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Terminalia muelleri extract supplementation alleviates
doxorubicin-induced neurotoxicity in rats: involvement of
oxidative stress and neuroinflammation, apoptosis, extracellular
signal-regulated kinase, and mammalian target of rapamycin
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Background
Doxorubicin (DOX) is widely used to treat many human cancers, but significant
brain damage limits its clinical application.
Objectives
To investigate the neuroprotective activity of Terminalia muelleri extract (TME)
against DOX-induced neurotoxicity in rats.
Materials and methods
The first group served as a normal control; the second group served as a positive
control which was treated with DOX (2.5mg/kg; dissolved in saline; intraperitoneal
three times/week for 2 weeks,); the third group was treated with TME at a dose of
100mg/kg; the fourth group was pretreated with TME for 2 weeks and then
coadministrated with DOX for other 2 weeks; the fifth and sixth groups were
treated with DOX for 2 weeks and then posttreated with two doses of TME
(100, 200mg/kg), respectively, for another 2 weeks. The experiment lasted for 4
weeks; brain tissue samples were harvested for the measurement of toxicity such
as oxidative stress, inflammation, apoptosis, neurodegeneration, and
histopathological examinations.
Results and conclusion
DOX-treated animals showed a reduction in glutathione and superoxide dismutase
along with a raise in malondialdehyde, nitric oxide, and myeloperoxidase. Also, it
caused an increase in caspase-3, indicating an increased propensity for cell death,
acetylcholinesterase, extracellular signal-regulated kinase, mammalian target of
rapamycin with concomitant decrease in brain-derived neurotrophic factor.
However, administration of TME significantly improved oxidative stress
alterations, brain-derived neurotrophic factor, and apoptosis. Histological
assessments of brain tissues supported the obtained biochemical finding. In
conclusion, our findings disclose a potent protective role of TME by activating
antioxidant, anti-inflammatory, anti-apoptotic, and neurogenesis effects, whichmay
contribute to the safe use of DOX in cancer treatment.
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Introduction
Chemotherapy is one of the best remedial strategies in
the treatment of tumors. The efficacy of
chemotherapeutic drugs has produced an enormous
increase in the number of cancer survivors [1],
regarding that, chemotherapeutic drugs do not only
treat malignant cells, but also cause various adverse side
effects on healthy body cells during the treatment [2].

Doxorubicin (DOX, adriamycin), one of the most
potent antineoplastic agent of the anthracycline
group, is widely used in the treatment of various
human malignancies as solid tumors and leukemia
[3,4]. The antitumor effect of DOX has been
reported to be mediated by blocking replication of
DNA, the formation of free radicals, and lipid
Wolters Kluwer - Medknow
peroxidation in cancer cells [5–7]. However, its
clinical application is restricted due to the
considerable cytotoxicity in nontarget tissues such as
the liver, kidneys, heart, and brain [8–11]. Production
of hydroxyl radicals and superoxide radicals along with
hydrogen peroxide after the administration of DOX
causes alterations in the oxidant–antioxidant system
[12]. Therefore, it has been reported that long-term
administration of DOX resulted in some adverse
effects as heart arrhythmias, cardiotoxicity, kidney
injury, and neurotoxicity [13–15].
DOI: 10.4103/epj.epj_56_21
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Although DOX poorly transport across the
blood–brain barrier, after systemic administration it
penetrates to circumventricular organs of the brain and
stimulates degenerative injury in these areas [16,17].
Previous studies have demonstrated that DOX
decreased hippocampal neurogenesis, enhanced
inflammations, caused neural apoptosis, and induced
depression-like behaviors in rats [18–20].

DOX by itself weakly stimulates cellular defense
against oxidative stress [21]; this increases the need
for the application of efficacious antioxidative
neuroprotectors. Therefore, several studies were
carried out for the screening of the antioxidants
extracted from natural sources aiming to reducing
oxidative damage by DOX [22,23]. In this regard,
the majority of these antioxidants were used to
amend the deleterious effect of DOX on healthy
cells without reducing drug dosage or affecting its
anticancer efficacies [24].

