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Ameliorative effect of costus ethanolic extract against
Oxaliplatin-induced hepatotoxicity in adult rats
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Background and objective
Cancer is a disease associated with an abnormal proliferation and growth of living
cells; treatment with the anticancer therapy, Oxaliplatin (OXP) results in
hepatotoxicity. The objective of this study was to evaluate the protective effect
of costus ethanolic extract (CEE) against OXP-induced hepatotoxicity in a trail to
improve its clinical use.
Materials and methods
Adult male Wistar rats (150–180g body weight) were randomly divided into four
groups (10 rats each): (a) healthy control group, (b) healthy rats treated orally with
CEE (50mg/kg/day), (c) rats injected intraperitoneally with OXP (10mg/kg once/
week), and (d) rats treated with CEE in combination with OXP.
Results and conclusion
After 6 weeks of treatment, the results revealed that CEE succeeded to decline
OXP-induced hepatotoxicity; this was evidenced by the significant reduction in
serum alanine aminotransferase (ALAT), aspartate aminotransferases (ASAT),
GGT, alkaline phosphatase (ALP), total cholesterol, triglycerides, low dense
lipoprotein-cholesterol (LDL-c), tumor necrosis factor-alpha (TNF-α), Interleukin
-1 Beta (IL-1β), and alpha-fetoprotein values as well as hepatic malondialdehyde,
nitric oxide, and DNA fragmentation coupled with a marked rise in serum CD4,
albumin and high dense lipoprotein-cholesterol (HDL-c) levels, and hepatic
glutathione, superoxide dismutase, and catalase values. These effects agonized
the structural restoration of the histological picture of liver. It could be concluded that
CEE succeeded to a great extent to counteract the oxidative stress of OXP and
protect the liver against its toxic effects; CEE may be considered as a promising
supplement-candidate for the protection of liver against the side effects of that
anticancer drugs.
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Introduction
Drug-induced hepatotoxicity is one of the major
concerns in medical practice. Although it is relatively
uncommon, drug-induced liver injury is the leading
cause of acute liver failure in the world and a major
reason for liver transplantation [1].

Oxaliplatin (OXP), a third-generation platinum
chemotherapeutic agent, is widely used in the
treatment of several cancers such as colorectal cancer
and gastric cancer [2]. OXP-based chemotherapy for
colorectal liver metastases has increased resection rates
and improved outcomes, and is therefore recommended
as the first-line basic chemotherapeutic drug [2,3].
However, OXP-induced liver injury is a primary
limiting factor of OXP-based chemotherapy in
patients with colorectal liver metastases [4]. Studies
have revealed OXP-induced liver injury in patients
who underwent preoperative OXP-based
chemotherapy, with an incidence rate of 19–78% [5].
Wolters Kluwer - Medknow
Other reports have shown thatOXP-induced sinusoidal
injury, one of the distinct drug-specific side effects of
OXP, is associated with intraoperative bleeding and
postoperative morbidity, and early recurrence and
decreased overall survival [6]. The pathological
features of OXP-induced liver injury include hepatic
sinusoidal dilatation, intrahepatic sinus platelet
aggregation, hepatic steatosis, and clinically important
adverse effects characterized by a bluish hue in the liver,
splenomegaly, and thrombocytopenia [7]. To overcome
these side effects, an effective adjuvant drug that protects
the liver against damage caused by OXP is imperative.

At present, very little is known about the
pathophysiological mechanisms that underlie OXP-
DOI: 10.4103/epj.epj_44_21
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induced liver injury. OXP has been confirmed to cause
liver oxidative stress response through certain known
mechanisms. Robinson et al. [8] reported that oxidative
stress-related genes (Mt1, HO1, and SOd3) were
upregulated in the liver following OXP
chemotherapy, indicating that oxidative stress plays
an important role in OXP-induced liver injury. By
generating reactive oxygen species (ROS), OXP
causes a series of reactions, such as oxidative injury
of normal hepatocyte mitochondria, as well as injury,
falloff, and local edema of sinusoidal endothelial cells,
thereby causing chemotherapy-related liver injury [9].

