clonic

Regularly repetitive contraction, which encompasses
the same muscle groups, occurs at a frequency of two to
three cycles/s and could be prolonged.

Tonic–clonic

The seizures involve both tonic and clonic components.

Myoclonic

Involuntary, sudden, brief (<100ms), single ormultiple,
irregular contraction(s) of muscles or muscle
groups resulting in quick jerks of the body or a single
limb.

Absence

Transient attacks of unconsciousness that occurs
mainly in children.

Atonic

A sudden loss or decrease of muscle tone without
preceded myoclonic or tonic component lasting 1-
more than or equal to 1 s. Head, jaw, trunk, or limb
musculature is involved in the event.

Recently, some new types of seizures were reported
such as follows.

Myoclonic tonic

Jerk movements that are directly followed by few
seconds of tonic stiffening of the limbs.

Myoclonic absence

Seizures are characterized by sudden onset of staring
and unresponsiveness (absence seizure) followed by
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myoclonic jerks of the arms and/or legs that usually last
10–60 s.
Eyelid myoclonia

Noticeable jerking of the eyelids and usually with jerky
upward deviation of the eyeballs and the head. It may
be accompanied with absence. The seizures usually last
from 3 to 6 s and mainly occur after eye closure many
times per day.
Focal epileptic seizures
Focal (partial) seizures account for ∼60% of all seizures
[24]. They originate focally within networks in one
cerebral hemisphere. The seizures may be individually
localized or more widely distributed.

Focal seizures include the following main subtypes
Simple partial

It is characterized by no impairment of awareness or
consciousness. Seizures are either with observable
autonomic or motor components. It also involves only
subjective sensory, visual, or psychic phenomena, which
correspond to the concept of an aura.
Complex partial

The seizures are characterized by impairment of
consciousness or awareness, responsiveness, and
cognition. It involves temporal or psychomotor seizures.
Partial seizure evolving to generalized seizure

The partial (focal) seizure evolves to a bilateral,
convulsive seizure, which includes tonic or clonic, or
tonic and clonic components.
Epileptic spasms
Although these seizures are frequently bilaterally
symmetric, they may often have focal brain
pathology. It is not clear whether they are of focal
or generalized onset or both, as it depends on the
individual condition. This seizure type occurs at old
ages, either as a continuation of spasms beginning in
infancy or new ones [25]. Epileptic spasms may include
rhythmic eye movements, chewing and swimming
movements, sudden extension of both arms, and
flexion of the neck.
Antiepileptic drug selection
Selection of the ideal antiepileptic drug (AED) for every
single patient can be an overwhelming process. Every
AED has distinctive characteristics, which include
activity, cost, pharmacokinetics, and pharmacodynamics
profiles. The choice of AED treatment should not be
restricted to the classification of epilepsy type,mechanism
of action, drug interactions, and adverse effects. Special
concern should be given to older adults, women, patients
with othermedical comorbidities, and to newly diagnosed
patients [26–28]. Thus, the selection of AED depends
on a combination of these variables and patient
characteristics. It is important to realize that treatment
initiationwill be followedwitha rational sequenceof issues
that should be considered to optimize drug choices [29].
Mechanisms of action of antiepileptic drugs
AEDs in first-generation, second-generation, third-
generation and clinical development trials are classified
according to their mechanism(s) of action.

Potentiation of inhibition by GABA

GABA is the main inhibitory neurotransmitter in the
brain [30]. The GABA system can be enhanced by the
following:
(1)
 Binding directly to GABA-A receptors: GABA
binds to two types of receptors: GABA-A and
GABA-B. The GABA-A receptors are coupled to
chloride channels, so upon binding of GABA to
GABA-A receptor, the negativity of the cell
increases owing to the influx of chloride (Cl−