Medicinal plants have attracted much attention for
centuries to date as an alternative therapy useful for
treating various diseases; so there has been a growing
interest in searching for new antioxidants from
botanical sources. Many Egyptian plants were used
in traditional medicine long time ago, which
encouraged many researchers to direct their attention
in carrying out many studies on these plants [25]. One
of these plants is Terminalia muelleri Benth, (family:
Combretaceae). It is a flowering plant and is
distributed in India, Indonesia, and North America
along with a commonly known Australian almond
[26]. T. muelleri is widely used in traditional
medicine because of its high content of different
secondary metabolites such as phenolic acids,
flavonoids, tannins, gallic and ellagic acids, and
other compounds [26,27]. Because of these
phytoconstituents, it has wide pharmacological
activities as antioxidants, antidiabetic, anti-
inflammatory, and hepatoprotective [27–30].

On the basis of above findings, the present study was
planned to throw light on the possible neuroprotective
effect of Terminalia muelleri extract (TME) on DOX-
induced neurotoxicity.
Materials and methods
Animals
The present experimental study was carried out on
white albino rats (Rattus norvegicus). The standard
guidelines of National Organization for Drug
Control and Research (NODCAR) were used in
handling animals. The animals were selected from a
pure strain, so genetic influence was kept at a constant
and uniform level. Animals had free access to food and
water ad libitum. They were maintained at 21–24°C
and 40–60% relative humidity with 12-h light–dark
cycle. All animal procedures were performed in
accordance to the Institutional Ethics Committee
and in accordance with the recommendations for the
proper care and use of laboratory animals. Unnecessary
disturbance of animals were avoided. Animals were
treated gently; squeezing, pressure, and tough
maneuver were avoided. All procedures were carried
out according to the Research Ethics Committee for
experimental studies at the National Organization for
Drug Control and Research NODCAR/I/1/2020 on
February 19, 2020.
Plant material
The leaves of T. muelleri Benth. were collected from
Giza Zoo. The plant was botanically authenticated by
the taxonomy specialist at the herbarium of El-Orman
botanical garden, Giza, Egypt, and it was deposited at
the Division of Biochemistry, NODCAR.
Extraction
The shade-dried powdered leaves were extracted three
times with 80% aqueous ethanol. The extract was
separated by filtration and the pooled filtrates were
concentrated under reduced pressure in a rotary
vacuum evaporator, yielding a dried residue Then,
the solid residue was stored at 4°C for subsequent
experiments. The dried matter was suspended in
saline for using in the experimental studies [27].
Drugs
DOX vial (50mg/25ml) was purchased from Ebewe
Pharma, Austria Company (Unterach, Austria) and
used in a dose (2.5mg/kg; intraperitoneal; three times
weekly for 2 weeks) [31].
Experimental design
After 2 weeks of acclimatization to the laboratory
environment, 36 albino rats of nearly similar weights
of between 180 and 200 g were randomly selected and
divided into control and treated groups. The study
pattern was designed in the following manner:

Group 1: served as normal control.
Group 2: rats were injected with DOX (2.5mg/kg;
dissolved in saline; intraperitoneal) three times/week
for 2 weeks [31], and these animals served as a positive
control group.
Group 3: rats treated with a daily oral dose of TME
(100mg/kg body weight) for 4 weeks [27].
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Group 4: rats treated with a daily oral dose of TME
(100mg/kg) for 2 weeks before DOX injection and
then coadministered with DOX (2.5mg/kg; dissolved
in saline; intraperitoneal) three times/week for 2 weeks
for another 2 weeks.
Group 5: rats were injected with DOX (2.5mg/kg;
intraperitoneal) three times/week for 2 weeks and then
rats were treated with a daily oral dose of TME
(100mg/kg) for another 2 weeks.
Group 6: rats were injected with DOX (2.5mg/kg;
intraperitoneal) three times/week for 2 weeks and then
rats were treated with a daily oral dose of TME
(200mg/kg) for another 2 weeks.