Plants have a long-time history in medicine. For
centuries, many people have developed different
herbal medicines using locally available plants as a
remedy to their numerous health challenges. When
these medicinal plants are excessively consumed, they
could result in the damage of some body tissues and
their functions [10].

Costus (Saussurea costus) commonly known as ‘Kuth’
from the family Asteraceae is an important medicinal
plant. Its roots are widely used in folk medicine. Several
studies have reported that the root of costus exhibited
antimicrobial and anti-nematode activity [11],
hepatoprotective activity [12], antiulcer activity [13],
and anti-inflammatory activity [14]. The authors
reported the presence of caffeic acid derivatives,
chlorogenic acid (1S-(1, 3, 4, 5)-3-3-(3,4-
dihydroxyphenyl)-1-oxo-2-propenyloxy-1, 4, 5-
trihydroxycyclohexanecarboxylic acid), in costus for
the first time by high performance liquid
chromatography (HPLC) [15]. Chlorogenic acid
exhibited antioxidant activity [16]. Although the plant
has been reported to contain caffeic acid derivatives (like
syringic acid and chlorogenic acid), the antioxidant
activity of the plant has now been studied for the first
time using its ability to scavenge 1,1-diphenyl-2-
picrylhydrazyl, nitric oxide (NO), superoxide radicals,
along with its ability to inhibit lipid peroxidation and
glutathione (GSH) oxidation. This study aimed to
evaluate the ameliorative effect of costus ethanolic
extract (CEE) against hepatotoxicity induced by OXP.
Materials and methods
Plant materials and extraction
Costus roots were obtained from Imtinan Company,
Nasr City, Cairo, Egypt, which were identified and
authenticated by scientific botanists. The plant was
found carrying a taxonomic serial number 780691. The
ethanolic extract of the dry powdered roots was carried
out according to the modified method of Filipiak-Szok
et al. [17]; 1,1-diphenyl-2-picrylhydrazyl radical
scavenging activity of CEE was determined using
the method previously described [18]. Reducing
power of the extract was determined according to
the method described by Sethiya et al. [19].
HPLC analysis of phenolic constituents
High performance liquid chromatography (HPLC)
analysis was carried out using an Agilent 1260 series.
The separation was carried out using Kromasil C18
column (4.6mm×250mm id, 5 μm). The mobile phase
consisted of water (A) and 0.05% trifluoroacetic acid in
acetonitrile (B) at a flow rate of 1ml/min. The mobile
phase was programmed consecutively in a linear
gradient as follows: 0min (82% A), 0–5min (80%
A), 5–8min (60% A), 8–12min (60% A), 12–15min
(85% A), and 15–16min (82% A). The
multiwavelength detector was monitored at 280 nm.
The injection volume was 10 μl for each of the sample
solutions. The column temperature was maintained at
35°C.
Animals and experimental design
Forty adult male albino rats (150–180 g) were obtained
from the Animal Colony, National Research Centre,
Egypt; the animals were maintained under
temperature-controlled (25±1°C) and light-
controlled (12/12 h light/dark cycle) conditions with
free access to food and water for a week before starting
the experiment for acclimatization; the animals
received human care in compliance with the
standard institution’s criteria according to the
procedures approved by the Ethics Committee of
the National Research Centre (FWA 00014747)
that follows the recommendations of the National
Institutes of Health Guide for the Care and Use of
Laboratory Animals (publication No. 85-23, revised in
1985). After the animals were acclimatized to
experimental room conditions, they were divided
randomly into four groups (10 animals each) as
follows: group 1 healthy control rats orally received
0.5ml water for consecutive 6 weeks; group 2 healthy
rats orally ingested with CEE (50mg/kg/day) for six
consecutive weeks, group 3 healthy rats intoxicated
intraperitoneally with OXP (10mg/kg/week) for 6
weeks, and group 4 rats intoxicated with OXP
combined with ingestion of CEE for 6 weeks at the
mentioned doses.
Blood and tissue sampling
At the end of the treatment period (6 weeks), rats were
weighed and then fasted overnight. Following
anesthesia (inhalation with diethyl ether), blood
specimens were withdrawn from the retro-orbital
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plexus using heparinized and sterile glass capillaries;
whole blood specimens were cool centrifuged at 3000
rpm for 10 min and the sera were separated, divided
into aliquots, and stored at −80°C till biochemical
measurements, which were carried out immediately.
Then after blood collection, the animals were killed
soon, and then the liver of each animal was dissected
out. One part of the liver of each animal was washed in
saline, dried, rolled in a piece ofaluminum foil, and
stored at −80°C for both biochemical determinations
and DNA fragmentation. Another portion of the liver
was soaked in formalin-saline (10%) buffer for
histopathological processing and microscopic
examination.
Figure 1

