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Background and objective
A wide range of maleimide heterobifunctional reagents are used for the preparation
of targeted therapeutics. Succinimide derivatives are important compounds found
in a variety of natural products that exhibit remarkable biological and
pharmaceutical activity. The creation of new maleimide–succinimide derivatives
will increase the importance and medicinal applications of these groups.
Materials and methods
The reaction of bismaleimide (1–2) with phenylhydrazide and 4-
methylbenzohydrazide resulted in the formation of N’-[1-(4-[2,5-dioxo-2,5-
dihydro-1H-pyrrol-1-yl] phenyl)-2,5-dioxopyrrolidin-3-yl] benzohydrazide (3), N’-
[1-(4-[2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl] phenyl)-2,5-dioxopyrrolidin-3-yl]-4-
methylbenzohydrazide (4), N’-[1-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-[1,1’-
biphenyl]-4-yl)-2,5-dioxopyrrolidin-3-yl] benzohydrazide (5), and N’-[1-(4-(2,5-
dioxo-2,5-dihydro-1H-pyrrol-1-yl)-[1,1’- biphenyl]-4-yl)-2,5-dioxopyrrolidin-3-yl]-4-
methylbenzohydrazide (6). The interaction of potential compounds with AKT1
and CDK2 proteins was performed using molecular docking to target the
hydrogen bond and amino acid residues.
Results
The new compounds were characterized using Fourier-transform infrared
spectroscopy,1H-NMR,13C-NMR spectroscopy, and mass spectrometry. The
MTT assay was used to test cell viability against breast cancer cells (MCF-7).
The cytotoxicity results revealed that compounds 3 and 5 were more toxic than
compounds 4 and 6. Molecular docking of compounds that interacted with AKT1
andCDK2 showed affinity energy of −16.112 and −21.342 kcal/mol for compound 3,
while −22.398 and −19.940 kcal/mol for compound 5. The root-mean-square
deviation values for CDK2 and AKT1 were 2.27 and 1.61 for compound 3,
respectively, and 1.93 and 1.90 for compound 5.
Conclusion
Toxicity and molecular docking studies revealed that compounds 3 and 5 could be
developed as anticancer agents against breast cancer, indicating that further
research is warranted.
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Introduction
Maleimides are a kind of heterocyclic molecule that
may be found in natural goods [1] and are employed in
chemical and pharmaceutical chemistry. These uses
are mostly based on two common maleimide
reactions: (a) Michael addition with amines [2,3],
alcohols [4], or thiols [5,6]; (b) addition of the
cyclopentadiene [7] or furan [8,9] moiety to the
Diels–Alder reaction. Michael donors (aliphatic or
aromatic amines, amides, carbamates, or azides)
interact with electron-deficient alkene molecules
(Michael acceptors) such as α, β-unsaturated esters,
vinyl ketones, vinyl sulfones, acrylamides, acrylonitrile,
and vinylphosphonates [10,11]. Hence, bismaleimides
are a class of compounds connected to two groups of
maleimides by nitrogen atoms via a bonder [12,13].
Wolters Kluwer - Medknow
Maleimides have been extensively studied in such
reactions because, due to the presence of an
activated double bond, they can be easily converted
to substituted succinimides [14]. In addition, the
compounds from the corresponding saturated model
bis-succinimides were synthesized. Many medically
significant medicines, such as phensuximide,
ethosuximide, methsuximide, and andrimias, utilize
the succinimide molecule as a precursor [15,16].
Some derivatives had interesting biological activities,
such as analgesic [17], anticancer [18], antisplasmodic
DOI: 10.4103/epj.epj_26_21
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[19], antibiotic [20,21], and muscle relaxant were
among the biological actions of certain compounds
[22]. We synthesized four new
maleimide–succinimide derivatives and tested their
toxicity against breast cancer (MCF-7) in this study.
Thus, molecular docking studies of potential
compounds using AKT1 and CDK2 proteins to
target binding efficiency and amino acid residues
were carried out.
Experimental
A Gallenkamp melting-point device was used to
determine melting points. On a Bruker DRX 400
Advance spectrometer, proton and carbon NMR
spectra were acquired at 400 and 100MHz,
respectively, using deuterated solvents and TMS as
an internal standard. Chemical changes are measured
in parts per million (ppm). An Fourier-transform
infrared (FT-IR)-1600 Perkin-Elmer
spectrophotometer (101 Mercury Dr, Champaign,
IL, United States) was used to obtain IR spectra.
Merck aluminum sheets of silica gel were used for
thin-layer chromatography. Ultraviolet and I2 were
used to seeing the thin-layer chromatography spots.
Agilent Technologies used the EI technique to
examine the mass spectrum at 70 eV. The molecular
docking studies using AKT1 (PDB=5KCV) and
CDK2 (PDB=4FX3) proteins were carried out
based on the analysis procedure of reference [23,24].
Procedure for synthesis of phenyl-1,4-bismaleimide
BMI (1–2)
Bismaleimides BMI (1–2) were made using procedures
described in the literature [25,26]. To make
bismaleamic acid, benzene-1,4-diamine or benzidine
(0.02mol) in 50ml of acetone was combined with
maleic anhydride (0.04mol) in 40ml of acetone.