ion). This results in more negative resting
membrane potential and thus decreases the
excitability of the postsynaptic membrane [31].
GABA-B receptors are coupled to presynaptic
potassium channels which may indirectly inhibit
the neurotransmitters release.
(2)
 Blocking presynaptic GABA re-uptake: GABA
re-uptake inhibitors block the GABA transporter
1, resulting in inhibition of GABA re-uptake at
the synapse [32].
(3)
 Inhibiting the metabolism of GABA: GABA
metabolism is mediated by GABA transaminase
enzyme; therefore, its inhibition leads to
accumulation of GABA at the postsynaptic
receptors [33,34].
(4)
 Increasing the synthesis of GABA: GABA is
produced by decarboxylation of glutamate which
is mediated by glutamic acid decarboxylase
enzyme. Modulation of this enzyme using
certain AEDs leads to enhanced production of
GABA and downregulation of glutamate [35,36].
First-generation AEDs: Bromides (in 1857) were used
for generalized tonic–clonic, myoclonic seizures, and
focal seizures. It is not widely used anymore. Currently,
it is used as adjunctive only, as it acts as a sedative.
Phenobarbital (in 1912) is effective against focal
seizures and generalized tonic–clonic seizures
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(GTCSs) but is not effective against generalized
absence seizures. Primidone (in 1954) is converted
in the liver to phenobarbital and active metabolite,
phenylethylmalonamide. Primidone is effective against
focal seizures and GTCSs [2,37].

Second-generation AEDs: Diazepam (in 1963),
clonazepam (in 1968), and clobazam (in 1975) are
used as an adjunctive therapy in generalized seizure
types [37].

Third-generation AEDs: Progabide (in 1985) is used
in partial, generalized, myoclonic seizures, and
Lennox–Gastaut syndrome (childhood epilepsy
characterized by the occurrence of frequent seizures
of multiple types accompanied by an abnormal
electroencephalograph pattern, and intellectual
impairment of variable intensity) [38,39]. Vigabatrin
(in 1989), an irreversible inhibitor of GABA
transaminase, is a narrow-spectrum drug effective
against focal seizures. Tiagabine (in 1996) Gabitril is
a GABA re-uptake inhibitor with a narrow spectrum of
efficacy against focal seizures only [40].

AEDs in clinical development phase: Muscimol is a
selective potent agonist of the GABA-A receptor [41].
It binds to the GABA binding site on the GABA-A
receptor complex on the contrary to other GABAergic
drugs as benzodiazepines and barbiturates which bind
to separate regulatory sites [42]. In the brain, the
GABA-A receptors are broadly distributed.

Therefore, muscimol has the ability to alter neuronal
activity in multiple regions in the brain including
cerebral cortex, cerebellum, and hippocampus.
Muscimol was originally isolated from the poisonous
fungus Amanita muscaria. It is the major active
principle, as psychoactive alkaloid, in this fungus and
is present in many mushrooms of the genus Amanita
[43]. A clinical trial was carried out to investigate the
safety and effectiveness of muscimol infusion into the
brain for controlling seizures in patients with
intractable epilepsy (ClinicalTrials.gov Identifier:
NCT00005925, Last update: July 2018).

Voltage-gated sodium channel blockade

The depolarization phase of the neuronal action
potential occurs by allowing sodium influx through
Na+ channels. This results in an active phase that is
followed by an inactive refractory period. Certain
AEDs stabilize this inactive state and block the
depolarization of the nerve terminal, thus preventing
the high-frequency neuronal firing that leads to
seizures [36,44].
First-generation AEDs: Phenytoin (in 1938) is
effective against focal seizures and GTCSs.
Phenytoin is not effective against generalized
myoclonic or generalized absence seizures and may
even exacerbate these seizures; hence, it is not a
drug of choice in idiopathic generalized epilepsy.

Second-generation AEDs: Carbamazepine (in 1964) is
effective against focal seizures and GTCSs.