The yield (%) and radical scavenging activity (%) of three replicates of
Biochemical determinations
Serum aspartate aminotransferases (ASAT), alanine
aminotransferase (ALAT), alkaline phosphatase
(ALP), and GGT activities were determined
spectrophotometrically using reagent kits purchased
from Human GesellSchaft fur Biochemical und
Diagnostic mbH, Germany, while serum total
cholesterol, triglycerides, LDL-cholesterol, HDL-
cholesterol, albumin, and total protein levels were
determined using reagent kits purchased from
DiaSys Diagnostic Systems GmbH, Germany.
Serum tumor necrosis factor-alpha (TNF-α),
Interleukin -1 Beta (IL-1β), CD4, and αFP
concentrations were measured using ELISA kits
purchased from SinoGeneClon Biotech Co. Ltd,
No.9 BoYuan Road,YuHang District 311112, Hang
Zhou, China. Hepatic levels of GSH and NO and
activities of superoxide dismutase (SOD) and catalase
(CAT) were estimated using reagent kits obtained
from Biodiagnostic, Giza, Egypt. However,
malondialdehyde (MDA) level was determined
chemically as described by Ruiz-Larnea et al. [20].
ethanolic extract of costus dry powdered roots.

Figure 2

DNA fragmentation percentage
The percentage of DNA fragmentation was assayed
according to the quantitative method used for grading
the DNA damage [21].
Histopathology
Paraffin sections of 5 μm thickness were stained with
hematoxylin and eosin [22] and investigated by light
microscopy.
Reducing power of three replicates of the ethanolic extract of costus
dry powdered roots.
Statistical analysis
Comparisons between means were carried out using
one-way analysis of variance, followed by post hock
(Tukey) multiple comparisons test at P value less than
or equal to 0.05 according to Steel and Torrie [23].
Results
The yield, radical scavenging activity, and reducing
power of the CEE are shown in Figs 1 and 2.Mostly 16
phenolic compounds were identified in CEE using
HPLC analysis. The compounds identified were
found to include high contents of naringenin,
chlorogenic acid, ferulic acid, taxifolin, gallic acid,
and caffeic acid (Fig. 3 and Table 1).

In comparison to the control group, the obtained
results showed a significant increase in TNF-α, IL-
1β, and alpha-fetoprotein (AFP) level coupled with a
significant decrease in CD4 post-OXP intoxication.
Interestingly, administration of rats with CEE besides
OXP intoxication led to a marked reduction in the
measured inflammatory cytokines (TNF-α and IL-1β)
and tumor marker (AFP) associated with a significant
increase in serum CD4 level to values close to those of
the normal control group when compared with OXP-
intoxicated animals (Fig. 4).

The data in Table 2 show that the administration of
rats with CEE alone did not disturb the activity of



Figure 3

HPLC analysis of phenolic constituents of costus ethanolic extract.