About 0.02mol bismaleamic acid dissolved in 25ml of
acetic anhydride was charged into a 100-ml round-
bottom flask, then anhydrous sodium acetate (10–20%
by weight) was added, and the mixture was refluxed in a
water bath for 2–6 h, then cooled, and emptied into an
ice bath while rapidly stirring. Bismaleimide was
precipitated, filtered, dried, and recrystallized with
ethanol.
Synthesis of maleimide–succinimide derivatives (3–6)
In acetonitrile (25ml), a combination of bismaleimide
BMI (1–2) (0.01mol) and benzohydrazide or 4-
methylbenzohydrazide (0.01mol) was heated to
reflux for 16–24 h under magnetic stirring. In
ethanol, the white precipitate was filtered and
recrystallized [27].
N’-[1-(4-[2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl]phenyl)-
2,5-dioxopyrrolidin-3-yl]benzohydrazide (3)
A white substance was formed by reacting 0.01mol
phenyl-1,4-bismaleimide (BMI 1) with 0.01mol
benzohydrazide in 25ml of acetonitrile (65% yield),
M.P.=220–222°C; FT-IR (KBr, cm−1): 3400, 3377
(NH), 3099 (=CH Ar), 1776, 1718, 1656 (C=O),
1637 (C=C), 1517, and 1471 (C=C Ar); 1H-NMR
(400MHz, DMSO-d6): δ 10.19 (d, J=6.2Hz, 1H,
He), 7.84–7.20 (m, 11H, aromatic protons including
CH=CH), 6.03 (q, J=7.3Hz, 1H, Hd), 4.27 (dt,
J=11.3, 5.4Hz, 1H, Hc), 3.10 (dd, J=23.8, 11.3Hz,
1H, Ha), and 2.83 (dd, J=23.8, 4.9Hz, 1H, Hb);

13C-
NMR (100MHz,DMSO-d6): δ=175.23 (C1), 174.78
(C4), 169.73 (C6), 166.17 (C5), [134.73, 132.78,
131.49, 128.35, 127.38, 127.17, 127.14 (C aromatic
including CH=CH)], 57.69 (C3), and 34.50 (C2); MS
m/z (%): 404.2 (M+, 7), 283.1 (37), 121 (42), 105.1
(100), 77.1 (91), and 51.1 (65).
N’-[1-(4-[2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl]phenyl)-
2,5-dioxopyrrolidin-3-yl]-4-methylbenzohydrazide (4)
Reaction of N,N′-(1,4-phenylene) dimaleimide (BMI 1)
(0.01mol) with 4-methylbenzohydrazide (0.01mol) in
25mlofacetonitrileproducedawhitepowder (75%yield),
M.P.=240–242°C; FT-IR (KBr, cm−1): 3475, 3338
(NH), 3095, 3078 (=CH Ar), 1780, 1720, 1639
(C=O), 1612 (C=C), 1517, and 1471 (C=C Ar); 1H-
NMR (400MHz, DMSO-d6): 10.12 (d, J=6.2Hz, 1H,
He, 1), 7.75–7.20 (m, 10H, CH=CH including of
aromatic protons), 5.99 (q, J=4Hz, 1H, Hd), 4.27 (dt,
J=11.2, 5.3Hz, 1H,Hc), 3.09 (dd, J=23.8, 11.2Hz, 1H,
Ha), 2.84 (dd, J=23.8, 4.9Hz, 1H, Hb), and 2.34 (s, 3H,
CH3);