Third-generation AEDs: Lamotrigine (in 1990) is a
broad-spectrum AED, although its Food and Drug
Administration (FDA) indications are limited to focal
seizures, GTCSs, and Lennox–Gastaut syndrome.
Oxcarbazepine (in 1990) is effective against focal
seizures [37]. Currently, a phase III study is carried
out to examine the long-term safety data of
oxcarbazepine in children with inadequately
controlled focal seizures (ClinicalTrials.gov
Identifier: NCT01051193, Last update: June 2018).
Rufinamide (in 2004) is a broad-spectrum AED, but
its efficacy against focal seizures was not sufficient for
FDA indication. Lacosamide (in 2008) blocks sodium
channels, enhancing slow inactivation, unlike most
classic sodium channel blockers, which enhance fast
Na+ channel inactivation. Lacosamide appears to be a
narrow-spectrum AED against focal seizures [45].

Eslicarbazepine acetate (in 2009) Zebinix by Eisai Co.
Ltd. (in 2009 approved in European union) and
Aptiom by Sunovion Pharmaceuticals Inc. (in 2013
approved by FDA): Eslicarbazepine acetate is effective
against focal seizures and is used as adjunctive therapy
for partial seizures alone or those evolving to secondary
generalization [46]. Eslicarbazepine acts by blocking
sodium channels and stabilizing the inactive state of the
voltage-gated Na+ channel. A phase III clinical trial
showed its effectiveness for long-term monotherapy of
partial-onset seizures (ClinicalTrials.gov Identifier:
NCT01162460, Last update: September 2016). A
retrospective study showed that it is effective and
tolerated in patients with focal seizures [47].
Another phase III trial is being carried out to study
its use as adjunct therapy for refractory partial seizures
(ClinicalTrials.gov Identifier: NCT00988429, Last
update: February, 2017).

Calcium channel blockade
(1)
 T-type calcium channel blockade
In the thalamic neurons, T-type calcium channels
play an important role in the ‘spike and wave’
discharges of absence seizures. The influx of
calcium in the membrane resting state results in
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partial depolarization of the membrane, enabling
the development of an action potential after rapid
depolarization of the cell. The inhibition of T-type
calcium channels by AEDs leads to reduction of
low-threshold T-type calcium currents and is
effective against absence seizures [30,48].
First-generation AEDs: Trimethadione (in 1946)
is used for absence seizures, but not in wide
use anymore owing to teratogenicity [49].
Ethosuximide (in 1958) is used for absence
seizures [50].

Calcium channel (α2δ subunit) blockade
(2)

The AEDs of this type bind to the α2δ subunit of
voltage-gated calcium channels resulting in
reduction of the influx of calcium and the
associated neurotransmitters released under
hyperexcitable conditions [9].
Third-generation AEDs: Gabapentin and
pregabalin (in 2004) are used against focal
seizures but may exacerbate myoclonic and
absence seizures [51,52].
Action on α-amino-3-hydroxy-5-methylisoxazole-4-
proprionic acid and N-methyl-D-aspartate

α-Amino-3-hydroxy-5-methylisoxazole-4-proprionic
acid (AMPA) and N-methyl-D-aspartate (NMDA)
are glutamate receptor sites, which bind the excitatory
neurotransmitter, glutamate, resulting in the activation
of Ca2+ and Na+ ions influx and K+ ions efflux leading
to excitation. Thus, AEDs acting as glutamate
antagonists modify these receptors and inhibit the
excitatory effect [53,54].

Third-generation AEDs: Perampanel (in 2012) as
Fycompa developed by Eisai Inc. is highly selective
noncompetitive AMPA glutamate receptor antagonist
acting on postsynaptic neurons resulting in inhibition
of the excitatory postsynaptic function [55]. It is
indicated as adjunctive treatment in refractory
partial-onset seizures and primary GTCSs [56]. A
recent retrospective study by Morano et al. [57],
demonstrated that patients’ response to perampanel
treatment in secondarily GTCSs is better than
primary GTCSs and focal seizures.