Table 1 Phenolic constituents of ethanolic extract of costus
using HPLC analysis

Area Concentration (μg/
ml=μg/6.8mg)

Concentration
(μg/g)

Gallic acid 77.66 6.23 232.49

Chlorogenic
acid

508.86 39.58 1477.00

Catechin 0.00 0.00 0.00

Methyl
gallate

4.14 0.06 2.33

Coaffeic
acid

87.66 3.17 118.27

Syringic
acid

63.85 2.17 81.15

Pyro
catechol

28.89 2.80 104.38

Rutin 0.00 0.00 0.00

Ellagic acid 6.58 0.38 14.08

Coumaric
acid

150.73 2.43 90.79

Vanillin 143.40 2.24 83.58

Ferulic acid 537.79 16.74 624.59

Naringenin 654.73 40.05 1494.47

Taxifolin 82.11 9.36 349.28

Cinnamic
acid

70.85 0.75 27.91

Kaempferol 20.59 1.68 62.50

HPLC, high performance liquid chromatography.
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serum ASAT, ALAT, ALP and GGT, while OXP
injection led to a significant elevation in the activity of
these parameters when both groups were compared
with the corresponding values of the control group.
Favorably, co-ingestion of CEE in line with OXP
injection significantly ameliorated the OXP-induced
deteriorations in the mentioned parameters.

Similarly, Table 2 shows a significant decrease in serum
total protein and albumin levels was noticed post-OXP
intoxication compared with the control group.
Interestingly, administration of rats with CEE
besides OXP injection markedly upregulated serum
total proteins and albumin levels close to values of
the normal group compared withOXP-intoxicated rats.

The obtained results of the OXP-intoxicated group
showed a significant increase in total cholesterol,
triglycerides, LDL-cholesterol level coupled with a
significant decrease in HDL-cholesterol when
compared with the control group. Interestingly,
treatment of rats with OXP in line with CEE
markedly ameliorated serum levels of cholesterol,
triglycerides, LDL-cholesterol, and HDL-cholesterol
compared with OXP animals (Table 3).

Table 3 shows that intoxicationof ratswithOXP led to a
significant elevation in the levels of hepatic MDA and
NO matched with a marked drop in GSH, SOD, and
CAT values compared with the control group.
Promisingly, treatment of animals with CEE besides
OXP injection showed a significant decrease in hepatic
MDA andNO levels coupled with amarked restoration
in GSH, SOD, and CAT values compared with the
OXP group (Table 4).

OXP-intoxicated treatment showed a significant
increase in the percent of DNA fragmentation as
compared with the control group, whereas treatment
of OXP-intoxicated animals with CEE resulted in a
significant improvement in DNA fragmentation
percentage close to that of the control group
(Fig. 5). Finally, Figs 6–11 describe and illustrate
histopathological examinations of the liver sections
of the study groups.
Discussion
OXP, like chemotherapeutic agents, has been used
broadly in the treatment of various cancers and some



Figure 4

Serum TNF-α, IL-1β, CD4, and AFP levels of control, OXP-intoxicated and CEE-treated male albino rats. *Significantly different from the control
group, while #significantly different from the OXP-intoxicated group (P≤0.05). CEE, costus ethanolic extract; AFP, alpha-fetoprotein; IL-1β,,
Interleukin -1 Beta; OXP, Oxaliplatin; TNF-α, tumor necrosis factor-alpha.

Table 2 Markers of liver function of control, Oxaliplatin-
intoxicated and costus ethanolic extract-treated male albino rats

Control CEE OXP OXP with
CEE

ALAT (U/l) 38.3±2.4 35.1±3.9 131.1
±8.1*

46.5±2.8#

ASAT (U/l) 35.4±2.9 32.8±6.2 117.9
±7.7*

48.6±4.1#

GGT (U/l) 49.6±5.9 48.1±4.6 94±5.5* 76.8±6.3#

ALP (U/l) 178.8±9.4 170.3
±10.3

256.6
±21.5*

134±11.5#

Albumin (g/dl) 5.22±0.22 5.14
±0.87

2.6±0.32* 4.9±0.17#

Total protein
(g/dl)

9.4±0.72 9.47±.69 5.5±0.63* 8.35±0.74#

ALAT, alanine aminotransferase; ALP, alkaline phosphatase;
ASAT, aspartate aminotransferases; CEE, costus ethanolic
extract; OXP, Oxaliplatin. Data are presented as mean±SEM. Data
were subjected to one-way analysis of variance followed by post
hoc (Tukey) test at P value less than or equal to 0.05.
*Significantly different from the control group, while #Significantly
different from OXP.