At the end of the experiment, 24 h after last
manipulation, the animals were decapitated, and
then brains were isolated. The dissected brains were
harvested and rinsed with ice-cold isotonic saline.
Brains were divided into two portions; one was kept
in 10% formalin for histopathological examinations
while the other part was kept in −80°C for
estimating the other biochemical parameters. The
cerebral cortex (which included the hippocampus)
will be dissected; each of them will be weighed and
homogenized in ice-cold PBS to prepare 10%
homogenate that will be used for the assessment of
oxidative stress biomarkers [glutathione (GSH),
superoxide dismutase activity (SOD),
malondialdehyde (MDA)], inflammatory marker
[myeloperoxidase (MPO), nitric oxide (NO)], brain-
derived neurotrophic factor (BDNF) apoptotic marker
(caspase-3), extracellular signal-regulated kinase
(ERK), and mammalian target of rapamycin (m-
TOR).
Biochemical analysis
(1)
 Estimation of cerebrum reduced GSH contents:
The content of GSH was measured as nonprotein
thiols based on the protocol developed by Beutler
et al. [32].

Estimation of cerebrum SOD:
(2)

The activity of SOD was determined in the
homogenate using a Biodiagnostic Kit (Cairo,
Egypt) according to the method described by
Kinouchi et al.[33].

Estimation of cerebrum MDA contents:
(3)

The determination of MDA was carried out
according to the method of Buege and Aust [34].

Estimation of cerebrum inflammatory activity of
(4)

MPO:
MPO activity was done using the kinetic
colorimetric method described by Bradley et al.
[35].
Estimation of inflammatory response of NO in the
(5)

cerebrum.
Cerebrum NO colorimetric assay was performed
using a Biodiagnostic reagent test kit according to
the method of Montgomery and Dymock [36].

Determination of cerebrum BDNF, ERK, and m-
(6)

TOR:
Enzyme-linked immunosorbent assay was used to
determine cerebrum BDNF, ERK, and m-TOR
by using a reagent test kit (Bioassay Technology
Laboratory, Shanghai, China), according to the
manufacturer’s instructions.

Determination of cerebrum apoptotic factor
(7)

(caspase-3) content:
Enzyme-linked immunosorbent assay was used to
determine cerebrum caspase-3 by using a test
reagent kit (Bioassay Technology Laboratory)
according to the manufacturer’s instructions.

Determination of cerebrum acetylcholinesterase
(8)

(AChE) activity:
The activity of AChE was determined using
DTNB phosphate reagent after 10min
incubation of the cerebrum homogenate with
acetyl thiocholine iodide [37].
Histopathological examination
Autopsy samples were taken from the brain of rats in
different groups and fixed in 10% formalin saline for
24 h. Washing was done in tap water and then serial
dilutions of alcohol (methyl, ethyl, and absolute ethyl)
were used for dehydration. Specimens were cleared in
xylene and embedded in paraffin at 56° in hot air ovens
for 24 h. Paraffin beeswax tissue blocks were prepared
for sectioning at 4 μm thickness by a sledge microtome.
The obtained tissue sections were collected on glass
slides, deparaffinized, and stained using hematoxylin
and eosin stain for examination through the light
electric microscope [38].