Perampanel is effective for focal seizures with
or without secondarily generalization and tonic–clonic
generalized seizures [56,58]. Perampanel demonstrated
anticonvulsant activity in electroshock and chemically
induced seizures in rodents in preclinical animal
models [59].

Selurampanel is developed by Novartis Pharmaceuticals
Corporation as an oral competitive antagonist of the
AMPA/kainate receptors with good oral bioavailability
and blood–brain barrier (BBB) penetration [60].
Currently, selurampanel is being investigated in
development clinical trials by Novartis Pharmaceuticals
Corporation for the treatment of epilepsy.

TwophaseIIstudiesarecarriedouttoinvestigateitsuseas
adjunctive treatment in patients with partial epilepsy
(ClinicalTrials.gov Identifier: NCT01147003, Last
updated: March 2013, no study results posted) as well
as its effect in patients with photosensitive epilepsy
(ClinicalTrials.gov Identifier: NCT00784212, Last
updated: September 2016, no study results posted). A
proof-of-concept of this phase II study has been
published for demonstrating the dose-dependent
positive effect of selurampanel on the photoparoxysmal
response in patients with photosensitive epilepsy. This
result supports further investigation of AMPA receptor
antagonists in phase III trials [61].

Antiepileptic drugs with multiple mechanisms of action
(1)
 GABA potentiation, NMDA receptor antagonist,
sodium channel blockade, and calcium channel
blockade.
Second-generation AEDs: Valproate (in 1967) has
a wide spectrum of efficacy against all focal and
generalized seizures, including absence and
myoclonic seizures [37].
Third-generation AEDs: Felbamate (in 1993) is a
broad-spectrum agent effective against focal
seizures as well as generalized seizures in the
setting of Lennox–Gastaut syndrome (a severe
epileptic encephalopathy that affects children) [62].

GABA potentiation, AMPA/kainate receptors
(2)

antagonist, sodium channel blockade, and
calcium channel blockade.
Third-generation AEDs: Topiramate (in 1995) is
a broad-spectrum AED effective against focal and
GTCSs [62,63].

GABA potentiation and sodium channel
(3)

blockade.
Third-generation AED: Stiripentol (in 2002) is
used for Dravet syndrome (severe myoclonic
epilepsy in infancy) [64].

T-type calcium channel blockade, sodium channel
(4)

blockade, and inhibition of glutamate release.
Third-generation AED: Zonisamide (in 2000) is
considered a broad-spectrum AED for focal and
generalized seizures [2].
Synaptic vesicle protein 2A modulation

Synaptic vesicle protein 2A (SV2A) is a synaptic vesicle
protein that plays an important role in vesicle
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exocytosis and ejection of stored neurotransmitters
[65,66]. AED binds to the synaptic protein SV2A,
resulting in nonspecific decrease in neurotransmitter
release [67].

Third-generation AEDs: Levetiracetam (in 2000) is a
broad-spectrum drug effective against focal seizures,
GTCSs, and generalized myoclonic seizures. It is the
first-line AED for intravenous use with no recorded
clinical hepatotoxicity [2].

Newly marketed drugs: Brivaracetam (Briviact) was
approved by FDA on February 2016. Its mechanism
of action involves binding to SV2Aandblocking sodium
channel.A total of 17 studies are in phase III to assess the
efficacy and safety of brivaracetam in patients, as
adjunctive intravenous or bolos antiepileptic therapy,
and in patients with partial-onset seizures (Last
updates for the clinical trials in the duration between
May 15, 2015 and March 28, 2017).

AEDs in clinical development phase: Seletracetam
(phase II) possesses high binding affinity to SV2A
[68] and inhibits N-type calcium channels and
preventing influx of Ca2+ during high-voltage
activation [69]. Two studies have been completed in
phase II to evaluate seletracetam in adult patients with
partial-onset seizures (ClinicalTrials.gov Identifier:
NCT00152451, Last updated: February 2017) and
to study the efficacy and safety of seletracetam as
add-on in patients with focal epilepsy and currently
taking levetiracetam (ClinicalTrials.gov Identifier:
NCT00152503, Last updated: September 2008).