13C-NMR (100MHz, DMSO-d6): δ 175.27
(C1), 174.81 (C4), 169.73 (C6), 166.15 (C5), [141.47,
134.74, 131.95, 131.42, 131.28, 129.96, 128.88, 127.39,
127.20, 127.15 (C aromatic including CH=CH)],
57.75 (C3), 34.51 (C2), and 20.96 (CH3); MS m/z
(%): 418.2 (M+, 13), 268.1 (15), 198.2 (17), 82.1 (35),
54 (100).
N’-[1-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-[1,1’-
biphenyl]-4-yl)-2,5-dioxo pyrrolidin-3-yl]
benzohydrazide (5)
Reaction of benzidine bismaleimide (BMI 2)
(0.01mol) with benzohydrazide (0.01mol) in 25ml
of acetonitrile yielded a white solid (65% yield), M.
P.=270–272°C; FT-IR (KBr, cm−1): 3300, 3221
(NH), 3051 (=CH Ar), 1782, 1712, 1649 (C=O),
1618 (C=C), 1575, and 1504 (C=C Ar); 1H-NMR: δ
10.21 (d, J=6.2Hz, 1H, He), 7.85–7.33 (m, 15H,
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CH=CH including of aromatic protons), 6.03
(t, J=23.8, 11Hz, 1H, Hd), 4.28 (dt, J=10.9,
5.5Hz, 1H, Hc), 3.10 (dd, J=23.8, 11Hz, 1H, Ha),
and 2.84 (dd, J=23.8, 5Hz, 1H, Hb);

13C-NMR
(100MHz, DMSO-d6): 175.30 (C1), 174.88 (C4),
169.87 (C6), 166.20 (C5), [138.61, 134.74, 133.81,
131.52, 131.11, 128.37, 127.33, 127.22, 127.13 (C
aromatic including CH=CH)], 57.67 (C3), 34.5
(C2); MS m/z (%): 480.2 (M+, 6), 344.2 (27), 95
(30), 69.2 (45), 43.2 (100).

N’-[1-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-
[1,1’-biphenyl]-4-yl)-2,5-dioxo-pyrrolidin-3-yl]-
4-methylbenzohydrazide (6)
Reaction of benzidine bismaleimide (BMI 2) (0.01mol)
with 4-methylbenzohydrazide (0.01mol) in 25ml of
ethanol produced a white powder (70% yield), M.
P.=254–256°C. FT-IR (KBr, cm−1): 3469, 3217
(NH), 3041 (=CH Ar), 1782, 1714, 1647 (C=O),
1502, 1471 (C=C Ar); 1H-NMR (400MHz,
DMSO-d6): δ 10.12 (d, J=8Hz, 1H, He), 7.83–7.19
(m, 14H, aromatic protons including CH=CH), 5.99
(br.s, 1H, Hd), 4.27 (dt, J=11.2, 5.3Hz, 1H, Hc), 3.09
(dd, J=23.8, 11.2Hz,1H,Ha), 2.84 (dd, J=23.8, 4.9Hz,
1H, Hb), 2.34 (s, 3H, CH3);

13C-NMR (100MHz,
DMSO-d6): δ175.55 (C1), 175.10 (C4), 170.07 (C6),
166.38 (C5), [141.67, 139.38, 134.92, 132.02, 130.18,
129.08, 127.53, 127.42, 126.76, 119.53 (C aromatic
including CH=CH)], 57.95 (C3), 34.73 (C2), 21.61
(CH3); MS m/z (%): 495.5 (M++H, 10), 393.4 (8),
119.1 (100), 91.1 (69), 65.1 (39), 43.1 (32).
Cytotoxicity test
The MTT assay was performed on 96-well plates to
determine cell viability. MCF-7 cells were seeded at a
density of 1×104 cells per well. Cells were treated with
1000μM of compounds after 24h or when a confluent
monolayer was achieved. Cell viability was determined
after72hbyadding28μlofa2mg/mlMTTsolution(the
cells were incubated for 2 h at 37°C). After removing the
MTTsolution, the crystals in thewells were incubated in
100μl of DMSO (dimethyl sulfoxide) for 15min and
shaken at 37°C. The absorbency was measured using a
microplate reader at 620 nm, and the assay was done in
triplicate.Theviabilityofthecellswascalculatedusingthe
following equation [28]: Cell viability %={[A620
(control)–A620 (treated)]/A620 (control)}×100.