Statistical analysis
All values of in-vivo results were presented as means
±SEM. Statistical analysis was carried out by one-way
analysis of variance followed by Tukey-Kramer
multiple comparison tests to calculate the
significance of the difference between treatments. P
value less than 0.05 were considered significant.
Statistical analysis was done using GraphPad Prism
software (version 5; San Diego, California, USA).
Results
The oxidative and inflammatory markers
As illustrated in Fig. 1, the cerebrum GSH content
and SOD activity of the normal group were (4.91
±0.21mmol/g and 14.26±0.59U/g) and were



Figure 1

Neuroprotective effects of TME on (a); cerebrum reduced glutathione (GSH), (b); superoxide dismutase (SOD), (c); malondialdehyde (MDA),
(d); nitric oxide (NO), (e); and myeloperoxidase (MPO) in doxorubicin (DOX)-induced neurotoxicity in rats. Each bar represents the mean±SEM.
n=4 rats. *Significantly different from the normal group at P value less than 0.05. #Significantly different from control DOX group at P value less
than 0.05. @Significantly different from TME100+DOX. !Significantly different from DOX+TME100. TME, Terminalia muelleri extract.
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significantly decreased in the DOX-treated group by
64% (1.79±0.15mmol/g) and 20% (11.41±0.25U/g),
respectively, compared with normal rats.
Preadministration and coadministration of TME
with DOX injection significantly increased both
cerebrum GSH and SOD by 136% (4.22±0.17) and
26% (14.41±0.47), respectively as compared with
DOX-treated rats. On the other hand, treatment
with TME after DOX injection at a dose 100mg/kg
or 200mg/kg significantly increased GSH by 111%
(3.76±0.13), 170% (4.83±0.23), respectively, as
compared with DOX-treated rats and significantly
decreased SOD by 20% (11.65±0.25), 20% (11.66
±0.21), respectively, as compared with
preadministration and coadministration of TME
with DOX injection (14.41±0.47). Treatment with a
dose 200mg/kg of extract significantly increased GSH
by 26% (4.83±0.23) as compared with treatment with a
small dose of 100mg/kg of TME (3.76±0.13).
The cerebrumMDA, NO contents, and MPO activity
of the normal group were 2.55±0.04 nmol/g, 2.61
±0.11 μmol/g, 1.28±0.18U/g, respectively. They were
significantly increased in the DOX-treated group by
73% (4.42±0.24), 41% (3.67±0.22), and 233% (4.26
±0.26), respectively, compared with normal rats.

Compared with DOX-treated rats, the cerebrum
MDA, NO, and MPO significantly decreased in
groups (preadministration and coadministration) of
TME with DOX injection, treatment with a large
dose of 200mg/kg of TME by 41% (2.60±0.12),
40% (2.73±0.04), respectively, by 44% (2.05±0.11),
37% (2.30±0.22), respectively, and by 34% (2.82
±0.14) and 64% (3.49±0.28). In addition, treatment
with a large dose of extract (200mg/kg) significantly
decrease MDA by 23% (2.73±0.04), MPO by 56%
(1.53±0.10) as compared with treatment with a small
dose of TME (100mg/kg), (3.53±0.11) and (3.49
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±0.28) respectively, and with a significant decrease in
MPO by 46% (1.53±0.10), compared with
preadministration and coadministration of TME
with DOX injection (2.83±0.14). On the contrary,
treatments with a small dose of TME (100mg/kg)
significantly increase bothMDA andNO by 35% (3.53
±0.11) and 46% (2.98±0.11), respectively, compared
with preadministration and coadministration of TME
with DOX injection.
The cerebrum brain-derived neurotrophic factor,
extracellular signal-regulated kinase, mammalian target
of rapamycin contents
As illustrated in Fig. 2, the cerebrum BDNF, ERK,
and m-TOR of the normal group were 0.64±0.008,
0.32±0.01 ng/g, and 0.12±0.009 ng/g, respectively.
BDNF significantly decreased in the DOX-treated
group by 36% as compared with normal rats (0.41
±0.006). Preadministration and coadministration of
TME with DOX injection markedly increased the
reduced cerebrum BDNF by 54% (0.63±0.02) as
compared with DOX-treated rats. Also, treatments
with a high dose of TME 200mg/kg significantly
Figure 2

Neuroprotective effects of TME on (a); cerebrum brain-derived neurotroph
(c); and total mammalian target of rapamycin (m-TOR)contents in doxor
mean±SEM. n=4 rats. *Significantly different from normal group at P valu
value less than 0.05. @Significantly different from TME100+DOX. !Signific
increase BDNF by 46% (0.58±0.02), as compared
with DOX-treated rats. On the contrary, treatment
with a small dose of TME (100mg/kg) significantly
decrease BDNF by 15% (0.53±0.01) as compared with
preadministration and coadministration of TME with
DOX injection.