Potassium channel activation

The efflux of potassium ion is partially responsible for
the refractory period after an action potential.
Potassium channel (KCNQ2-5) opener AED
modifies this outward potassium current to flow
faster. This results in augmentation of the refractory
period leading to slowing of the repetitive firing of
neurons [70].

Third-generation AEDs: Retigabine (Ezogabine) (in
2011) Trobalt, is a novel AED with a unique
mechanism of action. Retigabine is a narrow-
spectrum AED effective only against focal seizures
[65,70]. It was declared that retigabine production
will be discontinued on June 2017, as safety issues
were announced in 2013 by the manufacturer
GlaxoSmithKline around the drug, as it may cause
blue discoloration of the skin and abnormalities of the
eye characterized by pigmentation in the retina.
Mammalian target of rapamycin inhibition

Everolimus, Afinitor, was developed by Novartis
Pharmaceuticals Corporation [71]. The drug
everolimus is approved by the FDA to treat specific
types of breast, pancreatic, and kidney cancer.
Everolimus is used in patients with tuberous
sclerosis complex (TSC), where epilepsy is a major
disorder of this disease condition. Everolimus is an
inhibitor of the mammalian target of rapamycin
(mTOR) with beneficial effects in several aspects of
TSC [72]. The mTOR pathway has been examined in
pilocarpine-induced status epilepticus in rat to
develop medial temporal lobe epilepsy and
eventually spontaneous seizures [73].

A phase II clinical trial is currently investigating the
role of everolimus on brain mTOR signaling activity in
patients having TSC and focal cortical dysplasia who
are resistant to epilepsy treatment and will be
undergoing brain surgery. As patients with focal
cortical dysplasia may also have excess mTOR
signaling brain activity, everolimus may also reduce
seizure activity in these patients (ClinicalTrials.gov
Identifier: NCT02451696, Last update: July 2018).
A phase III clinical trial was carried out to evaluate
the efficacy and safety of two different ranges of
everolimus administered as adjunctive therapy in
patients having both TSC and refractory partial-
onset seizures (ClinicalTrials.gov Identifier:
NCT01713946, Last update: February 2018).
Drugs acting through other mechanisms of action

Bumetanide (Bumex or Burinex) is used in market as a
loop diuretic. Bumetanide is an inhibitor of Na–K–Cl
cotransporter (NKCC). There are two isoforms of
NKCC expressed in the body. The ubiquitous
NKCC1 is also expressed in central and peripheral
neurons as well as glial cells [74] whereas NKCC2 is
selectively expressed in the kidney [75]. In the brain,
bumetanide blocks the NKCC1 and thus decreases
internal Cl− ion concentration in the neurons [76].
This change in concentration potentiates the action of
GABA leading to more hyperpolarization, which is
beneficial for treatment of neonatal seizures, which are
not usually responsive to barbiturates as traditional
GABA-targeted treatment [77]. In addition,
bumetanide treatment declined PTZ-induced
seizure susceptibility and cognitive recovery in
PTZ-induced rats suffering from hypoxia-ischemia
injury during neonatal period. These results were
attributed to bumetanide ability to restoring the
ectopic newborn neurons in dentate gyrus and
cognitive function [78].



Antiepileptic drugs: progress and development Aboutabl 135
Currently, phase I pilot study of bumetanide is being
carried out to investigate its pharmacokinetic profile
and safety in newborns with refractory seizures
(ClinicalTrials.gov Identifier: NCT00830531, Last
updated: April 2018).