Results and discussion
Themaleimide–succinimide derivatives (3–6) described
here weremade in two ways: the first uses diamines with
maleic anhydride as building blocks, whereas the second
uses benzohydrazide or 4-methylbenzohydrazide as well
as bismaleimides. The approach produced bismaleimide
(BMI) by reacting the required diamine with maleic
anhydride in a solvent such as acetone, yielding
bismaleamic acid without additional purification.
Following that, in the presence of anhydrous sodium
acetate, this intermediate was cyclized in acetic
anhydride to give the bismaleimide BMI (1–2) [29].
Michael’s addition to aromatic primary diamine resulted
in the conversion of bismaleimide into maleimide–
succinimide derivatives. BMI compounds (1–2) reacted
with benzohydrazide or 4-methylbenzohydrazide in
acetonitrile to afford a product (3–6) (Scheme 1).

The chemical structures of all the resulting
maleimide–succinimide derivatives were confirmed by
FT-IR, 1H-NMR, 13C-NMR, and mass spectrometry.
TheKBr discwas used to determine the properties of the
IR-absorptionbands (3–6).The IRspectrumwasused to
identify the functional groups of these compounds. The
stretching bands corresponding to NH amide and NH
groups were observed in the range 3469–3300 and
3377–3217 cm−1, respectively. The absorption bands
in the 1782–1676 cm−1 area are linked to symmetric
C=O,whereas the bands in the1720–1712 cm−1 area are
attributed to asymmetric C&9552;O stretching. The
bands at 1656–1639 cm−1 were due to C&9552;O
amide. The two bands at 1637–1612 and
1575–1471 cm−1 were attributed to the C&9552;C in
themaleimide cycle andC&9552;Caromatic stretching,
respectively [30]. Maleimide–succinimide derivatives
(3–6) were used to generate 1H-NMR spectra. Signals
at 2.5 and 3.3 ppm belong to the solventDMSO-d6 and
water, respectively. Because they are attached to carbon
adjacent to the chiral center, the doublet of doublets
peaks at around 2.84–2.83 and 3.10–3.09 ppm belongs
to Ha and Hb protons, respectively. At 4.28–4.27 ppm,
Hc was responsible for the triplet doublet. Quartet or
triplet peaks at around 6.03–5.99 ppm were assigned to
the proton of Hd. Doublet peaks at around
10.21–10.12 ppm were due to He. Aromatic protons
were given themultiplet peak at roughly 7.85–7.19 ppm,
which included the singlet peak for olefin protons
corresponding to the maleimide ring [31]. The methyl
group is responsible for the singlet at2.34 ppm.The13C-
NMR of the compounds 3–6 that showed signals at
around 175.55–166.17 ppm was attributed to carbonyl
groups.The signals of the carbon aromatic ring appeared
in the range 141.67–119.32 ppm, including the carbon
olefinic ring, and the aliphatic carbons are present in the
range 57.95–20.95 ppm. The mass spectra of the 3–6
groups revealed the presence of a molecular ion (m/z):
404.2 (M+), 418.2 (M+), 480.2 (M+), and 495 (M++H).
The mass spectra indicated that the structures were
right. 1H-NMR, 13C-NMR, and MS spectroscopy
were established in accordance with the proposed
structure.



Scheme 1

Synthesis of maleimide–succinimide derivatives.
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Cytotoxicity evaluation
Many studies have shown that heterocyclic derivatives
are an important class of compounds that could be used
in the development of new anticancer agents [32,33].
Chemotherapy for breast cancer entails the use of drugs
to specifically target and destroy cancer cells.
Chemotherapy is frequently combined with other
breast cancer treatments, such as surgery, radiation,
or hormone therapy. Chemotherapy raises the risk of
blood clots such as deep-vein thrombosis because
breast cancer patients are predisposed to blood clots.
As a result, developing new heterocyclic compounds
with fewer side effects to combat breast cancer remains
a challenge for researchers [34,35]. Some reports
showed that maleimide derivatives and succinimide
derivatives exhibited promising structures for
developing new agents as anticancer agents with
merit investigation [36–40].

For the first time, we synthesized new
maleimide–succinimide derivatives and tested their
toxicity against breast cancer (MCF-7) cells.
Figure 1 shows that compound 5 had a higher killing
ratio than the other compounds by ∼26.4%, followed
by compound 3 killing ratio of 37.6%, while
compounds 4 and 6 were inactive. The methyl group
distinguishes compound 3 from compound 6, as does
compound 5 from compound 4. The methyl group is a
donor group that may limit the ability of compounds 4
and 6 to inhibit the proliferation of MCF-7 cells.