Both total ERK and m-TOR were significantly
increased in the DOX-treated group by 81% (0.58
±0.03) and 160% (0.31±0.01), respectively, as
compared with normal rats; 0.32±0.02 and 0.12
±0.009, respectively. Preadministration and
coadministration of TME with DOX injection
markedly decreased both total ERK and m-TOR by
41% (0.34±0.02) and 44% (0.18±0.01), respectively, as
compared with DOX-treated rats.

Similarly, treatments with a high dose of TME
200mg/kg significantly decrease both total ERK and
m-TOR by 36% (0.37±0.01) and 60% (0.13±0.009),
respectively, as compared with DOX-treated rats. On
the contrary, treatment with a small dose of TME
(100mg/kg) significantly increase both total ERK and
ic factor (BDNF), (b); total extracellular signal-regulated kinase (ERK),
ubicin (DOX)-induced neurotoxicity in rats. Each bar represents the
e less than 0.05. #Significantly different from control DOX group at P
antly different from DOX+TME100. TME, Terminalia muelleri extract.
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m-TOR by 47% (0.50±0.02) and 37% (0.24±0.004)
respectively as compared with preadministration and
coadministration of TME with DOX injection. As
compared with treatment with a small dose of extract
(100mg/kg), treatment with a large dose of 200mg/kg
of TME significantly decrease both total ERK and m-
TOR by 26 and 46%, respectively.
The cerebrum apoptotic marker (caspase-3)
As illustrated in Fig. 3, the cerebrum caspase-3 of the
normal group was 0.31±0.01 ng/g. Caspase-3 was
significantly increased in the DOX-treated group by
116% (0.67±0.04) as compared with normal rats. On
the contrary, pre- and coadministration of TME with
DOX injection and treatment with a large dose of
TME 200mg/kg markedly decreased the elevated
caspase-3 content to 56% (0.31±0.008) and 54%
(0.32±0.008), respectively, as compared with DOX-
treated rats. In addition, treatment with a small dose of
TME (100mg/kg) significantly increased caspase-3 by
39% (0.43±0.02) as compared with pre- and
coadministration of TME with DOX injection.
The cerebrum acetylcholinesterase activity
As illustrated in Table 1, AChE was significantly
increased in the DOX-treated group by 50% as
compared with normal rats. In contrast,
preadministration and coadministration of TME
with DOX injection and treatment with a large dose
of TME 200mg/kg markedly decreased the elevated
AChE content to 25 and 35%, respectively, as
compared with DOX-treated rats. Similarly,
Figure 3

Neuroprotective effects of TME on cerebrum brain caspase-3 (Casp-
3) contents in doxorubicin (DOX)-induced neurotoxicity in rats. Each
bar represents the mean±SEM. n=4 rats. *Significantly different from
normal group at P value less than 0.05. #Significantly different from
control DOX group at P value less than 0.05. @Significantly different
from TME100+DOX. TME, Terminalia muelleri extract.
treatment with a high dose of TME 200mg/kg
significantly decreased AChE by 33% as compared
with treatment with a small dose of TME.
Histopathological examinations
Figures 4–6.
Discussion
The brain, with a high content of polyunsaturated fatty
acids and high oxygen demand, is a very complicated
and sensitive organ, which is highly affected by
chemotherapeutic drugs that are used in the
treatment of cancer [39–43].