Table 3 Serum cholesterol, triglycerides, HDL-cholesterol,
and LDL-cholesterol levels of control, Oxaliplatin-intoxicated
and costus ethanolic extract-treated male albino rats

Control CEE OXP OXP with
CEE

Cholesterol (mg/dl) 96.2
±3.4

93.7
±4.5

163.8
±5.2*

118.8±6.1#

Triglycerides (mg/
dl)

106.5
±4.1

102.7
±6.1

141.4
±5.0*

114.1±4.8#

LDL-cholesterol
(mg/dl)

37.0
± 1.5

41.0
±2.1

28.3±±
1.8*

38.7±0.7#

HDL-cholesterol
(mg/dl)

74.0
±4.6

73.7
±4.5

163.7
±6.0*

95.98±5.4#

CEE, costus ethanolic extract; OXP, Oxaliplatin. Data are
presented as mean±SEM. Data were subjected to one-way
analysis of variance followed by post hoc test (Tukey) test at P
value less than or equal to 0.05. *Significantly different from the
control group. #Significantly different from the OXP group.
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inflammatory diseases. One of the serious adverse
effects of OXP is hepatotoxicity; approaches to
reduce this complication are valuable in order to
improve the quality of life of patients, and to
ensure that treatment is more successful [24]. In
the present study, OXP-induced hepatotoxicity is
evident by the markedly increased activities of
serum ALAT, ASAT, ALP, and GGT along with
the declined albumin levels. These findings are in
agreement with some recent studies that
demonstrate increased liver marker enzymes in the
serum of OXP-intoxicated rats [25,26].The elevated
serum enzymes might be attributed to the increase of
oxidative stress as a consequence of triggering ROS
formation as a consequence to OXP. Moreover, it has
been detected that OXP-induced toxicity is associated
with an increase in lipid peroxidation, which is one of



Table 4 Hepatic values of malondialdehyde, nitric oxide,
reduced glutathione, superoxide dismutase, and catalase of
control, Oxaliplatin-intoxicated and costus ethanolic extract-
treated male albino rats

Control CEE OXP OXP with
CEE

MDA (μmol/g
tissue)

270.2
±9.5

292.9
±10.3

544.6
±21*

438.5±19#

NO (μmol/g
tissue)

633±27 623±28 1577
±54*

848.8±45#

GSH (nmol/g
tissue)

625±29 661±34 325.6
±21*

506±34#

SOD (U/g tissue) 149±12 152±14 53±4.4* 97±7.4#

CAT (U/g tissue) 17.3
±0.9

18.9±1.1 8.1±0.5* 13.6±0.7#

CAT, catalase; CEE, costus ethanolic extract; GSH, glutathione;
MDA, malondialdehyde; NO, nitric oxide; OXP, Oxaliplatin; SOD,
superoxide dismutase. Data are presented as mean±SEM. Data
were subjected to one-way analysis of variance followed by post
hoc (Tukey) test at P value less than or equal to 0.05.
*Significantly different from the control group. #Significantly
different from the OXP group.

Figure 5

Percentage of hepatic DNA fragmentation of control, OXP-intoxicat-
ed and CEE-treated male albino rats. *Significantly different from the
control group, while #significantly different from the OXP group. CEE,
costus ethanolic extract; OXP, Oxaliplatin.

Figure 6

Photomicrograph of a liver section of a control rat showing the normal
appearance of hepatocytes (NH); note the central vein (CV) and
normal blood sinusoids (BS).

Figure 7

Photomicrograph of a liver section of a rat treated with CEE showing
normal hepatic architecture (NH); note the central vein (CV) and
blood sinusoids. CEE, costus ethanolic extract.

Figure 8

Photomicrograph of a liver section of Oxaliplatin-intoxicated rat
showing the fibrous tissue (FT), fibrous bands formed of many
fibroblasts, and collagen fibers; the bands run in septa between
the hepatocyte lobules and around the blood vessels (BV).