Cenobamate (YKP3089) was developed by SK-
Biopharmaceuticals (in 2015). It possess a broad-
spectrum anticonvulsant efficacy in different rodent
models of epilepsy [79]. Cenobamate mechanism of
action is currently under investigation. The proposed
mechanism of action is selective sodium channel
blocker, and it facilitates presynaptic GABA release
[80]. The compound is being developed as an oral
therapy for epilepsy, bipolar disorders, and neuropathic
pain [81].

Currently, a phase III trial is ongoing to study safety
and pharmacokinetics of cenobamate as adjunctive
therapy in patients with partial seizures
(ClinicalTrials.gov Identifier: NCT02535091, Last
updated: June 2017). Cenobamate is well tolerated
and has been shown to be effective in patients with
photosensitive epilepsy in a phase II trial
(ClinicalTrials.gov Identifier: NCT00616148, Last
updated: January 2014). A phase II trial of
cenobamate is being conducted as adjunctive therapy
in patients with partial-onset seizures (ClinicalTrials.
gov Identifier: NCT01866111, Last updated: April
2018). Moreover, a phase II development is
underway to investigate its potential therapeutic use
in neuropathic pain and bipolar disorders http://
adisinsight.springer.com/drugs/800023388.

Naluzotan (PRX-0023) is a selective serotonin 5-
HT1A receptor agonist [82]. Activation of 5-HT1A
inhibits seizures through hyperpolarization of
glutamatergic neurons. A previous study suggested
the possible lower serotonin activity in brain areas,
where seizures are initiated [83]. A phase II clinical
trial is investigating the effects of naluzotan on seizure
frequency that starts from only one part of the brain
(ClinicalTrials.gov Identifier: NCT01281956, Last
updated: July 2018).

Verapamil is a P-glycoprotein (Pgp) inhibitor and
calcium channel blocker. Pgp is a multidrug
transporter protein in the BBB which limits the
uptake of substrate drugs into the brain and thus
restricts the access of some AEDs to their site of
action [84,85]. It is also responsible for elimination
of drugs [86]. Verapamil mechanism of action is mainly
attributed to the blocking of the Pgp-modulated efflux
of AEDs in the brain, thereby raising the intracellular
concentration of AEDs [87]. Verapamil may lower
the seizure burden through inhibiting the metabolism
of carbamazepine by CYP450 enzyme. Therefore,
concurrent administration of the two drugs leads
to an elevation in carbamazepine serum level
and potentially increases its efficacy and/or toxicity
[88].

A pilot study demonstrated that the use of verapamil as
an adjunctive therapy in patients with refractory
temporal lobe epilepsy resulted in significant
achievement in the seizure control [89].
Administration of verapamil demonstrated promising
results in patients with drug-resistant epilepsy, such as
Lennox–Gastaut syndrome, Dravet syndrome, focal
epilepsies, or status epilepticus [85]. A phase II
clinical trial was carried out to assess verapamil as an
adjunctive therapy for seizures in children and young
adults with Dravet syndrome (ClinicalTrials.gov
Identifier: NCT01607073, Last updated: March
2015). Verapamil may offer pharmacoresistant
patients hope for improved seizure control, owing to
its potential Pgp inhibitory effects.

Carisbamate (RWJ-333369) (proposed trade name is
Comfyde) was initially developed by SK-
Biopharmaceuticals and Johnson & Johnson. It is
not yet given FDA marketing approval. It is
considered as a neuromodulator drug and a broad-
spectrum anticonvulsant whose mechanism of action
has not been fully investigated [90]. The drug displayed
neuroprotective and antiepileptogenic effect in
lithium-pilocarpine status epilepticus rat model [91].
According to the search in clinicaltrails.gov, several
clinical trials were completed investigating the safety
and either efficacy or tolerability in patients with
epilepsy or partial-onset seizures alone or as an
adjunctive therapy.