In fact, DOX undergo redox cycling and can generate
high levels of ROS and inflammatory mediators by the
accumulation of the products of lipid peroxidation, NO,
MPO, and depletion of antioxidant status indices and
stimulation of cell apoptosis in the brain [44–48]. In
agreement with the findings of several studies [49–51],
our results revealed thechange in the levelsofMDA,NO
contents, and MPO activity that correlated with
decreasing endogenous antioxidants such as SOD
activity and GSH contents in the DOX-treated group
as compared with the control group, which can be
interpreted on the basis of their exhaustion to balance
the elevation in ROS production [52]. Increasing NO
maybea resultof rising circulating levelsofTNF-α in the
brain and subsequent increase of inducible NO synthase
expression [53].

Noteworthy, treatment with TME improved the levels
of oxidative stress and inflammatory biomarkers, where
this improvement is more pronounced in the group
treated with 200mg of TME after DOX injection.
These findings were consolidated by the alterations of
histopathological observations. Herein, treatment with
TME lowered MDA, increasing GSH and SOD
Table 1 Neuroprotective effect of Terminalia muelleri extract
on cerebrum acetylcholinesterase activity in doxorubicin-
induced neurotoxicity in rats

Groups AChE activity (U/g protein)

Normal 7.69±0.50

DOX 11.53±0.61*

Extract 8.23±0.70#

Ext.100 +DOX 8.64±0.53#

DOX+Ext.100 11.28±0.43*@

DOX+Ext.200 7.54±0.19#!

Each value represents the mean±SEM. AChE,
acetylcholinesterase; DOX, doxorubicin; TME, Terminalia muelleri
extract. n=4 rats. *Significantly different from normal group at P
value less than 0.05. #Significantly different from control DOX
group at P value less than 0.05. @Significantly different from
TME100+DOX. !Significantly different from DOX+TME100.



Figure 4

Photomicrographs of rat cerebral cortex sections stained with H&E: groups 1, 3 showed no histopathological alterations, sections of rat from the
doxorubicin (DOX)-treated group 2 showed nuclear pyknosis and degeneration in some neurons (b). Sections of rat from groups 4, 5, 6 showed
normal histological appearance of neurons (d, e, f, respectively) (H&E, ×40).
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activity, decreasing NO and MPO levels as compared
with the DOX-treated group, which may be attributed
to the inhibition of cyclooxygenase-2 and subsequent
inhibition of prostaglandin synthesis [29]. Our results
are in line with the studies of Fahmy et al. [27], El-
Kashak et al. [54], and Ahmed et al. [55]. Antioxidant
and radical scavenging activity of TME is essentially
associated with the presence of polyphenols such as
flavonoids, gallic acid and ellagic acid [27], which can
act as singlet oxygen scavengers, hydrogen atom
donors, and reducing agents [56]. Flavonoids, ellagic
acid, and gallic acid are well known to have antioxidant
properties and anti-inflammatory activity [57,58] and
may be responsible for significant decrease in MDA
and increase in the endogenous antioxidants in the
TME-treated groups.
Oxidative stress can change the cholinergic
transmission by suppressing muscarinic cholinergic
receptors in the brain [59]. In our study, AChE is
increased in the DOX-treated group compared with
the control group, which was reversed by the
administration of TME [28,50,60]. This may be
attributed to the presence of gallic acid and ellagic
acids, which strongly inhibited the AChE activity
[61,62] and this could be due to their potent
antioxidant activity.

Our results were consistent with the study by Risk et al.
[42], who reported that DOX administration triggered
apoptosis in brain tissue through depolarization of the
mitochondrial membrane, resulting in the release of
cytochrome C into the cytosol leading to a set of



Figure 5

Photomicrographs of rat subiculum in hippocampus sections stained with H&E: groups 1, 3 showed normal histological structure of neurons,
sections of rat from the doxorubicin (DOX)-treated group 2 showed nuclear pyknosis in a number of neurons (b). Sections of rat from groups 4, 5,
6 showed normal histological appearance of the neurons (d, e, f, respectively) (H&E ×40).
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apoptotic reactions that resulted in programmed cell
death [63,64]. Treatment with TME significantly
decreased caspase-3 level by downregulation of the
protein expression and activity of caspase-3 [65]. In
addition, gallic acid and ellagic acid can protect against
mitochondrial dysfunction by inhibiting cytochrome
p450 enzyme [66].