Molecular docking

Docking analysis was used to determine how the target
proteins’ amino acid residues and hydrogen bonds
interact with compounds 3 and 5. This method will
aid in the identification of the compound as a protein
inhibitor. AKT1 and CDK2 are important proteins for
cancer cell proliferation and the cell cycle, and they
were used in this study to determine the binding
efficiency of compounds 3 and 5. Figures 2 and 3
show that the two-dimensional and three-
dimensional compound 3 interacted with 5KCV.
The affinity energy was −16.11 kcal/mol. The



Figure 1

The toxicity test of compounds using MCF-7 cells for 48 h.

Figure 2

Two-dimensional compound 3 interaction with 5KVC.
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Figure 3

Three-dimensional compound 3 interaction with 5KVC.

Figure 4

Two-dimensional compound 3 interaction with 4FX4.
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number of hydrogen bonds were two, Leu295, distance
value 2.07, and Tyr18, distance value 2.22. While in
Figs 4 and 5, compound 3 interacted with 4FX3, the
affinity energy was −22.39 kcal/mol, the number of
hydrogen bonds was one, Glu12 distance value 1.8,
and Tyr18 distance value 2.22, as shown in Table 1.
Figures 6 and 7 show that the two-dimensional and
three-dimensional compound 5 interacted with 5KCV.



Figure 5

Three-dimensional compound 3 interaction with 4FX3.

Table 1 Docking analysis of compounds 3 and 5 interaction with 5KCV and 4FX3, showed the affinity energy, root-mean-square
deviation, amino acid residue, and H bonding

Compound (ligand) Protein (receptor) Affinity energy (kcal/mol) RMSD H bonding

Number of H bonding Amino acid H bonding distance (Å)

3 4FX3 −22.39 2.27 1 Glu12 1.80

5KCV −16.11 1.61 2 Leu295 2.07

Tyr18 2.22

5 4FX3 −19.94 1.93 1 Lys129 2.54

5KCV −21.34 1.90 2 Glu278 1.85

Gln79 2.57

RMSD, root-mean-square deviation.
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The affinity energy was −21.34 kcal/mol. The number
of hydrogen bonds were two, Glu278, with a distance
value of 1.85, and Gln79, with a distance value of 2.57.
While in Figs 8 and 9, compound 5 interacted with
4FX3, the affinity energy was −19.94 kcal/mol, the
number of hydrogen bonds was one, Lys129,
distance value 2.54, as shown in Table 1.
Furthermore, the average deviation between the
corresponding atoms of two proteins is given by
root-mean-square deviation (RMSD) values.
Efficient algorithms have been developed to
determine the best orientation of two structures with
the least amount of RMSD. RMSD less than 2.0
clearly corresponds to good docking solutions.
Docking solutions with RMSD between 2.0 and 3.0
deviate from the reference position while maintaining
the desired orientation. Compound 3 with
4FX3=2.270, compound 5 with 4FX3=1.937,
compound 3 with 5KCV=1.619, and compound 5
with 5KCV=1.900, as shown in Table 1.
Compound 3 has a lower RMSD value than 5KCV,
while compound 5 has two lower RMSD values
than 4FX3 and 5KCV. Both compounds may be
involved in the interaction of 4FX3 and 5KCV
proteins.
Conclusion
Four new maleimide–succinimide derivatives were
synthesized and characterized using FT-IR
spectroscopy, 1H-NMR, 13C-NMR spectroscopy,
and mass spectrometry. The compounds were tested
against breast cancer cells (MCF-7). The compounds
N’-[1-(4- (2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)
phenyl)-2,5- dioxopyrrolidin-3-yl] benzohydrazide
(3) and N’-[1-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-



Figure 6

Two-dimensional compound 5 interaction with 5KVC.

Figure 7

Three-dimensional compound 5 interaction with 5KVC.
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1-yl)-[1,1’-biphenyl]-4-yl)-2,5-dioxopyrro lidin-3-yl]
benzohydrazide (5) were more toxic. Furthermore,
molecular docking studies with the AKT1 and CDK2
proteins revealed the target amino acid residues and
hydrogen bonds of both compounds. Compounds 3
and 5 will be investigated further in order to
investigate and develop their anticancer activity
against breast cancer.



Figure 8

Two-dimensional compound 5 interaction with 4FX4.

Figure 9

Three-dimensional compound 5 interaction with 4FX3.
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