Cannabidiol: some pilot studies have demonstrated
that natural or synthetic cannabidiol products proved
beneficial for refractory epilepsy. However, more
rigorous clinical trials are needed to confirm their
efficiency. Cannabidiol has been shown to be
effective in maximal electroshock model of epilepsy
[92] and PTZ [93]. Although it possesses potential
efficacy in epilepsy, the precise mechanism of action is
not entirely clear. This could be attributed to the
diverse pharmacological effects of cannabidiol, which
involve simultaneous modulation and/or inhibition of
neuronal hyperexcitability [94,95]. Multiple presumed
mechanisms of action for cannabidiol have been
studied including its effect on NMDA and
serotoninergic (5HT1α) receptors, regulation of Ca2+
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mobilization, or potentiation of GABA receptors
inhibition [96]. In January 2018, an open-label
single-group assignment trial was started to evaluate
the safety of fenfluramine hydrochloride, a serotonin
releasing agent formerly used as appetite suppressant,
in combination with cannabidiol, as an adjunctive
therapy in children and young adults with Dravet
syndrome or Lennox–Gastaut syndrome
(ClinicalTrials.gov Identifier: NCT03467113).
Adverse effects of certain antiepileptic drugs
The common adverse effects of AEDs are
drowsiness, dizziness, and mental slowing, in
addition to changes in weight, movement, and
behavioral disorders, metabolic acidosis, enzyme
induction, visual adverse effects, hypohydrosis
and heat intolerance, hepatotoxicity, movement
and behavioral disorders, dermatological adverse
reactions, nephrotoxicity, and colitis [97].
Moreover, it is remarkably noticed that patients
who respond efficiently to the AEDs treatment are
subjected to systemically high concentrations of the
medications to accomplish therapeutically powerful
levels at the site of activity in the central nervous
system. This leads to undesired adverse effects that
severely affect their adherence to the treatment and
their quality of life [98].
Withdrawing antiepileptic medication
Certain factors such as adolescent-onset epilepsy,
abnormal electroencephalograph, partial seizures, or
abnormal neurologic examination at the time of
withdrawal increase the risk of seizure recurrence in
patients withdrawing off AEDs. The recurrence of
seizure after withdrawal of AED could be more
tolerated in young children. On the contrary, the
effect on adults would be of significant negative
psychosocial and financial consequences. Interestingly,
successful withdrawal off AED treatment imparts
the important benefits of avoiding the adverse effect
of long-term treatment and dose-related adverse
effects [99].
Development of nanoformulations of antiepileptic
drugs
Nanoformulation is one of the most recent
approaches in the development of AEDs. This
novel promising strategy aims at improving the
pharmacokinetic properties via enhancing the
therapeutic concentrations of AEDs in the central
nervous system. Regular routes of administration of
AEDs involve mainly the oral and intravenous
routes. High drug doses are usually taken via these
routes to maintain high drug concentration in the
blood stream to be capable to reach the brain via
crossing the BBB at the therapeutic needed dose
[100].

In pharmaceutical industry research field, enormous
studies have been carried out lately encompassing
drug nanoformulations. However, fewer research
studies have been done on the AED nanoparticle
formulation. These studies involve encapsulating
AEDs into a nanosystem to overcome the obstacles
faced by the high molecular weight or hydrophilicity of
compounds to enhance their crossing of the BBB and
hence, improving drug delivery and release [101].

Nose-to-brain delivery of AEDs: The development
of intranasal AED nanoformulation is a noninvasive
approach to ensure a direct drug delivery into the
central nervous system via bypassing the BBB with a
rapid onset of effect, minimal systemic drug losses, and
excluding metabolism [102–104]. Anticonvulsant
drugs such as carbamazepine [105] and lamotrigine
[106] exhibited promising nose-to-brain delivery via
intranasal route in experimental animals. In addition,
intranasal delivery of benzodiazepines is useful in acute
crisis management and seizure emergencies, as it
reduces the time between drug administration and
seizures cessation [107].