During exposure to oxidative stress, BDNF level was
reduced leading to neurodegeneration which results in
a cognitive impairment [67]. In the current study,
DOX administration reduced BDNF level as per the
results of Park et al. [68]; this reduction in BDNF level
may be attributed to the decrease of glutamate
clearance after DOX administration where glutamate
could diffuse to and bind with N-methyl-D-aspartate
receptors, and activation of extrasynaptic N-methyl-D-
aspartate receptor causes inhibition of BDNF
synthesis, leading to a loss in synaptic plasticity and
an elevation in neuronal apoptosis [63,69].The
activation of ERK is mostly associated with survival
signals but with several chemotherapeutic drugs, its
activation promotes apoptosis [64]. The results of our
study showed that the administration of DOX
increased total both ERK and m-TOR. Consistent
with our study, Liao et al. [49] also found that the rats
treated with DOX show significantly suppressed
pathway of ERK phosphorylation through
suppression of NRG1/ErbB signaling and
impairment of the downstream Akt and ERK



Figure 6

Photomicrographs of rat fascia dentate and hilus in hippocampus sections stained with H&E: groups 1 and 3 showed normal histological
structure of neurons, sections of rat from doxorubicin (DOX)-treated; group 2 showed nuclear pyknosis and degeneration in the majority of the
neurons (b). Sections of rat from groups 4, 5, and 6 showed nuclear pyknosis and degeneration in some neurons (d, e, f) (H&E ×40).
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pathway in rats, which raised a stimulating possibility
for the involvement of the NRG1/ErbB pathway in
DOX-induced neurotoxicity.

The m-TOR is an intracellular protein kinase that
functions as an energy and nutrient sensor in the
cellular microenvironment of neurons. Modulation of
m-TOR is vital when nutrient and energy sources
become limited. Hypoxia, traumatic brain injury,
cellular energy states, and growth factors all regulate
the phosphorylation and total levels of m-TOR in cells
[70]. Phosphorylation ofm-TOR at the serine 2448 site
allows for the formation of m-TOR complex 1. Under
normal conditions, when m-TOR complex 1 is
activated, cellular growth and metabolism, protein
synthesis, and lipid synthesis are stimulated [71,72].
Our results in the same line with the preliminary
results of Li et al. [73] showed DOX-inhibited cell
growth, induced apoptosis, and decreased the
expression of m-TOR in K562 cells.

In this context, treatment with TME in our study
obviously normalized the levels of BDNF, ERK, and
m-TOR level caused by DOX probably due to the
presence of bioactive compounds as gallic and ellagic
acids [74], flavonoids and polyphenolic compounds
through their antioxidative activity, which may be
involved in protecting against stress-related
neurodegeneration and restoration of BDNF decline
levels, which may be due to the presence of
neurotrophins and growth factors such as the nerve
growth factor [75].

Similar histopathological changes as nuclear pyknosis
and degeneration in some neurons in the DOX group
in most of the neurons of the cortex, subiculum, fascia
dentata, and hilus of the hippocampus combined with
focal hemorrhage were reported by other studies that
induced chemobrain in laboratory animals by DOX
[76,77].
Conclusion
Nevertheless, this study opens up a new window of
understanding the valuable role of TME in protecting
or treating the neurodamaging effects induced by DOX
through suppressing oxidative stress, inflammation,
apoptosis, and autophagy in the brain of rats. Thus, the
approach of TME could be applied in future to treat or
prevent DOX-induced neurotoxicity in cancer therapy.
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