Figure 9

Photomicrograph of a liver section of Oxaliplatin-intoxicated rat
(second filed) showing signs of degeneration in the form of pyknotic
(P) nuclei (PC) and karyorrhexis (yellow arrow).

Hepatoproteive effects of costus aginast OXP in rats Elshater et al. 35



Figure 11

Photomicrograph of a liver section of rats treated with Oxaliplatin
combined with CEE showing the normal architecture of hepatocyte
(NH), and thick fibrous band (star), formed of many fibrous bands and
collagen around the blood vessel (arrow). CEE, costus ethanolic
extract.

Figure 10

Photomicrograph of a liver section of Oxaliplatin-intoxicated rat (third
filed) showing massive vacuolar (VD) and fatty changes (green
arrow) and dilated blood sinusoids (red arrow).
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the most important destructive elements damaging
cell membrane in many organs such as the liver and
kidneys [24,27]; OXP-induced hepatic damage
associated with progressive inflammation is referred
to as chemotherapy-associated steatohepatitis [28].

In this study, CEE showed a hepatoprotective effect
against OXP-induced liver damage as it succeeded to
efficiently restore OXP-induced elevation of serum
AST, ALT, GGT, and ALP activities. It was stated
that natural antioxidants play a major role in reducing
the oxidative stress through scavenging the excess free
radicals [29], and CEE is one of the antioxidant-rich
medicinal plants. Moreover, many authors have
reported that the roots of this plant possess a
cortisol-lowering effect [30]. Costunolide and
dehydrocostuslactone, two natural sesquiterpene
lactones, present in costus may play some pivotal
roles through conjugation with mercapto (SH)-
groups of target proteins to intervene in some key
biological processes in cells [31] as they possess anti-
inflammatory [32], anticancer [33], antiviral [34],
antimicrobial [35], antifungal [36], antioxidant [37],
antidiabetic [38], antiulcer [39], and hepatoprotective
properties [30]. In this study, triglycerides, the main
form in which fat is stored in the body, have been
shown to be reduced by the CEE indicating CEE-
protective effect against cardiovascular disease since
this result goes in line with the observation of Duze
et al. [40]. The increased serum HDL-cholesterol level
observed in our study confirmed that effect as it is
considered one of the strongest predictors of coronary
heart disease (CHD) [41]. Although the mechanism of
hypolipidemic effect of this extract is not yet known, it
may however be attributed to its phytochemical
constituents inherent that may have reduced blood
lipids by competing with cholesterol biosynthesis in
the liver and inhibiting the key enzyme hydroxyl-
methyl-glutaryl coenzyme at the regulatory site.