AED nanomedicine is a promising approach that still
needs to develop in terms of preclinical and clinical
trials, aiming at improving the AED therapy and
accordingly the overall patient’s quality of life.
Traditional herbal medicine in epilepsy
Traditional medicine and the use of medicinal plants
can be traced back to ancient Egypt (4000–300 BC)
[108]. It is widely used in developing countries
where up to 80% of the inhabitants depend on
traditional medicines for their primary health care
needs [109]. Treatment of epilepsy with herbal drugs
as adjuvant seems to be beneficial and is showing
certain popularity owing to their fewer adverse
effects [110].

In Egyptian herbal medicine, Peganum harmala L. and
Ruta graveolens L. were traditionally used for the
treatment of epilepsy [111]. In addition, Anastatica
hierochuntica L. (Kaff Mariam), Citrullus colocynthis

(L.) (Handal), Teucrium leucocladum Boiss. (Zaater
alhr), Datura stramonium L. (Taturah, Nefir), Bacopa
monnieri (Wedwad), Globularia arabica (Handaqoo,
Zorreiqa), Lavandula pubescens (Attan), and Pluchea

dioscoridis (Barnoof) were used by Bedouins in Sinai to
relieve fits of epilepsy [112].
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Herbs with sedating effect such as chamomile, valerian,
kava, and passion flower may possibly accelerate the
AED effects through potentiating their cognitive and
sedative effects. On the contrary, herbs comprising
stimulant active ingredients such as caffeine (cocoa,
tea, coffee, kola) and ephedra alkaloids (ma huang or
ephedra) as well as ginkgo biloba and ginseng formulae
may lead to or aggravate seizures in patients with
epilepsy [113,114]. Leaves of Taxus wallichiana

known as Himalayan Yew are used to prepare herbal
tea for epilepsy and indigestion [115].

St John’s wort is contraindicated to be co-administered
with AED medication as it is an inducer of CYP 2C
and 3A subfamilies, thus altering the plasma level of
AED administered [116]. Leaves of Laurus nobilis

family Lauraceae are used to treat epilepsy owing to
the anticonvulsant activity of the essential oils, eugenol,
methyleugenol, and pinene, against maximal
electroshock and PTZ-induced seizures [117].
Evening primrose oil, commonly used to treat
premenstrual syndrome, was found to reduce the
threshold for seizures [118]. Therefore, health care
providers and patients should be aware of the
herbal–herbal and herbal–drug interactions that
could lead to severe adverse events [119].

Herbal formulae in Chinese traditional medicine are
used as principal treatment, whereas acupuncture as
supplemental treatment in epilepsy [120]. Ginseng,
Gingko biloba, and St John’s wort are commonly
used to overcome depression, anxiety, and memory
deficit symptoms, which are common comorbid
conditions of epilepsy [121]. The most frequently
used Chinese herbal medicines are as follows:
Valeriana officinalis, Pepper, Rhizoma Curcumae,
Uncaria, Gastrodia, and Cinnamon twig [120]. The
constituents of the ancient Chinese herb, Tian ma, as
well as its symbiotic fungus Armillaria mellea have been
reported to possess antiepileptic properties in both in-
vitro and in-vivo models [122].

In Ayurvedic medicine, which is commonly practiced
in South Asia, particularly in India, people with
epilepsy use herbal extracts prepared from Bacopa

monnieri, Acacia arabica, Acorus calamus, Celastrus

paniculatus, Convulvulus pluricaulis, Emblica

officinalis, and Withania somnifera [123].
Conclusion and future prospective
Although great progresses have been achieved in AED
development, ∼40% of the patients are still
noncompliant to treatment with conventional AEDs
[124].
A substantial progress in research has to be carried out
to understand the different mechanisms of action
involved in the development of epilepsy, as well as
the causes of drug resistance. This research would
provide opportunities for the discovery and
development of more effective AEDs. It is
recommended that future AEDs would be developed
through collaborative work between scientific research
institutions, universities, and industry to identify and
apply new target-driven approaches and innovative
clinical trials designs.
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