The present study demonstrated that OXP-induced
chronic oxidative stress in the hepatic tissues of
intoxicated rats as confirmed by the significant
increase of hepatic MDA and NO levels and
reduction in the antioxidative battery (GSH, SOD,
and CAT) can directly promote cell necrosis and
activate the apoptotic pathway [42]. Excessive
amounts of ROS may exert direct deleterious effects
on cells through lipid peroxidation, protein degradation,
and DNA damage [43], which evidenced herein by way
of the elevated DNA damage percentage. Interestingly,
CEE succeeded to protect against OXP as it markedly
improved the radical scavenging activity, and hence
inhibited oxidative stress progression. Restoration of
GSH has a multifaceted role in antioxidant defense
both as a direct scavenger of free radicals and as a co-
substrate for peroxide detoxification by GSH
peroxidases [44]. Also, SOD and CAT function in a
sequential cascade manner in the antioxidant defense
system. As an antioxidant enzyme, SOD catalyzes the
removal of superoxide radicals generated from the
oxidation of a singlet oxygen species. The end product
of SOD action is hydrogen peroxide, which is an
inhibitor of SOD if allowed to accumulate. Hydrogen
peroxide is also a substrate for theproductionof hydroxyl
radicals through the Fenton reaction cycle; hence this is
the importance of CAT in the breakdown of hydrogen
peroxide as it is formed of water and oxygen [45]. In this
way, CEE causes activation of SOD and CAT function
in protecting the cell from oxidative stress [46,47].
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AFP gene is reactivated during hepatocarcinogenesis;
cytoplasmic AFP enhances the proliferation of
malignant hepatocytes, while extracellular AFP
accelerates the growth of malignant hepatocytes
through AFP receptors [48]. Besides hepatocytes,
liver progenitor cells also develop AFP during their
cellular differentiation [49]. Elevation of serum AFP
is indicative of theproliferationof liver progenitor cells as
a response to chronic liver injury [50].Our study showed
a significant elevation inserumAFPandCD4levels after
injection with OXP compared with normal control rats;
this result agreeswith previous studies [51,52].Thismay
be attributed to the activation ofAFP gene and elevation
in its serum level. Helper CD4+ T cells play a role in
adaptive immunityby conditioning the environment and
modulating the activity of other immune cells through
cytokine production [53]. In the same way, the levels of
the hepatic inflammatory cytokines, TNF-α and IL-1β,
were increased markedly after OXP injection. Both
inflammatory cytokines have been shown to cause
hepatocyte injury through triggering a potent
cytotoxic immune response and cell death [54]. TNF-
α acts as a pivotal mediator in the progression of acute
liver injury; consequently, its overproduction activates
caspase-3, a member of the family of cysteine proteases,
which, in turn, triggers hepatocellular necrosis and the
apoptotic pathway [55]. Excessive ROS generation
activates the JNK and caspase pathways, ultimately
leading to TNF-α-induced cell death [56]. Oxidative
stress also promotes the migration of inflammatory cells
across the endothelial barrier, leading to tissue injury
[57]. Therefore, it is reasonable to hypothesize that
oxidative stress, which is exacerbated by OXP, may
contribute to the rapid increase in the production of
inflammatory cytokines in rats after OXP intoxication
further aggravating liver injury, which mostly could be
mechanized through the activation of AFP gene and
helperCD4Tcells. In a promisingmanner, treatment of
rats with CEE besides OXP potentially reduced OXP-
induced inflammation, as it valuably decreased the level
of serum TNF-α, IL-1β, CD4, and AFP. These were
released from activated macrophages at the site of
inflammation and influence hepatic metabolism by
upregulating acute-phase protein gene expression
[58]; this anti-inflammatory effect suggests that CEE
may have genetic and immunomodulatory properties.
Phytochemical analysisof thecrudeCEEshowedthat its
main chemical constituents arephenolics and flavonoids,
which have antioxidant effects, and these results are in
agreement with previous reports [59]. The biochemical
findings of our study are matched with the
histopathological one, which proved that OXP causes
liver damage as evidenced by the observation of necrotic
hepatocytes with small degeneration in the form of
pyknotic nuclei, and karyorrhexis, a portal space with
severe inflammation, dilated blood sinusoids, and
hepatocytes surrounded by lymphocytic infiltration;
these architectural deteriorations might be caused by
the membrane-damaging potential of OXPmetabolites
through oxidative stress mechanisms. These
pathological changes directly correlated with the
deteriorated biochemical and inflammatory markers,
and were supported by a recent study [25]. Favorably,
CEE administration effectively alleviated the OXP-
induced hepatic histopathological changes and seemed
to protect the liver tissue from OXP-induced acute
oxidative stress possibly through antioxidant activities
[60]. It has been established that ROS are involved in
inflammation [32] and the protective action of CEE
against OXP-resultant hepatic damage could involve
anti-inflammatory, anti-dyslipidemia, and antioxidant
mechanisms related to scavenging activity of ROS
produced by OXP.
Conclusion
In conclusion, our results indicate that CEEwas able to
significantly ameliorate OXP-induced liver damage
through anti-inflammatory, anti-dyslipidemia, and
antioxidant mechanisms of its inherited constituents.
CEE might be effective against different illnesses
associated with the liver and can help in the
management strategy of long-term use of OXP to
help relieve patients of pain.
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